Articles | Volume 21, issue 20
https://doi.org/10.5194/acp-21-15555-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15555-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A black carbon peak and its sources in the free troposphere of Beijing induced by cyclone lifting and transport from central China
Zhenbin Wang
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Key Laboratory of Meteorological Disaster (KLME), Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Joint International Research Laboratory of Climate and Environment
Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China
Bin Zhu
CORRESPONDING AUTHOR
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Key Laboratory of Meteorological Disaster (KLME), Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Joint International Research Laboratory of Climate and Environment
Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China
Hanqing Kang
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Key Laboratory of Meteorological Disaster (KLME), Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Joint International Research Laboratory of Climate and Environment
Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China
Wen Lu
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Key Laboratory of Meteorological Disaster (KLME), Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Joint International Research Laboratory of Climate and Environment
Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China
Shuqi Yan
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Key Laboratory of Meteorological Disaster (KLME), Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, 210044, China
Joint International Research Laboratory of Climate and Environment
Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing, 210044, China
Delong Zhao
Beijing Weather Modification Office, Beijing, 100089, China
Weihang Zhang
College of Oceanic and Atmospheric Sciences, Ocean University of
China, Qingdao, 266100, China
Jinhui Gao
Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China
Related authors
No articles found.
Shuqi Yan, Hongbin Wang, Xiaohui Liu, Fan Zu, and Duanyang Liu
Atmos. Chem. Phys., 23, 13987–14002, https://doi.org/10.5194/acp-23-13987-2023, https://doi.org/10.5194/acp-23-13987-2023, 2023
Short summary
Short summary
In this study, we quantitatively study the effect of the boundary layer low-level jet (BLLJ) on fast fog spatial propagation; i.e., the fog area expands very fast along a certain direction. The wind speed (10 m s−1) and direction (southeast) of the BLLJ core are consistent with fog propagation (9.6 m s−1). The BLLJ-induced temperature and moisture advections are possible reasons for fast fog propagation. The propagation speed would decrease by 6.4 m s−1 if these advections were turned off.
Naifu Shao, Chunsong Lu, Xingcan Jia, Yuan Wang, Yubin Li, Yan Yin, Bin Zhu, Tianliang Zhao, Duanyang Liu, Shengjie Niu, Shuxian Fan, Shuqi Yan, and Jingjing Lv
Atmos. Chem. Phys., 23, 9873–9890, https://doi.org/10.5194/acp-23-9873-2023, https://doi.org/10.5194/acp-23-9873-2023, 2023
Short summary
Short summary
Fog is an important meteorological phenomenon that affects visibility. Aerosols and the planetary boundary layer (PBL) play critical roles in the fog life cycle. In this study, aerosol-induced changes in fog properties become more remarkable in the second fog (Fog2) than in the first fog (Fog1). The reason is that aerosol–cloud interaction (ACI) delays Fog1 dissipation, leading to the PBL meteorological conditions being more conducive to Fog2 formation and to stronger ACI in Fog2.
Chenwei Fang, Jim M. Haywood, Ju Liang, Ben T. Johnson, Ying Chen, and Bin Zhu
Atmos. Chem. Phys., 23, 8341–8368, https://doi.org/10.5194/acp-23-8341-2023, https://doi.org/10.5194/acp-23-8341-2023, 2023
Short summary
Short summary
The responses of Asian summer monsoon duration and intensity to air pollution mitigation are identified given the net-zero future. We show that reducing scattering aerosols makes the rainy season longer and stronger across South Asia and East Asia but that absorbing aerosol reduction has the opposite effect. Our results hint at distinct monsoon responses to emission controls that target different aerosols.
Xuewei Hou, Oliver Wild, Bin Zhu, and James Lee
EGUsphere, https://doi.org/10.5194/egusphere-2023-1592, https://doi.org/10.5194/egusphere-2023-1592, 2023
Short summary
Short summary
In response to the climate crisis, many countries have committed to net zero in a certain future year. The impacts of net zero scenario on tropospheric O3 are less well studied and remain unclear. In this study, we quantified the changes of tropospheric O3 budgets, spatiotemporal distributions of future surface O3 in East Asia and regional O3 source contributions for 2060 under a net zero scenario, using the NCAR Community Earth System Model (CESM) and online O3 tagging methods.
Wen Lu, Bin Zhu, Shuqi Yan, Jie Li, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1089, https://doi.org/10.5194/egusphere-2023-1089, 2023
Preprint archived
Short summary
Short summary
Parameterized the minimum turbulent diffusivity (Kzmin) by sensible heat flux and latent heat flux and embedded it into the WRF-Chem model. New scheme improved the underestimation of turbulence diffusion underestimation and overestimation of surface PM2.5 under stable boundary layer simulation over eastern China. The physical relationship between Kzmin and two factors was discussed. Process analysis showed that vertical mixing is the key process to improve surface PM2.5 simulations.
Shuqi Yan, Bin Zhu, Shuangshuang Shi, Wen Lu, Jinhui Gao, Hanqing Kang, and Duanyang Liu
Atmos. Chem. Phys., 23, 5177–5190, https://doi.org/10.5194/acp-23-5177-2023, https://doi.org/10.5194/acp-23-5177-2023, 2023
Short summary
Short summary
We analyze ozone response to aerosol mixing states in the vertical direction by WRF-Chem simulations. Aerosols generally lead to turbulent suppression, precursor accumulation, low-level photolysis reduction, and upper-level photolysis enhancement under different underlying surface and pollution conditions. Thus, ozone decreases within the entire boundary layer during the daytime, and the decrease is the least in aerosol external mixing states compared to internal and core shell mixing states.
Zefeng Zhang, Hengnan Guo, Hanqing Kang, Jing Wang, Junlin An, Xingna Yu, Jingjing Lv, and Bin Zhu
Atmos. Meas. Tech., 15, 7259–7264, https://doi.org/10.5194/amt-15-7259-2022, https://doi.org/10.5194/amt-15-7259-2022, 2022
Short summary
Short summary
In this study, we first analyze the relationship between the visibility, the extinction coefficient, and atmospheric compositions. Then we propose to use the harmonic average of visibility data as the average visibility, which can better reflect changes in atmospheric extinction coefficients and aerosol concentrations. It is recommended to use the harmonic average visibility in the studies of climate change, atmospheric radiation, air pollution, environmental health, etc.
Hanqing Kang, Bin Zhu, Gerrit de Leeuw, Bu Yu, Ronald J. van der A, and Wen Lu
Atmos. Chem. Phys., 22, 10623–10634, https://doi.org/10.5194/acp-22-10623-2022, https://doi.org/10.5194/acp-22-10623-2022, 2022
Short summary
Short summary
This study quantified the contribution of each urban-induced meteorological effect (temperature, humidity, and circulation) to aerosol concentration. We found that the urban heat island (UHI) circulation dominates the UHI effects on aerosol. The UHI circulation transports aerosol and its precursor gases from the warmer lower boundary layer to the colder lower free troposphere and promotes the secondary formation of ammonium nitrate aerosol in the cold atmosphere.
Meng Gao, Yang Yang, Hong Liao, Bin Zhu, Yuxuan Zhang, Zirui Liu, Xiao Lu, Chen Wang, Qiming Zhou, Yuesi Wang, Qiang Zhang, Gregory R. Carmichael, and Jianlin Hu
Atmos. Chem. Phys., 21, 11405–11421, https://doi.org/10.5194/acp-21-11405-2021, https://doi.org/10.5194/acp-21-11405-2021, 2021
Short summary
Short summary
Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asian-Pacific Economic Cooperation (APEC) conference affect the mixing state and light absorption of BC and the associated implications for BC-PBL interactions.
Hengnan Guo, Zefeng Zhang, Lin Jiang, Junlin An, Bin Zhu, Hanqing Kang, and Jing Wang
Atmos. Meas. Tech., 14, 2441–2450, https://doi.org/10.5194/amt-14-2441-2021, https://doi.org/10.5194/amt-14-2441-2021, 2021
Short summary
Short summary
Visibility is an indicator of atmospheric transparency and is widely used in many research fields. Although efforts have been made to improve the performance of visibility meters, a significant error exists in measured visibility data. This is because current methods of visibility measurement include a false assumption, which leads to the long-term neglect of an important source of visibility errors. Without major adjustments to current methods, it is not possible to obtain reliable data.
Jinhui Gao, Ying Li, Bin Zhu, Bo Hu, Lili Wang, and Fangwen Bao
Atmos. Chem. Phys., 20, 10831–10844, https://doi.org/10.5194/acp-20-10831-2020, https://doi.org/10.5194/acp-20-10831-2020, 2020
Short summary
Short summary
Light extinction of aerosols can decease surface ozone mainly via reducing photochemical production of ozone. However, it also leads to high levels of ozone aloft being entrained down to the surface which partly counteracts the reduction in surface ozone. The impact of aerosols is more sensitive to local ozone, which suggests that while controlling the levels of aerosols, controlling the local ozone precursors is an effective way to suppress the increase of ozone over China at present.
Zhaobing Guo, Mingyi Xu, Yuxuan He, Shuo Gao, Chenmin Xu, Bin Zhu, Qingjun Guo, Xiaoyu Shen, Shuang Zhao, and Pengxiang Qiu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-506, https://doi.org/10.5194/acp-2020-506, 2020
Revised manuscript not accepted
Short summary
Short summary
In order to gain insight into the formation mechanism of sulfate, stable sulfur isotope and Rayleigh distillation were applied to investigate the isotopic fractionations controlled by the oxidation pathways. The processes of SO2 oxidation on the surface of α-Fe2O3 with different chemical condition (NOX, O3 and NH3) were conducted in laboratory to study mechanism of SO2 oxidation. It was found that nitrogen oxides contributed primarily to the formation of sulfate among NOX, O3 and NH3 pathways.
Shuqi Yan, Bin Zhu, Yong Huang, Jun Zhu, Hanqing Kang, Chunsong Lu, and Tong Zhu
Atmos. Chem. Phys., 20, 5559–5572, https://doi.org/10.5194/acp-20-5559-2020, https://doi.org/10.5194/acp-20-5559-2020, 2020
Short summary
Short summary
The development of China has caused rapid urbanization and severe air pollution. However, the extent of their individual and combined effects on fog is not well understood. Through numerical experiments, we find that urbanization suppresses low-level fog but probably promotes upper-level fog. Additional aerosols generally promote fog. Urbanization affects fog to a much larger extent than aerosols do.
Meng Gao, Jinhui Gao, Bin Zhu, Rajesh Kumar, Xiao Lu, Shaojie Song, Yuzhong Zhang, Beixi Jia, Peng Wang, Gufran Beig, Jianlin Hu, Qi Ying, Hongliang Zhang, Peter Sherman, and Michael B. McElroy
Atmos. Chem. Phys., 20, 4399–4414, https://doi.org/10.5194/acp-20-4399-2020, https://doi.org/10.5194/acp-20-4399-2020, 2020
Short summary
Short summary
A regional fully coupled meteorology–chemistry model, Weather Research and Forecasting model with Chemistry (WRF-Chem), was employed to study the seasonality of ozone (O3) pollution and its sources in both China and India.
Xin Zhang, Yan Yin, Ronald van der A, Jeff L. Lapierre, Qian Chen, Xiang Kuang, Shuqi Yan, Jinghua Chen, Chuan He, and Rulin Shi
Atmos. Meas. Tech., 13, 1709–1734, https://doi.org/10.5194/amt-13-1709-2020, https://doi.org/10.5194/amt-13-1709-2020, 2020
Short summary
Short summary
Lightning NOx has a strong impact on ozone and the hydroxyl radical production. However, the production efficiency of lightning NOx is still quite uncertain. This work develops the algorithm of estimating lightning NOx for both clean and polluted regions and evaluates the sensitivity of estimates to the model setting of lightning NO. Results reveal that our method reduces the sensitivity to the background NO2 and includes much of the below-cloud LNO2.
Hanqing Kang, Bin Zhu, Jinhui Gao, Yao He, Honglei Wang, Jifeng Su, Chen Pan, Tong Zhu, and Bu Yu
Atmos. Chem. Phys., 19, 3673–3685, https://doi.org/10.5194/acp-19-3673-2019, https://doi.org/10.5194/acp-19-3673-2019, 2019
Short summary
Short summary
In this study, we found that a cold front can transport air pollutants from the polluted North China Plain to the Yangtze River Delta (YRD), thereby deteriorating air quality over the YRD. Before the cold frontal passage, a warm and polluted air mass over YRD climbed to the free troposphere (1.0–2.0 km) along the frontal surface. After the cold frontal passage, high pressure behind the frontal zone resulted in a synoptic subsidence that trapped PM2.5 in the surface.
Jinhui Gao, Bin Zhu, Hui Xiao, Hanqing Kang, Chen Pan, Dongdong Wang, and Honglei Wang
Atmos. Chem. Phys., 18, 7081–7094, https://doi.org/10.5194/acp-18-7081-2018, https://doi.org/10.5194/acp-18-7081-2018, 2018
Short summary
Short summary
This model study is about the effect of black carbon (BC) and the boundary layer interactions on surface ozone in an area of severe haze and ozone pollution in China. It shows the following: BC not only reduces photolysis rate, but also suppresses boundary layer (BL) development, then confines more ozone precursors. The BL suppression leads to less ozone aloft being entrained downward and finally leading to surface ozone reduction before noon.
Zefeng Zhang, Yan Shen, Yanwei Li, Bin Zhu, and Xingna Yu
Atmos. Chem. Phys., 17, 4147–4157, https://doi.org/10.5194/acp-17-4147-2017, https://doi.org/10.5194/acp-17-4147-2017, 2017
Short summary
Short summary
Aerosol particles and relative humidity are the main factors that affect atmospheric visibility. Due to the complexity of the physicochemical properties of aerosol particles, more and more instruments and cost were put into research, which limited the development of large area observation research. Thus, it is especially important to find the key parameters which affect the visibility and to establish the observation scheme.
Chen Pan, Bin Zhu, Jinhui Gao, and Hanqing Kang
Geosci. Model Dev., 10, 673–688, https://doi.org/10.5194/gmd-10-673-2017, https://doi.org/10.5194/gmd-10-673-2017, 2017
Short summary
Short summary
This paper describes the implementation of the atmospheric water tracer (AWT) method in the NCAR Community Atmosphere Model version 5.1 (CAM5.1). Compared to other source apportionment methods, the AWT method was developed based on detailed physical parameterisations, and can therefore trace the behaviour of atmospheric water substances directly and exactly. Using this method, we quantitatively identify the dominant sources of precipitation and water vapour over East Asia.
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Increased importance of aerosol–cloud interactions for surface PM2.5 pollution relative to aerosol–radiation interactions in China with the anthropogenic emission reductions
The role of temporal scales in extracting dominant meteorological drivers of major airborne pollutants
Biomass-burning smoke's properties and its interactions with marine stratocumulus clouds in WRF-CAM5 and southeastern Atlantic field campaigns
Air pollution trapping in the Dresden Basin from gray-zone scale urban modeling
The effect of atmospherically relevant aminium salts on water uptake
The impact of aerosols on stratiform clouds over southern West Africa: a large-eddy-simulation study
Numerical simulation and evaluation of global ultrafine particle concentrations at the Earth's surface
The underappreciated role of transboundary pollution in future air quality and health improvements in China
The export of African mineral dust across the Atlantic and its impact over the Amazon Basin
Assimilation of POLDER observations to estimate aerosol emissions
Effect of radiation interaction and aerosol processes on ventilation and aerosol concentrations in a real urban neighbourhood in Helsinki
Atlantic Multidecadal Oscillation modulates the relationship between El Niño–Southern Oscillation and fire weather in Australia
Identifying climate model structural inconsistencies allows for tight constraint of aerosol radiative forcing
Impacts of reducing scattering and absorbing aerosols on the temporal extent and intensity of South Asian summer monsoon and East Asian summer monsoon
Superimposed effects of typical local circulations driven by mountainous topography and aerosol–radiation interaction on heavy haze in the Beijing–Tianjin–Hebei central and southern plains in winter
Associations of interannual variation of Summer Tropospheric Ozone with Western Pacific Subtropical High in China from 1999 to 2017
Climate Intervention using marine cloud brightening (MCB) compared with stratospheric aerosol injection (SAI) in the UKESM1 climate model
Multi-model ensemble projection of the global dust cycle by the end of 21st century using the Coupled Model Intercomparison Project version 6 data
A thermodynamic framework for bulk–surface partitioning in finite-volume mixed organic–inorganic aerosol particles and cloud droplets
Change from aerosol-driven to cloud-feedback-driven trend in short-wave radiative flux over the North Atlantic
A new process-based and scale-aware desert dust emission scheme for global climate models – Part I: Description and evaluation against inverse modeling emissions
Opinion: The importance of historical and paleoclimate aerosol radiative effects
Transported aerosols regulate the pre-monsoon rainfall over north-east India: a WRF-Chem modelling study
Collision-sticking rates of acid–base clusters in the gas phase determined from atomistic simulation and a novel analytical interacting hard-sphere model
Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties
Aerosol-meteorology feedback diminishes the trans-boundary transport of black carbon into the Tibetan Plateau
Model-based insights into aerosol perturbation on pristine continental convective precipitation
The impact of using assimilated Aeolus wind data on regional WRF-Chem dust simulations
On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic
A global evaluation of daily to seasonal aerosol and water vapor relationships using a combination of AERONET and NAAPS reanalysis data
Impact of acidity and surface modulated acid dissociation on cloud response to organic aerosol
Local and remote climate impacts of future African aerosol emissions
The dependence of aerosols' global and local precipitation impacts on the emitting region
Assessing the climate and air quality effects of future aerosol mitigation in India using a global climate model combined with statistical downscaling
Aggravated air pollution and health burden due to traffic congestion in urban China
Late summer transition from a free-tropospheric to boundary layer source of Aitken mode aerosol in the high Arctic
Self-lofting of wildfire smoke in the troposphere and stratosphere: simulations and space lidar observations
Improving 3-day deterministic air pollution forecasts using machine learning algorithms
Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds
Projected increases in wildfires may challenge regulatory curtailment of PM2.5 over the eastern US by 2050
Meteorological export and deposition fluxes of black carbon on glaciers of the central Chilean Andes
Future changes in atmospheric rivers over East Asia under stratospheric aerosol intervention
Modeling the influence of chain length on secondary organic aerosol (SOA) formation via multiphase reactions of alkanes
How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent
Microphysical, macrophysical, and radiative responses of subtropical marine clouds to aerosol injections
Hemispheric-wide climate response to regional COVID-19-related aerosol emission reductions: the prominent role of atmospheric circulation adjustments
Impacts of an aerosol layer on a midlatitude continental system of cumulus clouds: how do these impacts depend on the vertical location of the aerosol layer?
Impact of phase state and non-ideal mixing on equilibration timescales of secondary organic aerosol partitioning
Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 2: strong surfactants
A global climatology of ice-nucleating particles under cirrus conditions derived from model simulations with MADE3 in EMAC
Da Gao, Bin Zhao, Shuxiao Wang, Yuan Wang, Brian Gaudet, Yun Zhu, Xiaochun Wang, Jiewen Shen, Shengyue Li, Yicong He, Dejia Yin, and Zhaoxin Dong
Atmos. Chem. Phys., 23, 14359–14373, https://doi.org/10.5194/acp-23-14359-2023, https://doi.org/10.5194/acp-23-14359-2023, 2023
Short summary
Short summary
Surface PM2.5 concentrations can be enhanced by aerosol–radiation interactions (ARIs) and aerosol–cloud interactions (ACIs). In this study, we found PM2.5 enhancement induced by ACIs shows a significantly smaller decrease ratio than that induced by ARIs in China with anthropogenic emission reduction from 2013 to 2021, making ACIs more important for enhancing PM2.5 concentrations. ACI-induced PM2.5 enhancement needs to be emphatically considered to meet the national PM2.5 air quality standard.
Miaoqing Xu, Jing Yang, Manchun Li, Xiao Chen, Qiancheng Lv, Qi Yao, Bingbo Gao, and Ziyue Chen
Atmos. Chem. Phys., 23, 14065–14076, https://doi.org/10.5194/acp-23-14065-2023, https://doi.org/10.5194/acp-23-14065-2023, 2023
Short summary
Short summary
Although the temporal-scale effects on PM2.5–meteorology associations have been discussed, no quantitative evidence has proved this before. Based on rare 3 h meteorology data, we revealed that the dominant meteorological factor for PM2.5 concentrations across China extracted at the 3 h and 24 h scales presented large variations. This research suggests that data sources of different temporal scales should be comprehensively considered for better attribution and prevention of airborne pollution.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023, https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare the WRF-CAM5 model with observations from ORACLES, CLARIFY, and LASIC field campaigns in the southeastern Atlantic in August 2017. The model transports and mixes smoke well but does not fully capture some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, sulfate particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Michael Weger and Bernd Heinold
Atmos. Chem. Phys., 23, 13769–13790, https://doi.org/10.5194/acp-23-13769-2023, https://doi.org/10.5194/acp-23-13769-2023, 2023
Short summary
Short summary
This study investigates the effects of complex terrain on air pollution trapping using a numerical model which simulates the dispersion of emissions under real meteorological conditions. The additionally simulated aerosol age allows us to distinguish areas that accumulate aerosol over time from areas that are more influenced by fresh emissions. The Dresden Basin, a widened section of the Elbe Valley in eastern Germany, is selected as the target area in a case study to demonstrate the concept.
Noora Hyttinen
Atmos. Chem. Phys., 23, 13809–13817, https://doi.org/10.5194/acp-23-13809-2023, https://doi.org/10.5194/acp-23-13809-2023, 2023
Short summary
Short summary
Water activity in aerosol particles describes how particles respond to variations in relative humidity. Here, water activities were calculated for a set of 80 salts that may be present in aerosol particles using a state-of-the-art quantum-chemistry-based method. The effect of the dissociated salt on water activity varies with both the cation and anion. Most of the studied salts increase water uptake compared to pure water-soluble organic particles.
Lambert Delbeke, Chien Wang, Pierre Tulet, Cyrielle Denjean, Maurin Zouzoua, Nicolas Maury, and Adrien Deroubaix
Atmos. Chem. Phys., 23, 13329–13354, https://doi.org/10.5194/acp-23-13329-2023, https://doi.org/10.5194/acp-23-13329-2023, 2023
Short summary
Short summary
Low-level stratiform clouds (LLSCs) appear frequently over southern West Africa during the West African monsoon. Local and remote aerosol sources (biomass burning aerosols from central Africa) play a significant role in the LLSC life cycle. Based on measurements by the DACCIWA campaign, large-eddy simulation (LES) was conducted using different aerosol scenarios. The results show that both indirect and semi-direct effects can act individually or jointly to influence the life cycles of LLSCs.
Matthias Kohl, Jos Lelieveld, Sourangsu Chowdhury, Sebastian Ehrhart, Disha Sharma, Yafang Cheng, Sachchida Nand Tripathi, Mathew Sebastian, Govindan Pandithurai, Hongli Wang, and Andrea Pozzer
Atmos. Chem. Phys., 23, 13191–13215, https://doi.org/10.5194/acp-23-13191-2023, https://doi.org/10.5194/acp-23-13191-2023, 2023
Short summary
Short summary
Knowledge on atmospheric ultrafine particles (UFPs) with a diameter smaller than 100 nm is crucial for public health and the hydrological cycle. We present a new global dataset of UFP concentrations at the Earth's surface derived with a comprehensive chemistry–climate model and evaluated with ground-based observations. The evaluation results are combined with high-resolution primary emissions to downscale UFP concentrations to an unprecedented horizontal resolution of 0.1° × 0.1°.
Jun-Wei Xu, Jintai Lin, Dan Tong, and Lulu Chen
Atmos. Chem. Phys., 23, 10075–10089, https://doi.org/10.5194/acp-23-10075-2023, https://doi.org/10.5194/acp-23-10075-2023, 2023
Short summary
Short summary
This study highlights the necessity of a low-carbon pathway in foreign countries for China to achieve air quality goals and to protect public health. We find that adopting the low-carbon instead of the fossil-fuel-intensive pathway in foreign countries would prevent 63 000–270 000 transboundary PM2.5-associated mortalities in China in 2060. Our study provides direct evidence of the necessity of inter-regional cooperation for air quality improvement.
Xurong Wang, Qiaoqiao Wang, Maria Prass, Christopher Pöhlker, Daniel Moran-Zuloaga, Paulo Artaxo, Jianwei Gu, Ning Yang, Xiajie Yang, Jiangchuan Tao, Juan Hong, Nan Ma, Yafang Cheng, Hang Su, and Meinrat O. Andreae
Atmos. Chem. Phys., 23, 9993–10014, https://doi.org/10.5194/acp-23-9993-2023, https://doi.org/10.5194/acp-23-9993-2023, 2023
Short summary
Short summary
In this work, with an optimized particle mass size distribution, we captured observed aerosol optical depth (AOD) and coarse aerosol concentrations over source and/or receptor regions well, demonstrating good performance in simulating export of African dust toward the Amazon Basin. In addition to factors controlling the transatlantic transport of African dust, the study investigated the impact of African dust over the Amazon Basin, including the nutrient inputs associated with dust deposition.
Athanasios Tsikerdekis, Otto P. Hasekamp, Nick A. J. Schutgens, and Qirui Zhong
Atmos. Chem. Phys., 23, 9495–9524, https://doi.org/10.5194/acp-23-9495-2023, https://doi.org/10.5194/acp-23-9495-2023, 2023
Short summary
Short summary
Aerosols are tiny particles of different substances (species) that can be emitted into the atmosphere by natural processes or by anthropogenic activities. However, the actual aerosol emission amount per species is highly uncertain. Thus in this work we correct the aerosol emissions used to drive a global aerosol–climate model using satellite observations through a process called data assimilation. These more accurate aerosol emissions can lead to a more accurate weather and climate prediction.
Jani Strömberg, Xiaoyu Li, Mona Kurppa, Heino Kuuluvainen, Liisa Pirjola, and Leena Järvi
Atmos. Chem. Phys., 23, 9347–9364, https://doi.org/10.5194/acp-23-9347-2023, https://doi.org/10.5194/acp-23-9347-2023, 2023
Short summary
Short summary
We conclude that with low wind speeds, solar radiation has a larger decreasing effect (53 %) on pollutant concentrations than aerosol processes (18 %). Additionally, our results showed that with solar radiation included, pollutant concentrations were closer to observations (−13 %) than with only aerosol processes (+98 %). This has implications when planning simulations under calm conditions such as in our case and when deciding whether or not simulations need to include these processes.
Guanyu Liu, Jing Li, and Tong Ying
Atmos. Chem. Phys., 23, 9217–9228, https://doi.org/10.5194/acp-23-9217-2023, https://doi.org/10.5194/acp-23-9217-2023, 2023
Short summary
Short summary
Fires in Australia are positively correlated with the El Niño–Southern Oscillation (ENSO). However, the correlation between ENSO and the Australian Fire Weather Index (FWI) increases from 0.17 to 0.70 when the Atlantic Multidecadal Oscillation (AMO) shifts from a negative to positive phase. This is explained by the teleconnection effect through which the warmer AMO generates Rossby wave trains and results in high pressures and a weather condition conducive to wildfires.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David M. H. Sexton, Christopher Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John W. Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 8749–8768, https://doi.org/10.5194/acp-23-8749-2023, https://doi.org/10.5194/acp-23-8749-2023, 2023
Short summary
Short summary
Aerosol forcing of Earth’s energy balance has persisted as a major cause of uncertainty in climate simulations over generations of climate model development. We show that structural deficiencies in a climate model are exposed by comprehensively exploring parametric uncertainty and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. This provides a future pathway towards building models with greater physical realism and lower uncertainty.
Chenwei Fang, Jim M. Haywood, Ju Liang, Ben T. Johnson, Ying Chen, and Bin Zhu
Atmos. Chem. Phys., 23, 8341–8368, https://doi.org/10.5194/acp-23-8341-2023, https://doi.org/10.5194/acp-23-8341-2023, 2023
Short summary
Short summary
The responses of Asian summer monsoon duration and intensity to air pollution mitigation are identified given the net-zero future. We show that reducing scattering aerosols makes the rainy season longer and stronger across South Asia and East Asia but that absorbing aerosol reduction has the opposite effect. Our results hint at distinct monsoon responses to emission controls that target different aerosols.
Yue Peng, Hong Wang, Xiaoye Zhang, Zhaodong Liu, Wenjie Zhang, Siting Li, Chen Han, and Huizheng Che
Atmos. Chem. Phys., 23, 8325–8339, https://doi.org/10.5194/acp-23-8325-2023, https://doi.org/10.5194/acp-23-8325-2023, 2023
Short summary
Short summary
This study demonstrates a strong link between local circulation, aerosol–radiation interaction (ARI), and haze pollution. Under the weak weather-scale systems, the typical local circulation driven by mountainous topography is the main cause of pollutant distribution in the Beijing–Tianjin–Hebei region, and the ARI mechanism amplifies this influence of local circulation on pollutants, making haze pollution aggravated by the superposition of both.
Xiaodong Zhang, Ruiyu Zhugu, Xiaohu Jian, Xinrui Liu, Kaijie Chen, Shu Tao, Junfeng Liu, Hong Gao, Tao Huang, and Jianmin Ma
EGUsphere, https://doi.org/10.5194/egusphere-2023-1373, https://doi.org/10.5194/egusphere-2023-1373, 2023
Short summary
Short summary
WRF-Chem modeling was conducted to assess the impacts of Western Pacific Subtropical High Pressure (WPSH) on interannual fluctuations of O3 pollution in China. We find that, while precursor emissions dominated long-term trend and magnitude of O3 from 1999 to 2017, WPSH determined interannual variation of summer O3. The response of O3 pollution to WPSH in major urban clusters depended on proximity of these urban areas to WPSH. The results could help long-term O3 pollution mitigation planning.
James Matthew Haywood, Andy Jones, Anthony Crawford Jones, and Philip J. Rasch
EGUsphere, https://doi.org/10.5194/egusphere-2023-1611, https://doi.org/10.5194/egusphere-2023-1611, 2023
Short summary
Short summary
The difficulties in ameliorating global warming and the associated climate change via conventional mitigation are well documented, with all climate model scenarios exceeding 1.5 °C above the preindustrial level in the near-future. There is therefore a growing interest in ‘geoengineering’ to reflect a greater proportion of sunlight back to space and offset some of the global warming. We use a state-of-the-art Earth System model to investigate two of the most prominent geoengineering strategies.
Yuan Zhao, Xu Yue, Yang Cao, Jun Zhu, Chenguang Tian, Hao Zhou, Yuwen Chen, Yihan Hu, Weijie Fu, and Xu Zhao
Atmos. Chem. Phys., 23, 7823–7838, https://doi.org/10.5194/acp-23-7823-2023, https://doi.org/10.5194/acp-23-7823-2023, 2023
Short summary
Short summary
We project the future changes of dust emissions and loading using an ensemble of model outputs from the Coupled Model Intercomparison Project version 6 under four scenarios. We find increased dust emissions and loading in North Africa, due to increased drought and strengthened surface wind, and decreased dust loading over Asia, following enhanced precipitation. Such a spatial pattern remains similar, though the regional intensity varies among different scenarios.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 23, 7741–7765, https://doi.org/10.5194/acp-23-7741-2023, https://doi.org/10.5194/acp-23-7741-2023, 2023
Short summary
Short summary
Aerosol particles below 100 nm in diameter have high surface-area-to-volume ratios. The enrichment of compounds in the surface of an aerosol particle may lead to depletion of that species in the interior bulk of the particle. We present a framework for modeling the equilibrium bulk–surface partitioning of mixed organic–inorganic particles, including cases of co-condensation of semivolatile organic compounds and species with extremely limited solubility in the bulk or surface of a particle.
Daniel P. Grosvenor and Kenneth S. Carslaw
Atmos. Chem. Phys., 23, 6743–6773, https://doi.org/10.5194/acp-23-6743-2023, https://doi.org/10.5194/acp-23-6743-2023, 2023
Short summary
Short summary
We determine what causes long-term trends in short-wave (SW) radiative fluxes in two climate models. A positive trend occurs between 1850 and 1970 (increasing SW reflection) and a negative trend between 1970 and 2014; the pre-1970 positive trend is mainly driven by an increase in cloud droplet number concentrations due to increases in aerosol, and the 1970–2014 trend is driven by a decrease in cloud fraction, which we attribute to changes in clouds caused by greenhouse gas-induced warming.
Danny M. Leung, Jasper F. Kok, Longlei Li, Gregory S. Okin, Catherine Prigent, Martina Klose, Carlos Pérez García-Pando, Laurent Menut, Natalie M. Mahowald, David M. Lawrence, and Marcelo Chamecki
Atmos. Chem. Phys., 23, 6487–6523, https://doi.org/10.5194/acp-23-6487-2023, https://doi.org/10.5194/acp-23-6487-2023, 2023
Short summary
Short summary
Desert dust modeling is important for understanding climate change, as dust regulates the atmosphere's greenhouse effect and radiation. This study formulates and proposes a more physical and realistic desert dust emission scheme for global and regional climate models. By considering more aeolian processes in our emission scheme, our simulations match better against dust observations than existing schemes. We believe this work is vital in improving dust representation in climate models.
Natalie Marie Mahowald, Longlei Li, Samuel Albani, Douglas Stephen Hamilton, and Jasper Kok
EGUsphere, https://doi.org/10.5194/egusphere-2023-1174, https://doi.org/10.5194/egusphere-2023-1174, 2023
Short summary
Short summary
Estimating the past aerosol radiative effects and their uncertainties is an important topic in climate science. Aerosol radiative effects propagate into large uncertainties in estimates of how present and future climate evolves with changing greenhouse gas emissions. A deeper understanding of how aerosols interacted with the atmospheric energy budget under past climates is hindered in part by a lack of relevant paleo observations and in part because less attention has been paid to the problem.
Neeldip Barman and Sharad Gokhale
Atmos. Chem. Phys., 23, 6197–6215, https://doi.org/10.5194/acp-23-6197-2023, https://doi.org/10.5194/acp-23-6197-2023, 2023
Short summary
Short summary
The study shows that during the pre-monsoon season transported aerosols, especially from the Indo-Gangetic Plain (IGP), have a greater impact with respect to air pollution, radiative forcing and rainfall over north-east (NE) India than emissions from within NE India itself. Hence, controlling emissions in the IGP will be significantly more fruitful in reducing pollution as well as climatic impacts over this region.
Huan Yang, Ivo Neefjes, Valtteri Tikkanen, Jakub Kubečka, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 23, 5993–6009, https://doi.org/10.5194/acp-23-5993-2023, https://doi.org/10.5194/acp-23-5993-2023, 2023
Short summary
Short summary
We present a new analytical model for collision rates between molecules and clusters of arbitrary sizes, accounting for long-range interactions. The model is verified against atomistic simulations of typical acid–base clusters participating in atmospheric new particle formation (NPF). Compared to non-interacting models, accounting for long-range interactions leads to 2–3 times higher collision rates for small clusters, indicating the necessity of including such interactions in NPF modeling.
Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y.-W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, and Andrew Weinheimer
Atmos. Chem. Phys., 23, 5023–5042, https://doi.org/10.5194/acp-23-5023-2023, https://doi.org/10.5194/acp-23-5023-2023, 2023
Short summary
Short summary
Particle size of atmospheric aerosol is important for estimating its climate and health effects, but simulating atmospheric aerosol size is computationally demanding. This study derives a simple parameterization of the size of organic and secondary inorganic ambient aerosol that can be applied to atmospheric models. Applying this parameterization allows a better representation of the global spatial pattern of aerosol size, as verified by ground and airborne measurements.
Yuling Hu, Shichang Kang, Haipeng Yu, Junhua Yang, Mukesh Rai, Xiufeng Yin, Xintong Chen, and Pengfei Chen
EGUsphere, https://doi.org/10.5194/egusphere-2023-252, https://doi.org/10.5194/egusphere-2023-252, 2023
Short summary
Short summary
The Tibetan Plateau (TP) saw the record-breaking aerosol pollution event from April 20 to May 10, 2016. We then studied the impact of aerosol-meteorology feedback on the transboundary transport flux of black carbon (BC) during this severe pollution event. It was found that the aerosol-meteorology feedback decreases the trans-boundary transport flux of BC from central and western Himalayas towards the TP. The study is of great significance to the ecological environment protection for the TP.
Mengjiao Jiang, Yaoting Li, Weiji Hu, Yinshan Yang, Guy Brasseur, and Xi Zhao
Atmos. Chem. Phys., 23, 4545–4557, https://doi.org/10.5194/acp-23-4545-2023, https://doi.org/10.5194/acp-23-4545-2023, 2023
Short summary
Short summary
Relatively clean background aerosol over the Tibetan Plateau makes the study of aerosol–cloud–precipitation interactions distinctive. A convection on 24 July 2014 in Naqu was selected using the Weather Research Forecasting (WRF) model, including the Thompson aerosol-aware microphysical scheme. Our study uses a compromise approach to the limited observations. We show that the transformation of cloud water to graupel and the development of convective clouds are favored in a polluted situation.
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023, https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
Short summary
With the launch of the Aeolus satellite, higher-accuracy wind products became available. This research was carried out to validate the assimilated wind products by testing their effect on the WRF-Chem model predictive ability of dust processes. This was carried out for the eastern Mediterranean and Middle East region for two 2-month periods in autumn and spring 2020. The use of the assimilated products improved the dust forecasts of the autumn season (both quantitatively and qualitatively).
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Juli I. Rubin, Jeffrey S. Reid, Peng Xian, Christopher M. Selman, and Thomas F. Eck
Atmos. Chem. Phys., 23, 4059–4090, https://doi.org/10.5194/acp-23-4059-2023, https://doi.org/10.5194/acp-23-4059-2023, 2023
Short summary
Short summary
This work aims to quantify the covariability between aerosol optical depth/extinction with water vapor (PW) globally, using NASA AERONET observations and NAAPS model data. Findings are important for data assimilation and radiative transfer. The study shows statistically significant and positive AOD–PW relationships are found across the globe, varying in strength with location and season and tied to large-scale aerosol events. Hygroscopic growth was also found to be an important factor.
Gargi Sengupta, Minjie Zheng, and Nønne L. Prisle
EGUsphere, https://doi.org/10.5194/egusphere-2023-438, https://doi.org/10.5194/egusphere-2023-438, 2023
Short summary
Short summary
The effect of organic acid aerosol on sulfur chemistry and cloud properties was investigated in an atmospheric model. Organic acid dissociation was considered using both bulk and surface related properties. We found that organic acid dissociation leads to increased hydrogen ion concentrations and sulfate aerosol mass in aqueous aerosols, increasing cloud formation. This could be important in large scale climate models as many organic aerosol components are both acidic and surface-active.
Christopher D. Wells, Matthew Kasoar, Nicolas Bellouin, and Apostolos Voulgarakis
Atmos. Chem. Phys., 23, 3575–3593, https://doi.org/10.5194/acp-23-3575-2023, https://doi.org/10.5194/acp-23-3575-2023, 2023
Short summary
Short summary
The climate is altered by greenhouse gases and air pollutant particles, and such emissions are likely to change drastically in the future over Africa. Air pollutants do not travel far, so their climate effect depends on where they are emitted. This study uses a climate model to find the climate impacts of future African pollutant emissions being either high or low. The particles absorb and scatter sunlight, causing the ground nearby to be cooler, but elsewhere the increased heat causes warming.
Geeta G. Persad
Atmos. Chem. Phys., 23, 3435–3452, https://doi.org/10.5194/acp-23-3435-2023, https://doi.org/10.5194/acp-23-3435-2023, 2023
Short summary
Short summary
Human-induced aerosol pollution has major impacts on both local and global precipitation. This study demonstrates using a global climate model that both the strength and localization of aerosols' precipitation impacts are highly dependent on which region the aerosols are emitted from. The findings highlight that the geographic distribution of human-induced aerosol emissions must be accounted for when quantifying their influence on global precipitation.
Tuuli Miinalainen, Harri Kokkola, Antti Lipponen, Antti-Pekka Hyvärinen, Vijay Kumar Soni, Kari E. J. Lehtinen, and Thomas Kühn
Atmos. Chem. Phys., 23, 3471–3491, https://doi.org/10.5194/acp-23-3471-2023, https://doi.org/10.5194/acp-23-3471-2023, 2023
Short summary
Short summary
We simulated the effects of aerosol emission mitigation on both global and regional radiative forcing and city-level air quality with a global-scale climate model. We used a machine learning downscaling approach to bias-correct the PM2.5 values obtained from the global model for the Indian megacity New Delhi. Our results indicate that aerosol mitigation could result in both improved air quality and less radiative heating for India.
Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yanli Zhang, Gregory R. Carmichael, and Hongliang Zhang
Atmos. Chem. Phys., 23, 2983–2996, https://doi.org/10.5194/acp-23-2983-2023, https://doi.org/10.5194/acp-23-2983-2023, 2023
Short summary
Short summary
In China, the number of vehicles has jumped significantly in the last decade. This caused severe traffic congestion and aggravated air pollution. In this study, we developed a new temporal allocation approach to quantify the impacts of traffic congestion. We found that traffic congestion worsens air quality and the health burden across China, especially in the urban clusters. More effective and comprehensive vehicle emission control policies should be implemented to improve air quality in China.
Ruth Price, Andrea Baccarini, Julia Schmale, Paul Zieger, Ian M. Brooks, Paul Field, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 2927–2961, https://doi.org/10.5194/acp-23-2927-2023, https://doi.org/10.5194/acp-23-2927-2023, 2023
Short summary
Short summary
Arctic clouds can control how much energy is absorbed by the surface or reflected back to space. Using a computer model of the atmosphere we investigated the formation of atmospheric particles that allow cloud droplets to form. We found that particles formed aloft are transported to the lowest part of the Arctic atmosphere and that this is a key source of particles. Our results have implications for the way Arctic clouds will behave in the future as climate change continues to impact the region.
Kevin Ohneiser, Albert Ansmann, Jonas Witthuhn, Hartwig Deneke, Alexandra Chudnovsky, Gregor Walter, and Fabian Senf
Atmos. Chem. Phys., 23, 2901–2925, https://doi.org/10.5194/acp-23-2901-2023, https://doi.org/10.5194/acp-23-2901-2023, 2023
Short summary
Short summary
This study shows that smoke layers can reach the tropopause via the self-lofting effect within 3–7 d in the absence of pyrocumulonimbus convection if the
aerosol optical thickness is larger than approximately 2 for a longer time period. When reaching the stratosphere, wildfire smoke can sensitively influence the stratospheric composition on a hemispheric scale and thus can affect the Earth’s climate and the ozone layer.
Christer Johansson, Zhiguo Zhang, Magnuz Engardt, Massimo Stafoggia, and Xiaoliang Ma
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2023-38, https://doi.org/10.5194/acp-2023-38, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
Up-to-date information on present and coming days’ air quality help people avoid exposure to high levels of air pollution. We apply different machine learning models to significantly improve traditional forecasts of PM10, NOx, and O3 in Stockholm, Sweden. It is shown that forecasts of all air pollutants are improved by through the input of lagged measurements and taking into account calendar information. The final modelled errors are substantially smaller than uncertainties in the measurements.
Marios Chatziparaschos, Nikos Daskalakis, Stelios Myriokefalitakis, Nikos Kalivitis, Athanasios Nenes, María Gonçalves Ageitos, Montserrat Costa-Surós, Carlos Pérez García-Pando, Medea Zanoli, Mihalis Vrekoussis, and Maria Kanakidou
Atmos. Chem. Phys., 23, 1785–1801, https://doi.org/10.5194/acp-23-1785-2023, https://doi.org/10.5194/acp-23-1785-2023, 2023
Short summary
Short summary
Ice formation is enabled by ice-nucleating particles (INP) at higher temperatures than homogeneous formation and can profoundly affect the properties of clouds. Our global model results show that K-feldspar is the most important contributor to INP concentrations globally, affecting mid-level mixed-phase clouds. However, quartz can significantly contribute and dominates the lowest and the highest altitudes of dust-derived INP, affecting mainly low-level and high-level mixed-phase clouds.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023, https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Short summary
Glaciers in the Andes of central Chile are shrinking rapidly in response to global warming. This melting is accelerated by the deposition of opaque particles onto snow and ice. In this work, model simulations quantify typical deposition rates of soot on glaciers in summer and winter months and show that the contribution of emissions from Santiago is not as high as anticipated. Additionally, the combination of regional- and local-scale meteorology explains the seasonality in deposition.
Ju Liang and Jim Haywood
Atmos. Chem. Phys., 23, 1687–1703, https://doi.org/10.5194/acp-23-1687-2023, https://doi.org/10.5194/acp-23-1687-2023, 2023
Short summary
Short summary
The recent record-breaking flood events in China during the summer of 2021 highlight the importance of mitigating the risks from future changes in high-impact weather systems under global warming. Based on a state-of-the-art Earth system model, we demonstrate a pilot study on the responses of atmospheric rivers and extreme precipitation over East Asia to anthropogenically induced climate warming and an unconventional mitigation strategy – stratospheric aerosol injection.
Azad Madhu, Myoseon Jang, and David Deacon
Atmos. Chem. Phys., 23, 1661–1675, https://doi.org/10.5194/acp-23-1661-2023, https://doi.org/10.5194/acp-23-1661-2023, 2023
Short summary
Short summary
SOA formation is simulated using the UNIPAR model for series of linear alkanes. The inclusion of autoxidation reactions within the explicit gas mechanisms of C9–C12 was found to significantly improve predictions. Available product distributions were extrapolated with an incremental volatility coefficient (IVC) to predict SOA formation of alkanes without explicit mechanisms. These product distributions were used to simulate SOA formation from C13 and C15 and had good agreement with chamber data.
Jianbing Jin, Bas Henzing, and Arjo Segers
Atmos. Chem. Phys., 23, 1641–1660, https://doi.org/10.5194/acp-23-1641-2023, https://doi.org/10.5194/acp-23-1641-2023, 2023
Short summary
Short summary
Aerosol models and satellite retrieval algorithms rely on different aerosol size assumptions. In practice, differences between simulations and observations do not always reflect the difference in aerosol amount. To avoid inconsistencies, we designed a hybrid assimilation approach. Different from a standard aerosol optical depth (AOD) assimilation that directly assimilates AODs, the hybrid one estimates aerosol size parameters by assimilating Ängström observations before assimilating the AODs.
Je-Yun Chun, Robert Wood, Peter Blossey, and Sarah J. Doherty
Atmos. Chem. Phys., 23, 1345–1368, https://doi.org/10.5194/acp-23-1345-2023, https://doi.org/10.5194/acp-23-1345-2023, 2023
Short summary
Short summary
We investigate the impact of injected aerosol on subtropical low marine clouds under a variety of meteorological conditions using high-resolution model simulations. This study illustrates processes perturbed by aerosol injections and their impact on cloud properties (e.g., cloud number concentration, thickness, and cover). We show that those responses are highly sensitive to background meteorological conditions, such as precipitation, and background cloud properties.
Nora L. S. Fahrenbach and Massimo A. Bollasina
Atmos. Chem. Phys., 23, 877–894, https://doi.org/10.5194/acp-23-877-2023, https://doi.org/10.5194/acp-23-877-2023, 2023
Short summary
Short summary
We studied the monthly-scale climate response to COVID-19 aerosol emission reductions during January–May 2020 using climate models. Our results show global temperature and rainfall anomalies driven by circulation changes. The climate patterns reverse polarity from JF to MAM due to a shift in the main SO2 reduction region from China to India. This real-life example of rapid climate adjustments to abrupt, regional aerosol emission reduction has large implications for future climate projections.
Seoung Soo Lee, Junshik Um, Won Jun Choi, Kyung-Ja Ha, Chang Hoon Jung, Jianping Guo, and Youtong Zheng
Atmos. Chem. Phys., 23, 273–286, https://doi.org/10.5194/acp-23-273-2023, https://doi.org/10.5194/acp-23-273-2023, 2023
Short summary
Short summary
This paper elaborates on process-level mechanisms regarding how the interception of radiation by aerosols interacts with the surface heat fluxes and atmospheric instability in warm cumulus clouds. This paper elucidates how these mechanisms vary with the location or altitude of an aerosol layer. This elucidation indicates that the location of aerosol layers should be taken into account for parameterizations of aerosol–cloud interactions.
Meredith Schervish and Manabu Shiraiwa
Atmos. Chem. Phys., 23, 221–233, https://doi.org/10.5194/acp-23-221-2023, https://doi.org/10.5194/acp-23-221-2023, 2023
Short summary
Short summary
Secondary organic aerosols (SOAs) can exhibit complex non-ideal behavior and adopt an amorphous semisolid state. We simulate condensation of semi-volatile compounds into a phase-separated particle to investigate the effect of non-ideality and particle phase state on the equilibration timescale of SOA partitioning. Our results provide useful insights into the interpretation of experimental observations and the description and treatment of SOA in aerosol models.
Sampo Vepsäläinen, Silvia M. Calderón, and Nønne L. Prisle
EGUsphere, https://doi.org/10.5194/egusphere-2022-1188, https://doi.org/10.5194/egusphere-2022-1188, 2023
Short summary
Short summary
Atmospheric aerosols act as seeds for cloud formation. Many aerosols contain surface active material that accumulates at the surface of growing droplets. This can affect cloud droplet activation, but the broad significance of the effect and the best way to model it are still debated. We compare predictions of six models to surface activity of strongly surface active aerosol and find significant differences between the models, especially with large fractions of surfactant in the dry particles.
Christof G. Beer, Johannes Hendricks, and Mattia Righi
Atmos. Chem. Phys., 22, 15887–15907, https://doi.org/10.5194/acp-22-15887-2022, https://doi.org/10.5194/acp-22-15887-2022, 2022
Short summary
Short summary
Ice-nucleating particles (INPs) have important influences on cirrus clouds and the climate system; however, their global atmospheric distribution in the cirrus regime is still very uncertain. We present a global climatology of INPs under cirrus conditions derived from model simulations, considering the mineral dust, soot, crystalline ammonium sulfate, and glassy organics INP types. The comparison of respective INP concentrations indicates the large importance of ammonium sulfate particles.
Cited articles
Bergin, M. H., Cass, G. R., Xu, J., Fang, C., Zeng, L. M., Yu, T., Salmon,
L. G., Kiang, C. S., Tang, X. Y., Zhang, Y. H., and Chameides, W. L.:
Aerosol radiative, physical, and chemical properties in Beijing during June 1999, J. Geophys. Res.-Atmos., 106, 17969–17980,
https://doi.org/10.1029/2001JD900073, 2001.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and
Klimont, Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res.-Atmos., 109, D14203,
https://doi.org/10.1029/2003JD003697, 2004.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: a scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Chen, F. and Dudhia, J.: Coupling an advanced land surface–hydrology model
with the Penn state–NCAR MM5 modeling system. part I: model implementation
and sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chen, Z. H., Cheng, S. Y., Li, J. B., Guo, X. R., Wang, W. H., and Chen, D.
S.: Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China, Atmos. Environ., 42, 6078–6087,
https://doi.org/10.1016/j.atmosenv.2008.03.043, 2008.
Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M., Petäjä, T., Su, H., Cheng, Y. F., Yang, X. Q., Wang, M. H., Chi, X. G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R. J., Wu, Y. F., Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., and Fu, C. B.: Enhanced haze pollution by black carbon in megacities in China, Geophys. Res. Lett., 43, 2873–2879, https://doi.org/10.1002/2016GL067745, 2016.
Emery, C. and Tai, E.: Enhanced Meteorological Modeling and Performance
Evaluation for Two Texas Ozone Episodes, Final Report Submitted to Texas
Natural Resources Conservation Commission, ENVIRON, International Corporation, Novato, USA, 2001.
Fang, C., Zhu, B., Pan, C., Yun, X., Ding, D., and Tao, S.: Regional and
sectoral sources for black carbon over South China in spring and their sensitivity to east Asian summer monsoon onset, J. Geophys. Res.-Atmos., 125, e2020JD033219, https://doi.org/10.1029/2020JD033219, 2020.
Gao, J., Zhu, B., Xiao, H., Kang, H., Hou, X., and Shao, P.: A case study of
surface ozone source apportionment during a high concentration episode, under frequent shifting wind conditions over the Yangtze River Delta, China, Sci. Total Environ., 544, 853–863, https://doi.org/10.1016/j.scitotenv.2015.12.039, 2016.
Gao, J., Li, Y., Zhu, B., Hu, B., Wang, L., and Bao, F.: What have we missed
when studying the impact of aerosols on surface ozone via changing photolysis rates?, Atmos. Chem. Phys., 20, 10831–10844, https://doi.org/10.5194/acp-20-10831-2020, 2020.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
He, K., Yang, F., Ma, Y., Zhang, Q., Yao, X., Chan, C. K., Cadle, S., Chan,
T., and Mulawa, P.: The characteristics of PM2.5 in Beijing, China, Atmos. Environ., 35, 4959–4970, https://doi.org/10.1016/S1352-2310(01)00301-6, 2001.
Hou, X., Zhu, B., Kumar, K. R., and Lu, W.: Inter-annual variability in fine
particulate matter pollution over China during 2013–2018: Role of
meteorology, Atmos. Environ., 214, 116842, https://doi.org/10.1016/j.atmosenv.2019.116842, 2019.
Hou, X., Zhu, B., Kumar, K. R., de Leeuw, G., Lu, W., Huang, Q., and Zhu, X.: Establishment of conceptual schemas of surface synoptic meteorological situations affecting fine particulate pollution across eastern China in the
winter, J. Geophys. Res., 125, e2020JD033153, https://doi.org/10.1029/2020JD033153, 2020.
Hu, K., Zhao, D., Liu, D., Ding, S., Tian, P., Yu, C., Zhou, W., Huang, M., and Ding, D.: Estimating radiative impacts of black carbon associated with
mixing state in the lower atmosphere over the northern North China Plain,
Chemosphere, 252, 126455, https://doi.org/10.1016/j.chemosphere.2020.126455, 2020.
Huang, X., Wang, Z., and Ding, A.: Impact of aerosol-PBL interaction on haze
pollution: multiyear observational evidences in North China, Geophys. Res.
Lett., 45, 8596–8603, https://doi.org/10.1029/2018GL079239, 2018.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Igel, A. L., van den Heever, S. C., and Johnson, J. S.: Meteorological and
land surface properties impacting sea breeze extent and aerosol distribution
in a dry environment, J. Geophys. Res.-Atmos., 123, 22–37,
https://doi.org/10.1002/2017JD027339, 2018.
IPCC: Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, UK and New York, USA, 2013.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black
carbon in atmospheric aerosols, Nature, 409, 695–697,
https://doi.org/10.1038/35055518, 2001.
Janjic, Z. I.: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model, NCEP Technical Note 437, p. 61, available at:
https://repository.library.noaa.gov/view/noaa/11409 (last access: 15 October 2021), 2001.
Kang, H., Zhu, B., Liu, X., Shi, S., Hou, X., Lu, W., Yan, S., Pan, C., and
Chen, Y.: Three-dimensional distribution of PM2.5 over the yangtze river delta as cold fronts moving through, J. Geophys. Res., 126, e2020JD034035, https://doi.org/10.1029/2020JD034035, 2021.
Keegan, K. M., Albert, M. R., McConnell, J. R., and Baker, I.: Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet, P. Natl. Acad. Sci. USA, 111, 7964–7967,
https://doi.org/10.1073/pnas.1405397111, 2014.
Lamarque, J. F., Emmons, L., Hess, P., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C., Holland, E. A., Lauritzen, P., and Neu, J.: CAM-chem: description and evaluation of interactive atmospheric chemistry in the community earth system model, Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012, 2012.
Lin, Y. L., Farley, R. D., and Orville, H. D.: Bulk parameterization of the
snow field in a cloud model, J. Appl. Meteorol. Clim., 22, 1065–1092,
https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983.
Liu, Y., Yan, C., and Zheng, M.: Source apportionment of black carbon during
winter in Beijing, Sci. Total Environ., 618, 531–541,
https://doi.org/10.1016/j.scitotenv.2017.11.053, 2018.
Lu, Y., Zhu, B., Huang, Y., Shi, S., Wang, H., An, J., and Yu, X.: Vertical
distributions of black carbon aerosols over rural areas of the Yangtze River
Delta in winter, Sci. Total Environ., 661, 1–9, https://doi.org/10.1016/j.scitotenv.2019.01.170, 2019.
Ma, Y., Ye, J., Xin, J., Zhang, W., Vilà-Guerau de Arellano, J., Wang, S., Zhao, D., Dai, L., Ma, Y., and Wu, X.: The stove, dome, and umbrella effects of atmospheric aerosol on the development of the planetary boundary
layer in hazy regions, Geophys. Res. Lett., 47, e2020GL087373,
https://doi.org/10.1029/2020GL087373, 2020.
Ministry of Ecology and Environment of China: https://quotsoft.net/air/, last access: 15 October 2021.
Quan, J., Dou, Y., Zhao, X., Liu, Q., Sun, Z., Pan, Y., Jia, X., Cheng, Z., Ma, P., Su, J., and Xin, J.: Regional atmospheric pollutant transport mechanisms over the North China Plain driven by topography and planetary boundary layer processes, Atmos. Environ., 221, 117098,
https://doi.org/10.1016/j.atmosenv.2019.117098, 2020.
Sharma, S., Leaitch, W. R., Huang, L., Veber, D., Kolonjari, F., Zhang, W.,
Hanna, S. J., Bertram, A. K., and Ogren, J. A.: An evaluation of three methods for measuring black carbon in Alert, Canada, Atmos. Chem. Phys., 17,
15225–15243, https://doi.org/10.5194/acp-17-15225-2017, 2017.
Shi, S., Zhu, B., Lu, W., Yan, S., Fang, C., Liu, X., Liu, D., and Liu, C.:
Estimation of radiative forcing and heating rate based on vertical observation of black carbon in Nanjing, China, Sci. Total Environ., 756, 135–144, https://doi.org/10.1016/j.scitotenv.2020.144135, 2021.
Stephens, M., Turner, N., and Sandberg, J.: Particle identification by laser-induced incandescence in a solid-state laser cavity, Appl. Optics, 42,
3726–3736, https://doi.org/10.1364/AO.42.003726, 2003.
Tian, P., Liu, D., Huang, M., Liu, Q., Zhao, D., Ran, L., Deng, Z., Wu, Y.,
Fu, S., Bi, K., Gao, Q., He, H., Xue, H., and Ding, D.: The evolution of an
aerosol event observed from aircraft in Beijing: an insight into regional
pollution transport, Atmos. Environ., 206, 11–20, https://doi.org/10.1016/j.atmosenv.2019.02.005, 2019.
US EPA: Guidance on the Use of Models and Other Analyses for
Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze, EPA-454/B-07-002, available at: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1006FPU.TXT (last access: 15 October 2021), 2007.
Van Pinxteren, D., Brüggemann, E., Gnauk, T., Iinuma, Y., Müller, K., Nowak, A., Achtert, P., Wiedensohler, A., and Herrmann, H.: Size-and time-resolved chemical particle characterization during CAREBeijing-2006:
different pollution regimes and diurnal profiles, J. Geophys. Res.-Atmos.,
114, D00G09, https://doi.org/10.1029/2008JD010890, 2009.
Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P. L., Qian, Y., Ghan, S. J., and Beagley, N.: Using an explicit emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways, J. Geophys. Res.-Atmos., 119, 12888–12909, https://doi.org/10.1002/2014JD022297, 2014.
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., and
Baltensperger, U.: Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers, J. Aerosol Sci., 34,
1445–1463, https://doi.org/10.1016/S0021-8502(03)00359-8, 2003.
Wen, W., Ma, X., Guo, C., Wei, P., Zhao, X., and Xu, J.: Source apportionment of black carbon and the feedback effect on the meteorological factors in Beijing, China, Environ. Sci. Pollut. Res., 27, 41764–41775, https://doi.org/10.1007/s11356-020-09881-z, 2020.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical-models, Atmos. Environ., 23, 1293–1304, https://doi.org/10.1016/j.atmosenv.2007.10.058, 1989.
Yang, Y., Wang, H., Smith, S. J., Ma, P. L., and Rasch, P. J.: Source attribution of black carbon and its direct radiative forcing in China,
Atmos. Chem. Phys., 17, 4319–4336, https://doi.org/10.5194/acp-17-4319-2017, 2017.
Yang, Y., Wang, H., Smith, S. J., Zhang, R., Lou, S., Yu, H., Li, C., and Rasch, P. J.: Source apportionments of aerosols and their direct radiative
forcing and long-term trends over continental United States, Earth's Future,
6, 793–808, https://doi.org/10.1029/2018EF000859, 2018.
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-scale applications, J. Geophys. Res.-Atmos., 104,
30387–30415, https://doi.org/10.1029/1999JD900876, 1999.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for
simulating aerosol interactions and chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007JD008782, 2008.
Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng, G., Feng, T.,
Zheng, B., Lu, Z., and Streets, D. G.: Transboundary health impacts of
transported global air pollution and international trade, Nature, 543, 705–709, https://doi.org/10.1029/2007JD008782, 2017.
Zhang, W. H., Hai, S., Zhao, Y., Sheng, L. Zhou, Y., Wang, W., and Li, W.:
Numerical modeling of regional transport of PM2.5 during a severe pollution event in the Beijing–Tianjin–Hebei region in November 2015, Atmos. Environ., 254, 118393, https://doi.org/10.1016/j.atmosenv.2021.118393, 2021.
Zhang, Y., Zhu, B., Gao, J., Kang, H., Yang, P., Wang, L., and Zhang, J.:
The source apportionment of primary PM2.5 in an aerosol pollution event
over Beijing-Tianjin-Hebei region using WRF-Chem, China, Aerosol Air Qual.
Res., 17, 2966–2980, https://doi.org/10.4209/aaqr.2016.10.0442, 2017.
Zhang, Y. L. and Cao, F.: Fine particulate matter (PM2.5) in China at a city level, Sci. Rep. 5, 14884, https://doi.org/10.1038/srep14884, 2015.
Zhang, Y. L., Huang, R. J., El Haddad, I., Ho, K. F., Cao, J. J., Han, Y.,
Zotter, P., Bozzetti, C., Daellenbach, K. R., and Canonaco, F.: Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities
during the extreme winter haze episode of 2013, Atmos. Chem. Phys., 15,
1299–1312, https://doi.org/10.5194/acp-15-1299-2015, 2015.
Zhao, D., Tie, X., Gao, Y., Zhang, Q., Tian, H., Bi, K., Jin, Y., and Chen, P.: In-situ aircraft measurements of the vertical distribution of black
carbon in the lower troposphere of Beijing, China, in the spring and summer
time, Atmosphere, 6, 713–731, https://doi.org/10.3390/atmos6050713, 2015.
Zhao, D., Huang, M., Tian, P., He, H., Lowe, D., Zhou, W., Sheng, J., Wang,
F., Bi, K., Kong, S., Yang, Y., Liu, Q., Liu, D., and Ding, D.: Vertical
characteristics of black carbon physical properties over Beijing region in
warm and cold seasons, Atmos. Environ., 213, 296–310,
https://doi.org/10.1016/j.atmosenv.2019.06.007, 2019.
Zhao, D., Liu, D., Yu, C., Tian, P., Hu, D., Zhou, W., Ding, S., Hu, K.,
Sun, Z., Huang, M., Huang, Y., Yang, Y., Wang, F., Shen, J., Liu, Q., Kong,
S., Li, X., He, H., and Ding, D.: Vertical evolution of black carbon
characteristics and heating rate during a haze event in Beijing winter, Sci.
Total Environ., 709, 136–251, 2020.
Zhu, B., Wang, Y. M., Gao, J. H., Zhao, T. L., and Wang, L. R.: Distribution
and source characteristics of Black carbon in autumn over Hunan-Hubei basin,
China, Trans. Atmos. Sci., 43, 592–602, https://doi.org/10.13878/j.cnki.dqkxxb.20200422001, 2020.
Short summary
In this paper, by using WRF-Chem with a black carbon (BC) tagging technique, we investigate the formation mechanism and regional sources of a BC peak in the free troposphere observed by aircraft flights. Local sources dominated BC from the surface to about 700 m (78.5 %), while the BC peak in the free troposphere was almost entirely imported from external sources (99.8 %). Our results indicate that cyclone systems can quickly lift BC up to the free troposphere, as well as extend its lifetime.
In this paper, by using WRF-Chem with a black carbon (BC) tagging technique, we investigate the...
Altmetrics
Final-revised paper
Preprint