Articles | Volume 21, issue 19
https://doi.org/10.5194/acp-21-14959-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-14959-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Response of particle number concentrations to the clean air action plan: lessons from the first long-term aerosol measurements in a typical urban valley in western China
Suping Zhao
CORRESPONDING AUTHOR
Key Laboratory of Land Surface Process and Climate Change in Cold and
Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese
Academy of Sciences, Lanzhou 730000, China
Pingliang Land Surface Process & Severe Weather Research Station,
Pingliang, 744015, China
Gansu Land Surface Process & Severe Weather Observation and
Research Station, Pingliang, 744015, China
State Key Laboratory of Cryospheric Science, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
Ye Yu
Key Laboratory of Land Surface Process and Climate Change in Cold and
Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese
Academy of Sciences, Lanzhou 730000, China
Pingliang Land Surface Process & Severe Weather Research Station,
Pingliang, 744015, China
Gansu Land Surface Process & Severe Weather Observation and
Research Station, Pingliang, 744015, China
Jianglin Li
Key Laboratory of Land Surface Process and Climate Change in Cold and
Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese
Academy of Sciences, Lanzhou 730000, China
Pingliang Land Surface Process & Severe Weather Research Station,
Pingliang, 744015, China
Gansu Land Surface Process & Severe Weather Observation and
Research Station, Pingliang, 744015, China
Daiying Yin
Key Laboratory of Desert and Desertification, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
University of Chinese Academy of Sciences, Beijing 100049, China
Shaofeng Qi
Key Laboratory of Land Surface Process and Climate Change in Cold and
Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese
Academy of Sciences, Lanzhou 730000, China
University of Chinese Academy of Sciences, Beijing 100049, China
Dahe Qin
State Key Laboratory of Cryospheric Science, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
Related authors
Shaofeng Qi, Suping Zhao, Ye Yu, Longxiang Dong, Tong Zhang, Guo Zhao, Jianglin Li, Xiang Zhang, and Yiting Lv
EGUsphere, https://doi.org/10.5194/egusphere-2025-3254, https://doi.org/10.5194/egusphere-2025-3254, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study provides the first field evidence of the impact of downward transport of residual layer pollutants on boundary layer pollution, which holds significant implications for pollution control in complex terrain regions.
Suping Zhao, Shaofeng Qi, Jianjun He, Ye Yu, Longxiang Dong, Tong Zhang, Guo Zhao, and Yiting Lv
EGUsphere, https://doi.org/10.5194/egusphere-2025-3130, https://doi.org/10.5194/egusphere-2025-3130, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Upper-air secondary pollutants can downward invade to PBL by strong turbulence at the sloped terrain. The results are helpful for understanding formation mechanism of heavy air pollution at the complex terrain, and then taking the targeted countermeasures.
Haixia Zhu, Lufei Zhen, Suping Zhao, and Xiying Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1561, https://doi.org/10.5194/egusphere-2025-1561, 2025
Short summary
Short summary
This study collected dust samples from six sites in the Qaidam Basin, over three years to investigate the impact of domestic heating on atmospheric dust in hyper-arid region. Our results indicate that rural dust is significantly influenced by heating, particularly from coal and biomass burning which accounts for over 70 % of total sources. The unique energy structure here has resulted in distinct environmental effects from the emitted carbonaceous aerosols and useful for similar dry areas.
Suping Zhao, Shaofeng Qi, Ye Yu, Shichang Kang, Longxiang Dong, Jinbei Chen, and Daiying Yin
Atmos. Chem. Phys., 22, 14693–14708, https://doi.org/10.5194/acp-22-14693-2022, https://doi.org/10.5194/acp-22-14693-2022, 2022
Short summary
Short summary
Light absorption by aerosols is poorly understood at the eastern slope of the Tibetan Plateau (TP). We conducted the first in situ PM1 chemical measurements from the polluted Sichuan Basin to the eastern TP. A contrasting changes in mass absorption efficiency of black and brown carbon with altitude is found due to source differences. This study contributes to the understanding of the difference in light absorption by carbon with altitude, from the polluted basins to the pristine TP.
Shaofeng Qi, Suping Zhao, Ye Yu, Longxiang Dong, Tong Zhang, Guo Zhao, Jianglin Li, Xiang Zhang, and Yiting Lv
EGUsphere, https://doi.org/10.5194/egusphere-2025-3254, https://doi.org/10.5194/egusphere-2025-3254, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study provides the first field evidence of the impact of downward transport of residual layer pollutants on boundary layer pollution, which holds significant implications for pollution control in complex terrain regions.
Suping Zhao, Shaofeng Qi, Jianjun He, Ye Yu, Longxiang Dong, Tong Zhang, Guo Zhao, and Yiting Lv
EGUsphere, https://doi.org/10.5194/egusphere-2025-3130, https://doi.org/10.5194/egusphere-2025-3130, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Upper-air secondary pollutants can downward invade to PBL by strong turbulence at the sloped terrain. The results are helpful for understanding formation mechanism of heavy air pollution at the complex terrain, and then taking the targeted countermeasures.
Haixia Zhu, Lufei Zhen, Suping Zhao, and Xiying Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1561, https://doi.org/10.5194/egusphere-2025-1561, 2025
Short summary
Short summary
This study collected dust samples from six sites in the Qaidam Basin, over three years to investigate the impact of domestic heating on atmospheric dust in hyper-arid region. Our results indicate that rural dust is significantly influenced by heating, particularly from coal and biomass burning which accounts for over 70 % of total sources. The unique energy structure here has resulted in distinct environmental effects from the emitted carbonaceous aerosols and useful for similar dry areas.
Suping Zhao, Shaofeng Qi, Ye Yu, Shichang Kang, Longxiang Dong, Jinbei Chen, and Daiying Yin
Atmos. Chem. Phys., 22, 14693–14708, https://doi.org/10.5194/acp-22-14693-2022, https://doi.org/10.5194/acp-22-14693-2022, 2022
Short summary
Short summary
Light absorption by aerosols is poorly understood at the eastern slope of the Tibetan Plateau (TP). We conducted the first in situ PM1 chemical measurements from the polluted Sichuan Basin to the eastern TP. A contrasting changes in mass absorption efficiency of black and brown carbon with altitude is found due to source differences. This study contributes to the understanding of the difference in light absorption by carbon with altitude, from the polluted basins to the pristine TP.
Cited articles
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions,
Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Asmi, A., Wiedensohler, A., Laj, P., Fjaeraa, A.-M., Sellegri, K., Birmili, W., Weingartner, E., Baltensperger, U., Zdimal, V., Zikova, N., Putaud, J.-P., Marinoni, A., Tunved, P., Hansson, H.-C., Fiebig, M., Kivekäs, N., Lihavainen, H., Asmi, E., Ulevicius, V., Aalto, P. P., Swietlicki, E., Kristensson, A., Mihalopoulos, N., Kalivitis, N., Kalapov, I., Kiss, G., de Leeuw, G., Henzing, B., Harrison, R. M., Beddows, D., O'Dowd, C., Jennings, S. G., Flentje, H., Weinhold, K., Meinhardt, F., Ries, L., and Kulmala, M.: Number size distributions and seasonality of submicron particles in Europe 2008–2009, Atmos. Chem. Phys., 11, 5505–5538, https://doi.org/10.5194/acp-11-5505-2011, 2011.
Asmi, A., Collaud Coen, M., Ogren, J. A., Andrews, E., Sheridan, P., Jefferson, A., Weingartner, E., Baltensperger, U., Bukowiecki, N., Lihavainen, H., Kivekäs, N., Asmi, E., Aalto, P. P., Kulmala, M., Wiedensohler, A., Birmili, W., Hamed, A., O'Dowd, C., G Jennings, S., Weller, R., Flentje, H., Fjaeraa, A. M., Fiebig, M., Myhre, C. L., Hallar, A. G., Swietlicki, E., Kristensson, A., and Laj, P.: Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations, Atmos. Chem. Phys., 13, 895–916, https://doi.org/10.5194/acp-13-895-2013, 2013.
Birmili, W. and Wiedensohler, A.: New particle formation in the continental
boundary layer: Meteorological and gas phase parameter influence,
Geophys. Res. Lett., 27, 3325–3328, 2000.
Birmili, W., Wiedensohler, A., Heintzenberg, J., and Lehmann, K.:
Atmospheric particle number size distribution in central Europe: Statistical
relations to air mass and meteorology, J. Geophys. Res., 32,
5–18, 2001.
Birmili, W., Heinke, K., Pitz, M., Matschullat, J., Wiedensohler, A., Cyrys, J., Wichmann, H.-E., and Peters, A.: Particle number size distributions in urban air before and after volatilisation, Atmos. Chem. Phys., 10, 4643–4660, https://doi.org/10.5194/acp-10-4643-2010, 2010.
Birmili, W., Weinhold, K., Rasch, F., Sonntag, A., Sun, J., Merkel, M., Wiedensohler, A., Bastian, S., Schladitz, A., Löschau, G., Cyrys, J., Pitz, M., Gu, J., Kusch, T., Flentje, H., Quass, U., Kaminski, H., Kuhlbusch, T. A. J., Meinhardt, F., Schwerin, A., Bath, O., Ries, L., Gerwig, H., Wirtz, K., and Fiebig, M.: Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN), Earth Syst. Sci. Data, 8, 355–382, https://doi.org/10.5194/essd-8-355-2016, 2016.
Bodhaine, B. A.: Aerosol measurements at four background sites, J. Geophys. Res., 88, 10753–10768, https://doi.org/10.1029/JC088iC15p10753,
1983.
Boy, M. and Kulmala, M.: Nucleation events in the continental boundary layer: Influence of physical and meteorological parameters, Atmos. Chem. Phys., 2, 1–16, https://doi.org/10.5194/acp-2-1-2002, 2002.
Chen, C. H., Huang, J. G., Ren, Z. H., and Peng, X. A.: Meteorological
conditions of photochemical smog pollution during summer in Xigu industrial
area, Acta Sci. Circumst., 6, 334–342, 1986 (in Chinese).
Chen, C., Sun, Y. L., Xu, W. Q., Du, W., Zhou, L. B., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z. F., Gao, Z. Q., Zhang, Q., and Worsnop, D. R.: Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit, Atmos. Chem. Phys., 15, 12879–12895, https://doi.org/10.5194/acp-15-12879-2015, 2015.
Chu, P. C., Chen, Y. C., Lu, S. H., Li, Z. C., and Lu Y. Q.: Particulate air
pollution in Lanzhou China, Environ. Int., 34, 698–713, 2008.
Cusack, M., Pérez, N., Pey, J., Alastuey, A., and Querol, X.: Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study, Atmos. Chem. Phys., 13, 5173–5187, https://doi.org/10.5194/acp-13-5173-2013, 2013.
Dada, L., Ylivinkka, I., Baalbaki, R., Li, C., Guo, Y., Yan, C., Yao, L., Sarnela, N., Jokinen, T., Daellenbach, K. R., Yin, R., Deng, C., Chu, B., Nieminen, T., Wang, Y., Lin, Z., Thakur, R. C., Kontkanen, J., Stolzenburg, D., Sipilä, M., Hussein, T., Paasonen, P., Bianchi, F., Salma, I., Weidinger, T., Pikridas, M., Sciare, J., Jiang, J., Liu, Y., Petäjä, T., Kerminen, V.-M., and Kulmala, M.: Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations, Atmos. Chem. Phys., 20, 11747–11766, https://doi.org/10.5194/acp-20-11747-2020, 2020.
Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P.
P., and Lehtinen, K. E. J.: Formation and growth of fresh atmospheric
aerosols: eight years of aerosol size distribution data from SMEAR II,
Hyytiala, Finland, Boreal Environ. Res., 10, 323–336, 2005.
Dal Maso, M., Hyvärinen, A., Komppula, M., Tunved, P., Kerminen, V.-M.,
Lihavainen, H., Öviisanen, Y., Hansson, H.-C., and Kulmala, M.: Annual
and interannual variation in boreal forest aerosol particle number and
volume concentration and their connection to particle formation, Tellus B, 60, 495–508, 2008.
Dinoi, A., Weinhold, K., Wiedensohler, A., and Contini, D.: Study of new
particle formation events in southern Italy, Atmos. Environ., 244,
117920, https://doi.org/10.1016/j.atmosenv.2020.117920, 2021.
Fuchs, N. A.: The mechanics of aerosols, Pergamon, Pp, xiv, 408, 1964.
Gani, S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, J. S.: Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 20, 8533–8549, https://doi.org/10.5194/acp-20-8533-2020, 2020.
Gao, Y., Zhang, M., Liu, Z., Wang, L., Wang, P., Xia, X., Tao, M., and Zhu, L.: Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog–haze event over the North China Plain, Atmos. Chem. Phys., 15, 4279–4295, https://doi.org/10.5194/acp-15-4279-2015, 2015.
Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu,
Z., Shao, M., Zeng, L., Molina, M. J., and Zhang, R. Y.: Elucidating severe
urban haze formation in China, P. Natl. Acad. Sci. USA, 111, 17373–17378,
https://doi.org/10.1073/pnas.1419604111, 2014.
Heintzenberg, J., Birmili, W., Otto, R., Andreae, M. O., Mayer, J.-C., Chi, X., and Panov, A.: Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006–2009, Atmos. Chem. Phys., 11, 8703–8719, https://doi.org/10.5194/acp-11-8703-2011, 2011.
Hu, J., Huang, L., Chen, M., Liao, H., Zhang, H., Wang, S., Zhang Q., and
Ying, Q.: Premature mortality attributable to particulate matter in China:
source contributions and responses to reductions, Environ. Sci. Tech., 51, 9950–9959, 2017.
Hussein, T., Puustinen, A., Aalto, P. P., Mäkelä, J. M., Hämeri, K., and Kulmala, M.: Urban aerosol number size distributions, Atmos. Chem. Phys., 4, 391–411, https://doi.org/10.5194/acp-4-391-2004, 2004.
Hussein, T., Karppinen, A., Kukkonen, J., Harkonen, J., Aalto, P. P.,
Hämeri, K., Kerminen, V.-M., and Kulmala, M.: Meteorological dependence
of size-fractionated number concentrations of urban aerosol particles,
Atmos. Environ., 40, 1427–1440, 2006.
Kanawade, V. P., Tripathi, S. N., Bhattu, D., and Shamjad, P. M.: Sub-micron
particle number size distributions characteristics at an urban location,
Kanpur, in the Indo-Gangetic Plain, Atmos. Res., 147, 121–132,
2014.
Kerminen, V.-M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., and
Bianchi, F.: Atmospheric new particle formation and growth: review of field
observations, Environ. Res. Lett., 13, 103003,
https://doi.org/10.1088/1748-9326/aadf3c, 2018.
Kivekäs, N., Sun, J., Zhan, M., Kerminen, V.-M., Hyvärinen, A., Komppula, M., Viisanen, Y., Hong, N., Zhang, Y., Kulmala, M., Zhang, X.-C., Deli-Geer, and Lihavainen, H.: Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China, Atmos. Chem. Phys., 9, 5461–5474, https://doi.org/10.5194/acp-9-5461-2009, 2009.
Krecl, P., Johansson, C., Targino, A. C., Strom, J., and Burman, L.: Trends
in black carbon and size-resolved particle number concentrations and vehicle
emission factors under real-world conditions, Atmos. Environ., 165,
155–168, 2017.
Kulmala, M.: How particles nucleate and grow, Science, 302, 1000–1001,
2003.
Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A.,
Kerminen, V. M., Birmili, W., and McMurry, P. H.: Formation and growth rates
of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci., 35, 143–176, 2004.
Kulmala, M., Petaja, T., Nieminen, T., Sipila, M., Manninen, H. E.,
Lehtipalo, K., Dal Maso, M., Aalto, P. P., Junninen, H., Paasonen, P.,
Riipinen, I., Lehtinen, K. E. J., Laaksonen, A., and Kerminen, V. M.:
Measurement of the nucleation of atmospheric aerosol particles, Nat. Protocol., 7, 1651–1667, 2012.
Kulmala, M., Dada, L., Daellenbach, K. R., Yan, C., Stolzenburg, D.,
Kontkanen, J., Ezhova, E., Hakala, S., Tuovinen, S., Kokkonen, T. V.,
Kurppa, M., Cai, R. L., Zhou, Y., Yin, R., Baalbaki, R., Chan, T., Chu, B.,
Deng, C., Fu, Y., Ge, M. F., He, H., Heikkinen, L., Junninen, H., Liu, Y.,
Lu, Y., Nie, W., Rusanen, A., Vakkari, V., Wang, Y., Yang, G., Yao, L.,
Zheng, J., Kujansuu, J., Kangasluoma, J., Petaja, T., Paasonen, P., Jarvi,
L., Worsnop, D., Ding, A. J., Liu, Y., Wang, L., Jiang, J. K., Bianchi, F.,
and Kerminen, V.-M.: Is reducing new particle formation a plausible solution
to mitigate particulate air pollution in Beijing and other Chinese
megacities?, Faraday Discuss., 226, 334–347, https://doi.org/10.1039/d0fd00078g,
2021.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D.. and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367, https://doi.org/10.1038/nature15371, 2015.
Leoni, C., Pokorna, P., Hovorka, J., Masiol, M., Topinka, J., Zhao, Y. J.,
Krumal, K., Cliff, S., Mikuska, P., and Hopke, P. K.: Source apportionment
of aerosol particles at a European air pollution hot spot using particle
number size distributions and chemical composition, Environ. Pollut.,
234, 145–154, 2018.
Li, J., Gao, W., Cao, L., Xiao, Y., Zhang, Y., Zhao, S., Liu, Z., Liu, Z.,
Tang, G., Ji, D., Hu, B., Song, T., He, L., Hu, M., and Wang, Y. S.:
Significant changes in autumn and winter aerosol composition and sources in
Beijing from 2012 to 2018: Effects of clean air actions, Environ. Pollut., 268, 115855, https://doi.org/10.1016/j.envpol.2020.115855, 2021.
Li, Z., Rosenfeld, D., and Fan, J.: Aerosols and their impact on radiation,
clouds, precipitation, and severe weather events, Oxford Research
Encyclopedias, Oxford University Press, Oxford, USA, https://doi.org/10.1093/acrefore/9780199389414.013.126, 2017.
Liu, H., Pan, X. L., Wu, Y., Ji, D. S., Tian, Y., Chen, X. S., and Wang, Z.
F.: Size-resolved mixing state and optical properties of black carbon at an
urban site in Beijing, Sci. Total Environ., 749, 141523, https://doi.org/10.1016/j.scitotenv.2020.141523,
2020.
Ma, N. and Birmili, W.: Estimating the contribution of photochemical
particle formation to ultrafine particle number averages in an urban
atmosphere, Sci. Total Environ., 512, 154–166, 2015.
Makela, J. M., Aalto, P., Jokinen, V., Pohja, T., Nissinen, A., Palmroth,
S., Markkanen, T., Seitsonen, K., Lihavainen, H., and Kulmala, M.:
Observations of ultrafine aerosol particle formation and growth in boreal
forest, Geophys. Res. Lett., 24, 1219–1222, 1997.
Oberdörster, G., Oberdörster, E., and Oberdörster, J.:
Nanotoxicology: An emerging discipline evolving from studies of ultrafine
particles, Environ. Health Perspec., 113, 823–839, 2005.
Pandolfi, M., Querol, X., Alastuey, A., Jimenez, J. L., Jorba, O., Day, D.,
Ortega, A., Cubison, M. J., Comerón, A., Sicard, M., Mohr, C.,
Prévôt, A. S. H., Minguillón, M. C., Pey, J., Baldasano, J. M.,
Burkhart, J. F., Seco, R., Peñuelas, J., van Drooge, B. L.,
Artiñano, B., Di Marco, C., Nemitz, E., Schallhart, S., Metzger, A.,
Hansel, A., Lorente, J., Ng, S., Jayne, J., and Szidat, S.: Effects of
sources and meteorology on particulate matter in the Western Mediterranean
Basin: An overview of the DAURE campaign, J. Geophys. Res.-Atmos., 119, 4978–5010, 2014.
Qian, S., Sakurai, H., and McMurry, P. H.: Characteristics of regional
nucleation events in urban East St. Louis, Atmos. Environ., 41,
4119–4127, 2007.
Rose, C., Collaud Coen, M., Andrews, E., Lin, Y., Bossert, I., Lund Myhre, C., Tuch, T., Wiedensohler, A., Fiebig, M., Aalto, P., Alastuey, A., Alonso-Blanco, E., Andrade, M., Artíñano, B., Arsov, T., Baltensperger, U., Bastian, S., Bath, O., Beukes, J. P., Brem, B. T., Bukowiecki, N., Casquero-Vera, J. A., Conil, S., Eleftheriadis, K., Favez, O., Flentje, H., Gini, M. I., Gómez-Moreno, F. J., Gysel-Beer, M., Hallar, A. G., Kalapov, I., Kalivitis, N., Kasper-Giebl, A., Keywood, M., Kim, J. E., Kim, S.-W., Kristensson, A., Kulmala, M., Lihavainen, H., Lin, N.-H., Lyamani, H., Marinoni, A., Martins Dos Santos, S., Mayol-Bracero, O. L., Meinhardt, F., Merkel, M., Metzger, J.-M., Mihalopoulos, N., Ondracek, J., Pandolfi, M., Pérez, N., Petäjä, T., Petit, J.-E., Picard, D., Pichon, J.-M., Pont, V., Putaud, J.-P., Reisen, F., Sellegri, K., Sharma, S., Schauer, G., Sheridan, P., Sherman, J. P., Schwerin, A., Sohmer, R., Sorribas, M., Sun, J., Tulet, P., Vakkari, V., van Zyl, P. G., Velarde, F., Villani, P., Vratolis, S., Wagner, Z., Wang, S.-H., Weinhold, K., Weller, R., Yela, M., Zdimal, V., and Laj, P.: Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1311, in review, 2021.
Sabaliauskas, K., Jeong, C.-H., Yao, X., Jun, Y.-S., and Evans, G.: Cluster
analysis of roadside ultra?ne particle size distributions, Atmos.
Environ., 70, 64–74, 2013.
Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., Pöhlker, M. L., Brito, J., Bougiatioti, A., Kristensson, A., Kalivitis, N., Stavroulas, I., Carbone, S., Jefferson, A., Park, M., Schlag, P., Iwamoto, Y., Aalto, P., Äijälä, M., Bukowiecki, N., Ehn, M., Frank, G., Fröhlich, R., Frumau, A., Herrmann, E., Herrmann, H., Holzinger, R., Kos, G., Kulmala, M., Mihalopoulos, N., Nenes, A., O'Dowd, C., Petäjä, T., Picard, D., Pöhlker, C., Pöschl, U., Poulain, L., Prévôt, A. S. H., Swietlicki, E., Andreae, M. O., Artaxo, P., Wiedensohler, A., Ogren, J., Matsuki, A., Yum, S. S., Stratmann, F., Baltensperger, U., and Gysel, M.: Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories, Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, 2018.
Schmid, O. and Stoeger, T.: Surface area is the biologically most effective
dose metric for acute nanoparticle toxicity in the lung, J. Aerosol
Sci., 99, 133–143, 2016.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics of air
pollution, John Wiley and Sons, Inc., New York, USA, 2006.
Shen, X. J., Sun, J. Y., Zhang, Y. M., Wehner, B., Nowak, A., Tuch, T., Zhang, X. C., Wang, T. T., Zhou, H. G., Zhang, X. L., Dong, F., Birmili, W., and Wiedensohler, A.: First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain, Atmos. Chem. Phys., 11, 1565–1580, https://doi.org/10.5194/acp-11-1565-2011, 2011.
Shen, X. J., Sun, J. Y., Zhang, X. Y., Zhang, Y. M., Zhang, L., Fan, R. X.,
Zhang, Z. X., Zhang, X. L., Zhou, H. G., Zhou, L. Y., Dong, F., and Shi, Q.
F.: The influence of emission control on particle number size distribution
and new particle formation during China's V-Day parade in 2015, Sci. Total Environ, 573, 409–419, https://doi.org/10.1016/j.scitotenv.2016.08.085, 2016.
Shi, H. R., Zhang, J. Q., Zhao, B., Xia, X. A., Hu, B., Chen, H. B., Wei,
J., Liu, M. Q., Bian, Y. X., Fu, D. S., Gu, Y., and Liou, K.-N.: Surface
Brightening in Eastern and Central China Since the Implementation of the
Clean Air Action in 2013: Causes and Implications, Geophys. Res. Lett., 48, e2020GL091105, https://doi.org/10.1029/2020GL091105, 2021.
Stanier, C. O., Khlystov, A. Y., and Pandis, S. N.: Ambient aerosol size
distributions and number concentrationsmeasured during the Pittsburgh Air
Quality Study (PAQS), Atmos. Environ., 38, 275–3284, 2004.
Sun, J., Birmili, W., Hermann, M., Tuch, T., Weinhold, K., Merkel, M., Rasch, F., Müller, T., Schladitz, A., Bastian, S., Löschau, G., Cyrys, J., Gu, J., Flentje, H., Briel, B., Asbach, C., Kaminski, H., Ries, L., Sohmer, R., Gerwig, H., Wirtz, K., Meinhardt, F., Schwerin, A., Bath, O., Ma, N., and Wiedensohler, A.: Decreasing trends of particle number and black carbon mass concentrations at 16 observational sites in Germany from 2009 to 2018, Atmos. Chem. Phys., 20, 7049–7068, https://doi.org/10.5194/acp-20-7049-2020, 2020.
Tunved, P., Ström, J., and Hansson, H.-C.: An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten, Atmos. Chem. Phys., 4, 2581–2592, https://doi.org/10.5194/acp-4-2581-2004, 2004.
von Bismarck-Osten, C., Birmili, W., Ketzel, M., Massling, A.,
Petäjä, T., and Weber, S.: Characterization of parameters in?uencing
the spatio-temporal variability of urban particle number size distributions
in four European cities, Atmos. Environ., 77, 415–429, 2013.
Vu, T. V., Delgado-Saborit, J. M., and Harrison, R. M.: Review: Particle
number size distributions from seven major sources and implications for
source apportionment studies, Atmos. Environ., 122, 114–132, 2015.
Wang, Y., Hopke, P. K., Chalupa, D. C., and Utell, M. J.: Long-term study of
urban ultrafine particles and other pollutants, Atmos. Environ.,
45, 7672–7680, 2011.
Wang, Z. B., Hu, M., Wu, Z. J., Yue, D. L., He, L. Y., Huang, X. F., Liu, X. G., and Wiedensohler, A.: Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing, Atmos. Chem. Phys., 13, 10159–10170, https://doi.org/10.5194/acp-13-10159-2013, 2013.
Wehner, B., Wiedensohler, A., Tuch, T. M., Wu, Z. J., Hu, M., Slanina, J.,
and Kiang, C. S.: Variability of the aerosol number size distribution in
Beijing, China: New particle formation, dust storms, and high continental
background, Geophys. Res. Lett., 31, L22108, https://doi.org/10.1029/2004GL021596, 2004.
Wehner, B., Birmili, W., Ditas, F., Wu, Z., Hu, M., Liu, X., Mao, J., Sugimoto, N., and Wiedensohler, A.: Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004–2006, Atmos. Chem. Phys., 8, 6155–6168, https://doi.org/10.5194/acp-8-6155-2008, 2008.
WHO: Air quality guidelines for Europe, 2nd Edn., Copenhagen, World Health
Organization Regional Office for Europe, WHO Regional Publications, European
Series No. 91, 2000.
World Health Organization (WHO), Ambient Air Quality Database, available at: https://whoairquality.shinyapps.io/AmbientAirQualityDatabase/ (last access: 5 July 2014), 2018.
Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.
Wu, Z. J., Hu, M., Liu, S., Wehner, B., Bauer, S., ßling, A. M.,
Wiedensohler, A., Petäjä, T., Dal Maso, M., and Kulmala, M.: New
particle formation in Beijing, China: Statistical analysis of a 1-year data
set, J. Geophys. Res., 112, D09209,
https://doi.org/10.1029/2006JD007406, 2007.
Wu, Z. J., Hu, M., Lin, P., Liu, S., Wehner, B., and Wiedensohler, A.:
Particle number size distribution in the urban atmosphere of Beijing, China,
Atmos. Environ., 42, 7967–7980, 2008.
Yue, D. L., Hu, M., Zhang, R. Y., Wang, Z. B., Zheng, J., Wu, Z. J., Wiedensohler, A., He, L. Y., Huang, X. F., and Zhu, T.: The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing, Atmos. Chem. Phys., 10, 4953–4960, https://doi.org/10.5194/acp-10-4953-2010, 2010.
Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11031–11041, https://doi.org/10.5194/acp-19-11031-2019, 2019.
Zhao, H. J., Gui, K., Ma, Y. J., Wang, Y. F., Wang, Y. Q., Wang, H., Zheng,
Y., Li, L., Zhang, L., Che, H. Z., and Zhang, X. Y.: Climatology and trends
of aerosol optical depth with different particle size and shape in northeast
China from 2001 to 2018, Sci. Total Environ., 763, 142979, https://doi.org/10.1016/j.scitotenv.2020.142979, 2021.
Zhao, S. P., Yu, Y., and Qin, D. H.: From highly polluted inland city of
China to “Lanzhou Blue”: The air-pollution characteristics, Sciences in Cold
and Arid Regions, 10, 12–26, 2018.
Zhao, S. P., Yu, Y., Yin, D. Y., and He, J. J.: Meteorological dependence of
particle number concentrations in an urban area of complex terrain,
Northwestern China, Atmos. Res., 164, 304–317, 2015a.
Zhao, S. P., Yu, Y., Xia, D. S., Yin, D. Y., He, J. J., Liu, N., and Li, F.:
Urban particle size distributions during two contrasting dust events
originating from Taklimakan and Gobi Deserts, Environ. Pollut., 207,
107–122, 2015b.
Zhao, S. P., Yu, Y., Yin, D. Y., He, J. J., Liu, N., Qu, J. J., and Xiao, J.
H.: Annual and diurnal variations of gaseous and particulate pollutants in
31 provincial capital cities based on in situ air quality monitoring data
from China National Environmental Monitoring Center, Environ. Int., 86, 92–106, 2016.
Zhao, S. P., Yu, Y., Yin, D., Yu, Z., Dong, L. X., Mao, Z., He, J. J., Yang,
J., Li, P., and Qin, D. H.: Concentrations, optical and radiative properties
of carbonaceous aerosols over urban Lanzhou, a typical valley city: Results
from in-situ observations and numerical model, Atmos. Environ., 213,
470–484, 2019.
Zhao, S. P., Yu, Y., Yin, D. Y., and Qin, D. H.: Contrasting response of
ultrafine particle number and PM2.5 mass concentrations to Clean Air
Action in China, Geophys. Res. Lett., 48, e2021GL093886,
https://doi.org/10.1029/2021GL093886, 2021.
Short summary
We found a large PM2.5 reduction in response to Clean Air Action (CAA), but impacts of CAA on particle number concentrations (PNCs) may be different from PM2.5 mass due to newly formed particle impacts. The k-means clustering technique and Theil–Sen regression were used to analyze PNCs variations and to quantify their trends. Increased daytime solar radiation, higher temperature and lower RH at noon induced by reduced PM2.5 mass promoted formation of new particles and increased particle numbers.
We found a large PM2.5 reduction in response to Clean Air Action (CAA), but impacts of CAA on...
Altmetrics
Final-revised paper
Preprint