Articles | Volume 21, issue 18
https://doi.org/10.5194/acp-21-14199-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-14199-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: The chemical composition of and temporal variability in aerosol particles at Tuktoyaktuk, Canada, during the Year of Polar Prediction Second Special Observing Period
John MacInnis
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, B3H 4R2, Canada
Jai Prakash Chaubey
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, B3H 4R2, Canada
Crystal Weagle
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, B3H 4R2, Canada
Department of Energy, Environmental and Chemical Engineering,
Washington University in St. Louis, St Louis, Missouri 63130-4899, United States of
America
David Atkinson
Department of Geography, University of Victoria, Victoria, V8P 5C2,
Canada
Rachel Ying-Wen Chang
CORRESPONDING AUTHOR
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, B3H 4R2, Canada
Related authors
No articles found.
M. Fernanda Córdoba, Rachel Chang, Harry Alvarez-Ospina, Aramis Olivos-Ortiz, Graciela B. Raga, Daniel Rosas-Ramírez, Guadalupe Campos, Isabel Márquez, Telma Castro, and Luis A. Ladino
Atmos. Meas. Tech., 18, 2463–2479, https://doi.org/10.5194/amt-18-2463-2025, https://doi.org/10.5194/amt-18-2463-2025, 2025
Short summary
Short summary
The present study shows the development of the UNAM-MARine Aerosol Tank (UNAM-MARAT), a device that simulates wave breaking to generate marine aerosol particles. The portable and automatic tank is able to generate particle concentrations as high as 2000 cm-3, covering a wide range of sizes, similar to those found in the ambient marine boundary layer. The sea spray aerosol generated from three natural seawater samples was found to act as ice-nucleating particles (INPs) via immersion freezing.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, P. Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gómez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal L. Weagle, and Xi Zhao
Atmos. Chem. Phys., 25, 4665–4702, https://doi.org/10.5194/acp-25-4665-2025, https://doi.org/10.5194/acp-25-4665-2025, 2025
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Here, we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the data sets to model output.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y.-W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, and Andrew Weinheimer
Atmos. Chem. Phys., 23, 5023–5042, https://doi.org/10.5194/acp-23-5023-2023, https://doi.org/10.5194/acp-23-5023-2023, 2023
Short summary
Short summary
Particle size of atmospheric aerosol is important for estimating its climate and health effects, but simulating atmospheric aerosol size is computationally demanding. This study derives a simple parameterization of the size of organic and secondary inorganic ambient aerosol that can be applied to atmospheric models. Applying this parameterization allows a better representation of the global spatial pattern of aerosol size, as verified by ground and airborne measurements.
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Thomas F. Eck, Jeffrey S. Reid, David M. Giles, Daniel Pérez-Ramírez, and Jai Prakash Chaubey
Atmos. Meas. Tech., 16, 1103–1120, https://doi.org/10.5194/amt-16-1103-2023, https://doi.org/10.5194/amt-16-1103-2023, 2023
Short summary
Short summary
Aerosols are atmospheric particles that vary in size (radius) from a fraction of a micrometer (µm) to around 20 µm. They tend to be either smaller than 1 µm (like smoke or pollution) or larger than 1 µm (like dust or sea salt). Their optical effect (scattering and absorbing sunlight) can be divided into FM (fine-mode) and CM (coarse-mode) parts using a cutoff radius around 1 µm or a spectral (color) technique. We present and validate a theoretical link between the types of FM and CM divisions.
Rachel Y.-W. Chang, Jonathan P. D. Abbatt, Matthew C. Boyer, Jai Prakash Chaubey, and Douglas B. Collins
Atmos. Chem. Phys., 22, 8059–8071, https://doi.org/10.5194/acp-22-8059-2022, https://doi.org/10.5194/acp-22-8059-2022, 2022
Short summary
Short summary
During summer 2016, the ability of newly formed particles to turn into droplets was measured in the Canadian Arctic. Our observations suggest that these small particles were growing by the condensation of organic vapours likely coming from the surrounding open waters. These particles grew large enough that they could form cloud droplets and therefore affect the earth’s radiation budget. These results are relevant as the Arctic summer rapidly warms with climate change.
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Short summary
North Atlantic Aerosols and Marine Ecosystems Study measurements combined with GEOS-Chem-TOMAS modeling suggest that several not-well-understood key factors control northwest Atlantic aerosol number and size. These synergetic and climate-relevant factors include particle formation near and above the marine boundary layer top, particle growth by marine secondary organic aerosol on descent, particle formation/growth related to dimethyl sulfide, sea spray aerosol, and ship emissions.
Cited articles
Abbatt, J. P. D., Leaitch, W. R., Aliabadi, A. A., Bertram, A. K., Blanchet, J.-P., Boivin-Rioux, A., Bozem, H., Burkart, J., Chang, R. Y. W., Charette, J., Chaubey, J. P., Christensen, R. J., Cirisan, A., Collins, D. B., Croft, B., Dionne, J., Evans, G. J., Fletcher, C. G., Galí, M., Ghahremaninezhad, R., Girard, E., Gong, W., Gosselin, M., Gourdal, M., Hanna, S. J., Hayashida, H., Herber, A. B., Hesaraki, S., Hoor, P., Huang, L., Hussherr, R., Irish, V. E., Keita, S. A., Kodros, J. K., Köllner, F., Kolonjari, F., Kunkel, D., Ladino, L. A., Law, K., Levasseur, M., Libois, Q., Liggio, J., Lizotte, M., Macdonald, K. M., Mahmood, R., Martin, R. V., Mason, R. H., Miller, L. A., Moravek, A., Mortenson, E., Mungall, E. L., Murphy, J. G., Namazi, M., Norman, A.-L., O'Neill, N. T., Pierce, J. R., Russell, L. M., Schneider, J., Schulz, H., Sharma, S., Si, M., Staebler, R. M., Steiner, N. S., Thomas, J. L., von Salzen, K., Wentzell, J. J. B., Willis, M. D., Wentworth, G. R., Xu, J.-W., and Yakobi-Hancock, J. D.: Overview paper: New insights into aerosol and climate in the Arctic, Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, 2019.
Alaska Miners Association: Major Mines in Alaska, available at: http://www.alaskaminers.org/major-mines (last access: 16 March 2021), 2020.
Bari, M. A. and Kindzierski, W. B.: Ambient fine particulate matter
(PM2.5) in Canadian oil sands communities: Levels, sources and
potential human health risk, Sci. Total Environ., 595, 828–838,
https://doi.org/10.1016/j.scitotenv.2017.04.023, 2017.
Bates, T. S., Charlson, R. J., and Gammon, R. H.: Evidence for the climatic
role of marine biogenic sulphur, Nature, 329, 319–321,
https://doi.org/10.1038/329319a0, 1987.
Boy, M., Thomson, E. S., Acosta Navarro, J.-C., Arnalds, O., Batchvarova, E., Bäck, J., Berninger, F., Bilde, M., Brasseur, Z., Dagsson-Waldhauserova, P., Castarède, D., Dalirian, M., de Leeuw, G., Dragosics, M., Duplissy, E.-M., Duplissy, J., Ekman, A. M. L., Fang, K., Gallet, J.-C., Glasius, M., Gryning, S.-E., Grythe, H., Hansson, H.-C., Hansson, M., Isaksson, E., Iversen, T., Jonsdottir, I., Kasurinen, V., Kirkevåg, A., Korhola, A., Krejci, R., Kristjansson, J. E., Lappalainen, H. K., Lauri, A., Leppäranta, M., Lihavainen, H., Makkonen, R., Massling, A., Meinander, O., Nilsson, E. D., Olafsson, H., Pettersson, J. B. C., Prisle, N. L., Riipinen, I., Roldin, P., Ruppel, M., Salter, M., Sand, M., Seland, Ø., Seppä, H., Skov, H., Soares, J., Stohl, A., Ström, J., Svensson, J., Swietlicki, E., Tabakova, K., Thorsteinsson, T., Virkkula, A., Weyhenmeyer, G. A., Wu, Y., Zieger, P., and Kulmala, M.: Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes, Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, 2019.
Brauer, M., Brook, J. R., Christidis, T., Chu, Y., Crouse, D. L., Erickson,
A., Hystad, P., Li, C., Martin, R. V., Meng, J., Pappin, A. J., Pinault, L.
L., Tjepkema, M., Van Donkelaar, A., Weichenthal, S., and Burnett, R. T.:
Mortality-Air Pollution Associations in Low-Exposure Environments (MAPLE):
Phase 1, Res. Reports Heal. Eff. Inst., 203, 2019.
Browse, J., Carslaw, K. S., Schmidt, A., and Corbett, J. J.: Impact of future
Arctic shipping on high-latitude black carbon deposition, Geophys. Res.
Lett., 40, 4459–4463, https://doi.org/10.1002/grl.50876, 2013.
Bullard J. E., Baddock, M., Bradwell, T., Crusius, J., Darlington, E.,
Gaiero, D., Gassó, S., Gisladottir, G., Hodgkins, R., McCulloch,
R., McKenna-Neuman, C., Mockford, T., Stewart, H., and Thorsteinsson, T.:
High latitude dust in the Earth system, Rev. Geophys., 54, 447–485, https://doi.org/10.1002/2016RG000518, 2016.
Canada Energy Sector: Provincial and Territorial Energy Profiles –
Northwest Territories, available at: https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-northwest-territories.html
(last access: 16 March 2021), 2020.
Canadian Council of Ministers of the Environment: Ambient Air Monitoring and Quality Assurance/Quality Control Guidelines, National Air Pollution Surveillance Program, Canadian Council of Ministers of the Environment, 117 pp., ISBN 978-1-77202-056-4, 2019.
Chang, R.: Aerosol Particle Mass and Chemical Composition Analysis Tuktoyaktuk 2018, Federated Research Data Repository [data set], https://doi.org/10.20383/101.0269, 2021a.
Chang, R.: Aerosol Particle Number Size Distributions Tuktoyaktuk, NWT 2018, Federated Research Data Repository [data set], https://doi.org/10.20383/101.0278, 2021b.
Chang, R. Y.-W., Leck, C., Graus, M., Müller, M., Paatero, J., Burkhart, J. F., Stohl, A., Orr, L. H., Hayden, K., Li, S.-M., Hansel, A., Tjernström, M., Leaitch, W. R., and Abbatt, J. P. D.: Aerosol composition and sources in the central Arctic Ocean during ASCOS, Atmos. Chem. Phys., 11, 10619–10636, https://doi.org/10.5194/acp-11-10619-2011, 2011.
Christidis, T., Erickson, A. C., Pappin, A. J., Crouse, D. L., Pinault, L.
L., Weichenthal, S. A., Brook, J. R., Van Donkelaar, A., Hystad, P., Martin,
R. V., Tjepkema, M., Burnett, R. T., and Brauer, M.: Low concentrations of
fine particle air pollution and mortality in the Canadian Community Health
Survey cohort, Environ. Health, 18, 84,
https://doi.org/10.1186/s12940-019-0518-y, 2019.
Conca, E., Abollino, O., Giacomino, A., Buoso, S., Traversi, R., Becagli,
S., Grotti, M., and Malandrino, M.: Source identification and temporal
evolution of trace elements in PM10 collected near to Ny-Ålesund
(Norwegian Arctic), Atmos. Environ., 203, 153–165,
https://doi.org/10.1016/j.atmosenv.2019.02.001, 2019.
Crocchianti, S., Moroni, B., Dagsson-Waldhauserova, P., Becagli, S., Severi,
M., Traversi, R., and Cappelletti, D.: Potential source contribution function
analysis of high latitude dust sources over the Arctic: Preliminary results
and prospects, Atmosphere, 12, 347–362, https://doi.org/10.3390/atmos12030347, 2021.
Croft, B., Wentworth, G. R., Martin, R. V., Leaitch, W. R., Murphy, J. G.,
Murphy, B. N., Kodros, J. K., Abbatt, J. P. D., and Pierce, J. R.:
Contribution of Arctic seabird-colony ammonia to atmospheric particles and
cloud-albedo radiative effect, Nat. Commun., 7, 13444, https://doi.org/10.1038/ncomms13444,
2016a.
Croft, B., Martin, R. V., Leaitch, W. R., Tunved, P., Breider, T. J., D'Andrea, S. D., and Pierce, J. R.: Processes controlling the annual cycle of Arctic aerosol number and size distributions, Atmos. Chem. Phys., 16, 3665–3682, https://doi.org/10.5194/acp-16-3665-2016, 2016b.
Croft, B., Martin, R. V., Leaitch, W. R., Burkart, J., Chang, R. Y.-W., Collins, D. B., Hayes, P. L., Hodshire, A. L., Huang, L., Kodros, J. K., Moravek, A., Mungall, E. L., Murphy, J. G., Sharma, S., Tremblay, S., Wentworth, G. R., Willis, M. D., Abbatt, J. P. D., and Pierce, J. R.: Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago, Atmos. Chem. Phys., 19, 2787–2812, https://doi.org/10.5194/acp-19-2787-2019, 2019.
Dagsson-Waldhauserova, P., Arnalds, O., and Olafsson, H.: Long-term variability of dust events in Iceland (1949–2011), Atmos. Chem. Phys., 14, 13411–13422, https://doi.org/10.5194/acp-14-13411-2014, 2014.
Dagsson-Waldhauserova, P., Renard, J.-B., Olafsson, H., Vignelles, D.,
Berthet, G., Verdier, N., and Duverger, V.: Vertical distribution of aerosols
in dust storms during the Arctic winter, Sci. Rep.-UK, 9, 16122, https://doi.org/10.1038/s41598-019-51764-y, 2019.
Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S.
L., and Samet, J. M.: Fine particulate air pollution and hospital admission
for cardiovascular and respiratory diseases, J. Am. Med. Assoc., 295,
1127–1134, https://doi.org/10.1001/jama.295.10.1127, 2006.
Đorđević, D., Tošić, I., Sakan, S., Petrović, S., Đuričić-Milanković, J., Finger, D. C., and
Dagsson-Waldhauserová, P.: Can volcanic dust suspended from surface soil
and deserts of Iceland be transferred to central Balkan similarly to African
dust (Sahara)?, Front. Earth Sci., 7, 142, https://doi.org/10.3389/feart.2019.00142,
2019.
Environment and Climate Change Canada: Canadian Environmental
Sustainability Indicators Air Quality, available at: https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/air.html
(last access: 16 March 2021), 2018.
Environment and Climate Change Canada: Historical Climate Data, available at: https://climate.weather.gc.ca/historical_data/search_historic_data_e.html (last access: 7 July 2021), 2020.
European Environment Agency: Arctic Resources, available at: https://www.eea.europa.eu/data-and-maps/figures/arctic-resources (last
access: 7 July 2021), 2017.
Ferrero, L., Sangiorgi, G., Perrone, M. G., Rizzi, C., Cataldi, M.,
Markuszewski, P., Pakszys, P., Makuch, P., Petelski, T., Becagli, S.,
Traversi, R., Bolzacchini, E., and Zielinski, T.: Chemical composition of
aerosol over the Arctic ocean from summer Arctic expedition (AREX) 2011–2012
cruises: Ions, amines, elemental carbon, organic matter, polycyclic aromatic
hydrocarbons, n-alkanes, metals, and rare earth elements, Atmosphere, 10, 54,
https://doi.org/10.3390/atmos10020054, 2019.
Finlayson-Pitts, B. J. and Pitts, J. N.: Particles in the Troposphere, in
Chemistry of the Upper and Lower Atmosphere, Academic Press, San Diego, California, USA, 349–420,
2000.
Gilgen, A., Huang, W. T. K., Ickes, L., Neubauer, D., and Lohmann, U.: How important are future marine and shipping aerosol emissions in a warming Arctic summer and autumn?, Atmos. Chem. Phys., 18, 10521–10555, https://doi.org/10.5194/acp-18-10521-2018, 2018.
Government of Canada: National Pollutant Release Inventory (NPRI) –
Bulk Data, available at: https://open.canada.ca/data/en/dataset/40e01423-7728-429c-ac9d-2954385ccdfb
(last access: 16 March 2021), 2018.
Government of Nunavut: Population Estimates, available at: https://www.gov.nu.ca/sites/default/files/population_estimates_report_july_1_2019_0.pdf (last access: 16 March 2021), 2019.
Herenz, P., Wex, H., Henning, S., Kristensen, T. B., Rubach, F., Roth, A., Borrmann, S., Bozem, H., Schulz, H., and Stratmann, F.: Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during spring–summer transition in May 2014, Atmos. Chem. Phys., 18, 4477–4496, https://doi.org/10.5194/acp-18-4477-2018, 2018.
Jayarathne, T., Stockwell, C. E., Yokelson, R. J., Nakao, S., and Stone, E.
A.: Emissions of fine particle fluoride from biomass burning, Environ. Sci.
Technol., 48, 12636–12644, https://doi.org/10.1021/es502933j, 2014.
Kadko, D., Galfond, B., Landing, W. M., and Shelley, R. U.: Determining the
pathways, fate, and flux of atmospherically derived trace elements in the
arctic ocean/ice system, Mar. Chem., 182, 38–50,
https://doi.org/10.1016/j.marchem.2016.04.006, 2016.
Keene, W. C., Lobert, J. M., Crutzen, P. J., Maben, J. R., Scharffe, D. H.,
Landmann, T., Hély, C., and Brain, C.: Emissions of major gaseous and
particulate species during experimental burns of southern African biomass,
J. Geophys. Res.-Atmos., 111, D04301, https://doi.org/10.1029/2005JD006319, 2006.
Landsberger, S., Vermette, S. J., and Barrie, L. A.: Multielemental
composition of the Arctic aerosol, J. Geophys. Res., 95, 3509–3515,
https://doi.org/10.1029/JD095iD04p03509, 1990.
Laskin, A., Moffet, R. C., Gilles, M. K., Fast, J. D., Zaveri, R. A., Wang,
B., Nigge, P., and Shutthanandan, J.: Tropospheric chemistry of internally
mixed sea salt and organic particles: Surprising reactivity of NaCl with
weak organic acids, J. Geophys. Res.-Atmos., 117, D15302,
https://doi.org/10.1029/2012JD017743, 2012.
Leaitch, W. R., Russell, L. M., Liu, J., Kolonjari, F., Toom, D., Huang, L., Sharma, S., Chivulescu, A., Veber, D., and Zhang, W.: Organic functional groups in the submicron aerosol at 82.5∘ N, 62.5∘ W from 2012 to 2014, Atmos. Chem. Phys., 18, 3269–3287, https://doi.org/10.5194/acp-18-3269-2018, 2018.
Liberda, E. N., Tsuji, L. J. S., and Peltier, R. E.: Mining in subarctic
Canada: Airborne PM2.5 metal concentrations in two remote First Nations
communities, Chemosphere, 139, 452–460,
https://doi.org/10.1016/j.chemosphere.2015.07.058, 2015.
MacInnis, J. J., Lehnherr, I., Muir, D. C. G., St. Pierre, K. A., St. Louis,
V. L., Spencer, C., and De Silva, A. O.: Fate and transport of perfluoroalkyl
substances from snowpacks into a lake in the high Arctic of Canada, Environ.
Sci. Technol., 53, 10753–10762, https://doi.org/10.1021/acs.est.9b03372, 2019.
Mackay, J. R. and Burn, C. R.: A long-term field study (1951–2003) of
ventifacts formed by katabatic winds at Paulatuk, western Arctic coast,
Canada, Can. J. Earth Sci., 42, 1615–1635, https://doi.org/10.1139/E05-061, 2005.
Martin, M., Chang, R. Y.-W., Sierau, B., Sjogren, S., Swietlicki, E., Abbatt, J. P. D., Leck, C., and Lohmann, U.: Cloud condensation nuclei closure study on summer arctic aerosol, Atmos. Chem. Phys., 11, 11335–11350, https://doi.org/10.5194/acp-11-11335-2011, 2011.
Murray, B. J., Carslaw, K. S., and Field, P. R.: Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles, Atmos. Chem. Phys., 21, 665–679, https://doi.org/10.5194/acp-21-665-2021, 2021.
Newberg, J. T., Matthew, B. M., and Anastasio, C.: Chloride and bromide
depletions in sea-salt particles over the northeastern Pacific Ocean, J.
Geophys. Res.-Atmos., 110, D06209, https://doi.org/10.1029/2004JD005446, 2005.
NWT Bureau of Statistics: Community Data, available at:
https://www.statsnwt.ca/community-data/ (last access: 16 March 2021), 2020.
O'Dowd, C. D. and de Leeuw, G.: Marine aerosol production: a review of the
current knowledge, Philos. T. R. Soc. A, 365,1753–1774,
https://doi.org/10.1098/rsta.2007.2043, 2007.
Ostro, B., Lipsett, M., Reynolds, P., Goldberg, D., Hertz, A., Garcia, C.,
Henderson, K. D., and Bernstein, L.: Long-term exposure to constituents of
fine particulate air pollution and mortality: Results from the California
Teachers Study, Environ. Health Persp., 118, 363–369,
https://doi.org/10.1289/ehp.0901181, 2010.
Pappin, A. J., Christidis, T., Pinault, L. L., Crouse, D. L., Brook, J. R.,
Erickson, A., Hystad, P., Li, C., Martin, R. V., Meng, J., Weichenthal, S.,
Donkelaar, A. van, Tjepkema, M., Brauer, M., and Burnett, R. T.: Examining
the shape of the association between low levels of fine particulate matter
and mortality across three cycles of the canadian census health and
environment cohort, Environ. Health Persp., 127, 107008, https://doi.org/10.1289/EHP5204,
2019.
Radke, L. F. and Hobbs, P. V.: Arctic hazes in summer over Greenland and the
North American Arctic. III: A contribution from the natural burning of
carbonaceous materials and pyrites, J. Atmos. Chem., 9, 161–167,
https://doi.org/10.1007/BF00052830, 1989.
Saltzman, E. S.: Marine Aerosols, in: Surface Ocean-Lower Atmosphere Processes, edited by: Le Quéré, C. and Saltzman, E. S., American Geophysical Union, Washington, DC, USA, 17–35, https://doi.org/10.1029/2008GM000769, 2009.
Sanchez-Marroquin, A., Arnalds, O, Baustian-Dorsi, K., Browse, J.,
Dagsson-Waldhauserova, P., Harrison, A. D., Maters, E. C., Pringle, K. J.,
Vergara-Temprado, J., Burke, I. T., McQuaid, J. B., Carslaw, K. S., and Murray,
B. J.: Iceland is an episodic source of atmospheric ice-nucleating particles
relevant for mixed-phase clouds, Sci. Adv., 6, eaba8137, https://doi.org/10.1126/sciadv.aba8137, 2020.
Seinfeld, J. H. and Pandis, S. N.: Aerosols, in Atmospheric Chemistry and
Physics: From Air Pollution to Climate Change, John Wiley &
Sons, Inc., Hoboken, NJ, USA, 325–359, 2016.
Sharma, S., Leaitch, W. R., Huang, L., Veber, D., Kolonjari, F., Zhang, W., Hanna, S. J., Bertram, A. K., and Ogren, J. A.: An evaluation of three methods for measuring black carbon in Alert, Canada, Atmos. Chem. Phys., 17, 15225–15243, https://doi.org/10.5194/acp-17-15225-2017, 2017.
Sharma, S., Barrie, L. A., Magnusson, E., Brattström, G., Leaitch, W.
R., Steffen, A., and Landsberger, S.: A factor and trends analysis of
multidecadal lower tropospheric observations of Arctic aerosol composition,
black carbon, ozone, and mercury at Alert, Canada, J. Geophys. Res.-Atmos.,
124, 14133–14161, https://doi.org/10.1029/2019JD030844, 2019.
Sierau, B., Chang, R. Y.-W., Leck, C., Paatero, J., and Lohmann, U.: Single-particle characterization of the high-Arctic summertime aerosol, Atmos. Chem. Phys., 14, 7409–7430, https://doi.org/10.5194/acp-14-7409-2014, 2014.
Snider, G., Weagle, C. L., Martin, R. V., van Donkelaar, A., Conrad, K., Cunningham, D., Gordon, C., Zwicker, M., Akoshile, C., Artaxo, P., Anh, N. X., Brook, J., Dong, J., Garland, R. M., Greenwald, R., Griffith, D., He, K., Holben, B. N., Kahn, R., Koren, I., Lagrosas, N., Lestari, P., Ma, Z., Vanderlei Martins, J., Quel, E. J., Rudich, Y., Salam, A., Tripathi, S. N., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., and Liu, Y.: SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications, Atmos. Meas. Tech., 8, 505–521, https://doi.org/10.5194/amt-8-505-2015, 2015.
Snider, G., Weagle, C. L., Murdymootoo, K. K., Ring, A., Ritchie, Y., Stone, E., Walsh, A., Akoshile, C., Anh, N. X., Balasubramanian, R., Brook, J., Qonitan, F. D., Dong, J., Griffith, D., He, K., Holben, B. N., Kahn, R., Lagrosas, N., Lestari, P., Ma, Z., Misra, A., Norford, L. K., Quel, E. J., Salam, A., Schichtel, B., Segev, L., Tripathi, S., Wang, C., Yu, C., Zhang, Q., Zhang, Y., Brauer, M., Cohen, A., Gibson, M. D., Liu, Y., Martins, J. V., Rudich, Y., and Martin, R. V.: Variation in global chemical composition of PM2.5: emerging results from SPARTAN, Atmos. Chem. Phys., 16, 9629–9653, https://doi.org/10.5194/acp-16-9629-2016, 2016.
Tremblay, S., Picard, J.-C., Bachelder, J. O., Lutsch, E., Strong, K., Fogal, P., Leaitch, W. R., Sharma, S., Kolonjari, F., Cox, C. J., Chang, R. Y.-W., and Hayes, P. L.: Characterization of aerosol growth events over Ellesmere Island during the summers of 2015 and 2016, Atmos. Chem. Phys., 19, 5589–5604, https://doi.org/10.5194/acp-19-5589-2019, 2019.
United States Environmental Protection Agency: Definition and procedure for the determination of the method detection limit – Revision 2, United States Environmental Protection Agency, Washington, DC, USA, EPA 821-R-16-006, 8 pp., 2016.
Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C. U., Aas, W., Baker, A.,
Bowersox, V. C., Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J. J.,
Gillett, R., Forti, M. C., Gromov, S., Hara, H., Khodzher, T., Mahowald, N.
M., Nickovic, S., Rao, P. S. P., and Reid, N. W.: A global assessment of
precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base
cations, organic acids, acidity and pH, and phosphorus, Atmos. Environ., 93,
3–100, https://doi.org/10.1016/j.atmosenv.2013.10.060, 2014.
Wentworth, G. R., Murphy, J. G., Croft, B., Martin, R. V., Pierce, J. R., Côté, J.-S., Courchesne, I., Tremblay, J.-É., Gagnon, J., Thomas, J. L., Sharma, S., Toom-Sauntry, D., Chivulescu, A., Levasseur, M., and Abbatt, J. P. D.: Ammonia in the summertime Arctic marine boundary layer: sources, sinks, and implications, Atmos. Chem. Phys., 16, 1937–1953, https://doi.org/10.5194/acp-16-1937-2016, 2016.
Willis, M. D., Leaitch, W. R., and Abbatt, J. P. D.: Processes controlling
the composition and abundance of Arctic aerosol, Rev. Geophys., 56,
621–671, https://doi.org/10.1029/2018RG000602, 2018.
Wong, F., Shoeib, M., Katsoyiannis, A., Eckhardt, S., Stohl, A.,
Bohlin-Nizzetto, P., Li, H., Fellin, P., Su, Y., and Hung, H.: Assessing
temporal trends and source regions of per- and polyfluoroalkyl substances
(PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP),
Atmos. Environ., 172, 65–73, https://doi.org/10.1016/j.atmosenv.2017.10.028, 2018.
World Health Organization: Ambient (outdoor) air pollution, available at:
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
(last access: 16 March 2021), 2018.
Wu, J.-Z., Ge, D.-D., Zhou, L.-F., Hou, L.-Y., Zhou, Y., and Li, Q.-Y.:
Effects of particulate matter on allergic respiratory diseases, Chronic Dis.
Transl. Med., 4, 95–102, https://doi.org/10.1016/j.cdtm.2018.04.001, 2018.
Xu, W., Tenuta, M., and Wang, F.: Bromide and chloride distribution across
the snow-sea ice-ocean interface: A comparative study between an Arctic
coastal marine site and an experimental sea ice mesocosm, J. Geophys. Res.-Ocean., 121, 5535–5548, https://doi.org/10.1002/2015JC011409, 2016.
Yao, X., Fang, M., and Chan, C. K.: The size dependence of chloride depletion
in fine and coarse sea-salt particles, Atmos. Environ., 37, 743–751,
https://doi.org/10.1016/S1352-2310(02)00955-X, 2003.
Yukon Bureau of Statistics: Population Report, available at: http://yukon.ca/sites/yukon.ca/files/ybs/populationq4_2019_0_0.pdf (last access: 16 March 2021), 2019.
Short summary
This study measured particulate matter in the western Canadian Arctic during 2018 as part of the Year of Polar Prediction. It was found that the particles were likely from the ocean, soil, road dust, and combustion. The concentrations of small aerosol particles, which can affect human health, were low, suggesting they had little impact on local air quality. These results can be used to understand future changes in local aerosol particle sources and concentrations.
This study measured particulate matter in the western Canadian Arctic during 2018 as part of the...
Altmetrics
Final-revised paper
Preprint