Articles | Volume 21, issue 17
Atmos. Chem. Phys., 21, 13425–13442, 2021
https://doi.org/10.5194/acp-21-13425-2021

Special issue: The Model Intercomparison Project on the climatic response...

Atmos. Chem. Phys., 21, 13425–13442, 2021
https://doi.org/10.5194/acp-21-13425-2021
Research article
09 Sep 2021
Research article | 09 Sep 2021

Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments

Zhihong Zhuo et al.

Related authors

Mechanisms of hydrological responses to volcanic eruptions in the Asian monsoon and westerlies-dominated subregions
Zhihong Zhuo, Ingo Kirchner, and Ulrich Cubasch
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-182,https://doi.org/10.5194/cp-2021-182, 2021
Revised manuscript under review for CP
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022,https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597, https://doi.org/10.5194/acp-22-4581-2022,https://doi.org/10.5194/acp-22-4581-2022, 2022
Short summary
Enhanced upward motion through the troposphere over the tropical western Pacific and its implications for the transport of trace gases from the troposphere to the stratosphere
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411, https://doi.org/10.5194/acp-22-4393-2022,https://doi.org/10.5194/acp-22-4393-2022, 2022
Short summary
Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020
Audrey Lecouffe, Sophie Godin-Beekmann, Andrea Pazmiño, and Alain Hauchecorne
Atmos. Chem. Phys., 22, 4187–4200, https://doi.org/10.5194/acp-22-4187-2022,https://doi.org/10.5194/acp-22-4187-2022, 2022
Short summary
Characterization of transport from the Asian summer monsoon anticyclone into the UTLS via shedding of low potential vorticity cutoffs
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022,https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary

Cited articles

Adams, J. B., Mann, M. E., and Ammann, C. M.: Proxy evidence for an El Niño-like response to volcanic forcing, Nature, 426, 274–278, https://doi.org/10.1038/nature02101, 2003. 
Ammann, C. M. and Naveau, P.: Statistical analysis of tropical explosive volcanism occurrences over the last 6 centuries, Geophys. Res. Lett., 30, 1210, https://doi.org/10.1029/2002gl016388, 2003. 
Aquila, V., Oman, L. D., Stolarski, R. S., Colarco, P. R., and Newman, P. A.: Dispersion of the volcanic sulfate cloud from a Mount Pinatubo-like eruption, J. Geophys. Res.-Atmos., 117, D06216, https://doi.org/10.1029/2011JD016968, 2012. 
Broccoli, A. J., Dahl, K. A., and Stouffer, R. J.: Response of the ITCZ to Northern Hemisphere cooling, Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005gl024546, 2006. 
Colose, C. M., LeGrande, A. N., and Vuille, M.: Hemispherically asymmetric volcanic forcing of tropical hydroclimate during the last millennium, Earth Syst. Dynam., 7, 681–696, https://doi.org/10.5194/esd-7-681-2016, 2016. 
Download
Short summary
The impact of volcanic eruptions varies with eruption season and latitude. This study simulated eruptions at different latitudes and in different seasons with a fully coupled climate model. The climate impacts of northern and southern hemispheric eruptions are reversed but are insensitive to eruption season. Results suggest that the regional climate impacts are due to the dynamical response of the climate system to radiative effects of volcanic aerosols and the subsequent regional feedbacks.
Altmetrics
Final-revised paper
Preprint