Articles | Volume 21, issue 17
Atmos. Chem. Phys., 21, 13227–13246, 2021
Atmos. Chem. Phys., 21, 13227–13246, 2021
Research article
 | Highlight paper
06 Sep 2021
Research article  | Highlight paper | 06 Sep 2021

Predicting gas–particle partitioning coefficients of atmospheric molecules with machine learning

Emma Lumiaro et al.

Related authors

Collision-sticking rates of acid–base clusters in the gas phase determined from atomistic simulation and a novel analytical interacting hard-sphere model
Huan Yang, Ivo Neefjes, Valtteri Tikkanen, Jakub Kubečka, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
EGUsphere,,, 2023
Short summary
Selective deuteration as a tool for resolving autoxidation mechanisms in α-pinene ozonolysis
Melissa J. A. Meder, Otso Peräkylä, Jonathan G. Varelas, Jenny Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti P. Rissanen, Franz M. Geiger, Regan James Thomson, and Mikael Ehn
EGUsphere,,, 2022
Short summary
Modeling approaches for atmospheric ion–dipole collisions: all-atom trajectory simulations and central field methods
Ivo Neefjes, Roope Halonen, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 22, 11155–11172,,, 2022
Short summary
Atomistic and coarse-grained simulations reveal increased ice nucleation activity on silver iodide surfaces in slit and wedge geometries
Golnaz Roudsari, Olli H. Pakarinen, Bernhard Reischl, and Hanna Vehkamäki
Atmos. Chem. Phys., 22, 10099–10114,,, 2022
Short summary
Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides
Haiyan Li, Thomas Golin Almeida, Yuanyuan Luo, Jian Zhao, Brett B. Palm, Christopher D. Daub, Wei Huang, Claudia Mohr, Jordan E. Krechmer, Theo Kurtén, and Mikael Ehn
Atmos. Meas. Tech., 15, 1811–1827,,, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272,,, 2023
Short summary
Sources of organic aerosols in eastern China: a modeling study with high-resolution intermediate-volatility and semivolatile organic compound emissions
Jingyu An, Cheng Huang, Dandan Huang, Momei Qin, Huan Liu, Rusha Yan, Liping Qiao, Min Zhou, Yingjie Li, Shuhui Zhu, Qian Wang, and Hongli Wang
Atmos. Chem. Phys., 23, 323–344,,, 2023
Short summary
Composited analyses of the chemical and physical characteristics of co-polluted days by ozone and PM2.5 over 2013–2020 in the Beijing–Tianjin–Hebei region
Huibin Dai, Hong Liao, Ke Li, Xu Yue, Yang Yang, Jia Zhu, Jianbing Jin, Baojie Li, and Xingwen Jiang
Atmos. Chem. Phys., 23, 23–39,,, 2023
Short summary
Observation-based constraints on modeled aerosol surface area: implications for heterogeneous chemistry
Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 15449–15468,,, 2022
Short summary
Oligomer formation from the gas-phase reactions of Criegee intermediates with hydroperoxide esters: mechanism and kinetics
Long Chen, Yu Huang, Yonggang Xue, Zhihui Jia, and Wenliang Wang
Atmos. Chem. Phys., 22, 14529–14546,,, 2022
Short summary

Cited articles

Arp, H. P. H. and Goss, K.-U.: Ambient Gas/Particle Partitioning. 3. Estimating Partition Coefficients of Apolar, Polar, and Ionizable Organic Compounds by Their Molecular Structure, Environ. Sci. Technol., 43, 1923–1929, 2009. a
Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C., and Anderson, D.: Viewing Forced Climate Patterns Through an AI Lens, Geophys. Res. Lett., 46, 13389–13398, 2019. a, b
Bartók, A. P., De, S., Poelking, C., Bernstein, N., Kermode, J. R., Csányi, G., and Ceriotti, M.: Machine learning unifies the modeling of materials and molecules, Sci. Adv., 3, e1701816,, 2017. a
Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A., Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol, Chem. Rev., 119, 3472–3509, 2019. a, b
Short summary
The study of climate change relies on climate models, which require an understanding of aerosol formation. We train a machine-learning model to predict the partitioning coefficients of atmospheric molecules, which govern condensation into aerosols. The model can make instant predictions based on molecular structures with accuracy surpassing that of standard computational methods. This will allow the screening of low-volatility molecules that contribute most to aerosol formation.
Final-revised paper