Articles | Volume 20, issue 16
Atmos. Chem. Phys., 20, 9997–10014, 2020
https://doi.org/10.5194/acp-20-9997-2020
Atmos. Chem. Phys., 20, 9997–10014, 2020
https://doi.org/10.5194/acp-20-9997-2020

Research article 27 Aug 2020

Research article | 27 Aug 2020

Polycyclic aromatic hydrocarbons (PAHs) and oxy- and nitro-PAHs in ambient air of the Arctic town Longyearbyen, Svalbard

Tatiana Drotikova et al.

Related authors

Polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives in the Arctic boundary layer: Seasonal trends and local anthropogenic influence
Tatiana Drotikova, Alena Dekhtyareva, Roland Kallenborn, and Alexandre Albinet
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-193,https://doi.org/10.5194/acp-2021-193, 2021
Preprint under review for ACP
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Spatiotemporal variation, sources, and secondary transformation potential of volatile organic compounds in Xi'an, China
Mengdi Song, Xin Li, Suding Yang, Xuena Yu, Songxiu Zhou, Yiming Yang, Shiyi Chen, Huabin Dong, Keren Liao, Qi Chen, Keding Lu, Ningning Zhang, Junji Cao, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 4939–4958, https://doi.org/10.5194/acp-21-4939-2021,https://doi.org/10.5194/acp-21-4939-2021, 2021
Short summary
Identifying and quantifying source contributions of air quality contaminants during unconventional shale gas extraction
Nur H. Orak, Matthew Reeder, and Natalie J. Pekney
Atmos. Chem. Phys., 21, 4729–4739, https://doi.org/10.5194/acp-21-4729-2021,https://doi.org/10.5194/acp-21-4729-2021, 2021
Short summary
Observed decreases in on-road CO2 concentrations in Beijing during COVID-19 restrictions
Di Liu, Wanqi Sun, Ning Zeng, Pengfei Han, Bo Yao, Zhiqiang Liu, Pucai Wang, Ke Zheng, Han Mei, and Qixiang Cai
Atmos. Chem. Phys., 21, 4599–4614, https://doi.org/10.5194/acp-21-4599-2021,https://doi.org/10.5194/acp-21-4599-2021, 2021
Short summary
Investigation of several proxies to estimate sulfuric acid concentration under volcanic plume conditions
Clémence Rose, Matti P. Rissanen, Siddharth Iyer, Jonathan Duplissy, Chao Yan, John B. Nowak, Aurélie Colomb, Régis Dupuy, Xu-Cheng He, Janne Lampilahti, Yee Jun Tham, Daniela Wimmer, Jean-Marc Metzger, Pierre Tulet, Jérôme Brioude, Céline Planche, Markku Kulmala, and Karine Sellegri
Atmos. Chem. Phys., 21, 4541–4560, https://doi.org/10.5194/acp-21-4541-2021,https://doi.org/10.5194/acp-21-4541-2021, 2021
Short summary
Measurement report: Exploring NH3 behavior in urban and suburban Beijing: comparison and implications
Ziru Lan, Weili Lin, Weiwei Pu, and Zhiqiang Ma
Atmos. Chem. Phys., 21, 4561–4573, https://doi.org/10.5194/acp-21-4561-2021,https://doi.org/10.5194/acp-21-4561-2021, 2021
Short summary

Cited articles

Ahmed, T. M., Bergvall, C., and Westerholm, R.: Emissions of particulate associated oxygenated and native polycyclic aromatic hydrocarbons from vehicles powered by ethanol/gasoline fuel blends, Fuel, 214, 381–385, https://doi.org/10.1016/j.fuel.2017.11.059, 2018. 
Alam, M. S., Delgado-Saborit, J. M., Stark, C., and Harrison, R. M.: Using atmospheric measurements of PAH and quinone compounds at roadside and urban background sites to assess sources and reactivity, Atmos. Environ., 77, 24–35, https://doi.org/10.1016/j.atmosenv.2013.04.068, 2013. 
Alam, M. S., Delgado-Saborit, J. M., Stark, C., and Harrison, R. M.: Investigating PAH relative reactivity using congener profiles, quinone measurements and back trajectories, Atmos. Chem. Phys., 14, 2467–2477, https://doi.org/10.5194/acp-14-2467-2014, 2014. 
Alam, M. S., Keyte, I. J., Yin, J., Stark, C., Jones, A. M., and Harrison, R. M.: Diurnal variability of polycyclic aromatic compound (PAC) concentrations: Relationship with meteorological conditions and inferred sources, Atmos. Environ., 122, 427–438, https://doi.org/10.1016/j.atmosenv.2015.09.050, 2015. 
Download
Short summary
Polycyclic aromatic hydrocarbons (PAHs) are not declining in Arctic air despite reductions in global emissions. We studied PAHs and oxy- and nitro-PAHs in gas and particulate phases of Arctic aerosol, collected in autumn 2018 in Longyearbyen, Svalbard. PAHs were found at comparable levels as at other background Scandinavian and European air sampling stations. Statistical analysis confirmed that a coal-fired power plant and vehicle and marine traffic are the main local contributors of PAHs.
Altmetrics
Final-revised paper
Preprint