Articles | Volume 20, issue 11
https://doi.org/10.5194/acp-20-6379-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-6379-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 1: long-term trends
W. John R. French
CORRESPONDING AUTHOR
Australian Antarctic Division, 203 Channel Hwy, Kingston, Tasmania,
7050, Australia
Frank J. Mulligan
Maynooth University, Maynooth, Co. Kildare, Ireland
Andrew R. Klekociuk
Australian Antarctic Division, 203 Channel Hwy, Kingston, Tasmania,
7050, Australia
Department of Physics, University of Adelaide, Adelaide, 5005,
Australia
Related authors
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023, https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
Short summary
In this paper, we use ground-based observations to evaluate a climate model and a satellite product in simulating surface radiation and investigate how radiation biases are influenced by cloud properties over the Southern Ocean. We find that significant radiation biases exist in both the model and satellite. The cloud fraction and cloud occurrence play an important role in affecting radiation biases. We suggest further development for the model and satellite using ground-based observations.
W. John R. French, Andrew R. Klekociuk, and Frank J. Mulligan
Atmos. Chem. Phys., 20, 8691–8708, https://doi.org/10.5194/acp-20-8691-2020, https://doi.org/10.5194/acp-20-8691-2020, 2020
Short summary
Short summary
We explore a quasi-quadrennial oscillation (QQO; 3–4 K amplitude, ~ 4-year period) in mesopause region temperatures observed in 24 years of hydroxyl airglow measurements over Davis, Antarctica (68° S, 78° E). Correlation and composite analysis using meteorological reanalysis and satellite data reveals complex patterns on the QQO timescale in both hemispheres. Modulation of the meridional circulation, linked to the propagation of gravity waves, plays a significant role in producing the QQO response.
Kane A. Stone, Olaf Morgenstern, David J. Karoly, Andrew R. Klekociuk, W. John French, N. Luke Abraham, and Robyn Schofield
Atmos. Chem. Phys., 16, 2401–2415, https://doi.org/10.5194/acp-16-2401-2016, https://doi.org/10.5194/acp-16-2401-2016, 2016
Short summary
Short summary
This paper describes the set-up and evaluation of the Australian Community Climate and Earth System Simulator – chemistry-climate model.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023, https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
Short summary
In this paper, we use ground-based observations to evaluate a climate model and a satellite product in simulating surface radiation and investigate how radiation biases are influenced by cloud properties over the Southern Ocean. We find that significant radiation biases exist in both the model and satellite. The cloud fraction and cloud occurrence play an important role in affecting radiation biases. We suggest further development for the model and satellite using ground-based observations.
Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffiths
Atmos. Chem. Phys., 23, 3749–3777, https://doi.org/10.5194/acp-23-3749-2023, https://doi.org/10.5194/acp-23-3749-2023, 2023
Short summary
Short summary
Observations of aerosols in pristine regions are rare but are vital to constraining the natural baseline from which climate simulations are calculated. Here we present recent seasonal observations of aerosols from the Southern Ocean and contrast them with measurements from Antarctica, Australia and regionally relevant voyages. Strong seasonal cycles persist, but striking differences occur at different latitudes. This study highlights the need for more long-term observations in remote regions.
Sabine Wüst, Michael Bittner, Patrick J. Espy, W. John R. French, and Frank J. Mulligan
Atmos. Chem. Phys., 23, 1599–1618, https://doi.org/10.5194/acp-23-1599-2023, https://doi.org/10.5194/acp-23-1599-2023, 2023
Short summary
Short summary
Ground-based OH* airglow measurements have been carried out for almost 100 years. Advanced detector technology has greatly simplified the automatic operation of OH* airglow observing instruments and significantly improved the temporal and/or spatial resolution. Studies based on long-term measurements or including a network of instruments are reviewed, especially in the context of deriving gravity wave properties. Scientific and technical challenges for the next few years are described.
Adrien Guyot, Alain Protat, Simon P. Alexander, Andrew R. Klekociuk, Peter Kuma, and Adrian McDonald
Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022, https://doi.org/10.5194/amt-15-3663-2022, 2022
Short summary
Short summary
Ceilometers are instruments that are widely deployed as part of operational networks. They are usually not able to detect cloud phase. Here, we propose an evaluation of various methods to detect supercooled liquid water with ceilometer observations, using an extensive dataset from Davis, Antarctica. Our results highlight the possibility for ceilometers to detect supercooled liquid water in clouds.
Alexander D. Fraser, Robert A. Massom, Mark S. Handcock, Phillip Reid, Kay I. Ohshima, Marilyn N. Raphael, Jessica Cartwright, Andrew R. Klekociuk, Zhaohui Wang, and Richard Porter-Smith
The Cryosphere, 15, 5061–5077, https://doi.org/10.5194/tc-15-5061-2021, https://doi.org/10.5194/tc-15-5061-2021, 2021
Short summary
Short summary
Landfast ice is sea ice that remains stationary by attaching to Antarctica's coastline and grounded icebergs. Although a variable feature, landfast ice exerts influence on key coastal processes involving pack ice, the ice sheet, ocean, and atmosphere and is of ecological importance. We present a first analysis of change in landfast ice over an 18-year period and quantify trends (−0.19 ± 0.18 % yr−1). This analysis forms a reference of landfast-ice extent and variability for use in other studies.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
William R. Hobbs, Andrew R. Klekociuk, and Yuhang Pan
Atmos. Chem. Phys., 20, 14757–14768, https://doi.org/10.5194/acp-20-14757-2020, https://doi.org/10.5194/acp-20-14757-2020, 2020
Short summary
Short summary
Reanalysis products are an invaluable tool for representing variability and long-term trends in regions with limited in situ data. However, validation of these products is difficult because of that lack of station data. Here we present a novel assessment of eight reanalyses over the polar Southern Ocean, leveraging the close relationship between trends in sea ice cover and surface air temperature, that provides clear guidance on the most reliable product for Antarctic research.
W. John R. French, Andrew R. Klekociuk, and Frank J. Mulligan
Atmos. Chem. Phys., 20, 8691–8708, https://doi.org/10.5194/acp-20-8691-2020, https://doi.org/10.5194/acp-20-8691-2020, 2020
Short summary
Short summary
We explore a quasi-quadrennial oscillation (QQO; 3–4 K amplitude, ~ 4-year period) in mesopause region temperatures observed in 24 years of hydroxyl airglow measurements over Davis, Antarctica (68° S, 78° E). Correlation and composite analysis using meteorological reanalysis and satellite data reveals complex patterns on the QQO timescale in both hemispheres. Modulation of the meridional circulation, linked to the propagation of gravity waves, plays a significant role in producing the QQO response.
Julie M. Nicely, Bryan N. Duncan, Thomas F. Hanisco, Glenn M. Wolfe, Ross J. Salawitch, Makoto Deushi, Amund S. Haslerud, Patrick Jöckel, Béatrice Josse, Douglas E. Kinnison, Andrew Klekociuk, Michael E. Manyin, Virginie Marécal, Olaf Morgenstern, Lee T. Murray, Gunnar Myhre, Luke D. Oman, Giovanni Pitari, Andrea Pozzer, Ilaria Quaglia, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Susan Strahan, Simone Tilmes, Holger Tost, Daniel M. Westervelt, and Guang Zeng
Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, https://doi.org/10.5194/acp-20-1341-2020, 2020
Short summary
Short summary
Differences in methane lifetime among global models are large and poorly understood. We use a neural network method and simulations from the Chemistry Climate Model Initiative to quantify the factors influencing methane lifetime spread among models and variations over time. UV photolysis, tropospheric ozone, and nitrogen oxides drive large model differences, while the same factors plus specific humidity contribute to a decreasing trend in methane lifetime between 1980 and 2015.
Yuke Wang, Valerii Shulga, Gennadi Milinevsky, Aleksey Patoka, Oleksandr Evtushevsky, Andrew Klekociuk, Wei Han, Asen Grytsai, Dmitry Shulga, Valery Myshenko, and Oleksandr Antyufeyev
Atmos. Chem. Phys., 19, 10303–10317, https://doi.org/10.5194/acp-19-10303-2019, https://doi.org/10.5194/acp-19-10303-2019, 2019
Short summary
Short summary
The major sudden stratospheric warming (SSW) dramatically changed atmospheric conditions. This event is accompanied by a sharp increase in the polar stratosphere temperature, zonal wind reverse, and strong changes in the polar mesosphere. These changes affect even the midlatitude mesosphere, which is not widely covered by observations. Our newly installed microwave radiometer allowed for studying mesospheric zonal wind and CO variations to understand the SSW 2018 effects at midlatitudes.
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018, https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary
Short summary
Stratospheric sudden warmings (SSWs) are natural major disruptions of the polar stratospheric circulation that also affect surface weather. In the literature there are conflicting claims as to whether SSWs will change in the future. The confusion comes from studies using different models and methods. Here we settle the question by analysing 12 models with a consistent methodology, to show that no robust changes in frequency and other features are expected over the 21st century.
Jesse W. Greenslade, Simon P. Alexander, Robyn Schofield, Jenny A. Fisher, and Andrew K. Klekociuk
Atmos. Chem. Phys., 17, 10269–10290, https://doi.org/10.5194/acp-17-10269-2017, https://doi.org/10.5194/acp-17-10269-2017, 2017
Short summary
Short summary
An analysis of data from ozonesondes released at three southern oceanic sites shows the impact of stratospheric ozone in this region. Using a novel method of transport classification, this work estimates the seasonality and quantity of stratospherically sourced ozone. We find that ozone is transported most frequently in summer due to regional-scale low-pressure weather systems. We also estimate a stratospheric ozone source of 2.0–3.3 Tg/year over three Southern Ocean regions.
Chris S.~M. Turney, Andrew Klekociuk, Christopher J. Fogwill, Violette Zunz, Hugues Goosse, Claire L. Parkinson, Gilbert Compo, Matthew Lazzara, Linda Keller, Rob Allan, Jonathan G. Palmer, Graeme Clark, and Ezequiel Marzinelli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-51, https://doi.org/10.5194/tc-2017-51, 2017
Revised manuscript not accepted
Short summary
Short summary
We demonstrate that a mid-twentieth century decrease in geopotential height in the southwest Pacific marks a Rossby wave response to equatorial Pacific warming, leading to enhanced easterly airflow off George V Land. Our results suggest that in contrast to ozone hole-driven changes in the Amundsen Sea, the 1979–2015 increase in sea ice extent off George V Land may be in response to reduced northward Ekman drift and enhanced (near-coast) production as a consequence of low latitude forcing.
Iain M. Reid, Andrew J. Spargo, Jonathan M. Woithe, Andrew R. Klekociuk, Joel P. Younger, and Gulamabas G. Sivjee
Ann. Geophys., 35, 567–582, https://doi.org/10.5194/angeo-35-567-2017, https://doi.org/10.5194/angeo-35-567-2017, 2017
Short summary
Short summary
We measured temperatures in the atmosphere at heights near 90 km using nightglow emissions and compared them with satellite measurements and with measurements made with a meteor radar. We found good agreement between the techniques, which improved when we used the meteor radar and satellite data to measure densities at two heights separated by about 10 km to estimate the nightglow emission height.
Asen Grytsai, Andrew Klekociuk, Gennadi Milinevsky, Oleksandr Evtushevsky, and Kane Stone
Atmos. Chem. Phys., 17, 1741–1758, https://doi.org/10.5194/acp-17-1741-2017, https://doi.org/10.5194/acp-17-1741-2017, 2017
Short summary
Short summary
Twenty years ago we discovered that the ozone hole shape is asymmetric. This asymmetry is minimum over the Weddell Sea region and maximum over the Ross Sea area. Later we detected that the position of the ozone minimum is shifting east. We have continued to follow this event, and a couple years ago we revealed that the shift is slowing down and starting to move back. We connect all this movement with ozone hole increase; since 2000 the ozone layer has been stabilizing and recently recovering.
Kane A. Stone, Olaf Morgenstern, David J. Karoly, Andrew R. Klekociuk, W. John French, N. Luke Abraham, and Robyn Schofield
Atmos. Chem. Phys., 16, 2401–2415, https://doi.org/10.5194/acp-16-2401-2016, https://doi.org/10.5194/acp-16-2401-2016, 2016
Short summary
Short summary
This paper describes the set-up and evaluation of the Australian Community Climate and Earth System Simulator – chemistry-climate model.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
Emphasis is placed on the Antarctic ozone hole, which is very important considering its role modulating Southern Hemisphere surface climate. While the model simulates the global distribution of ozone well, there is a disparity in the vertical location of springtime ozone depletion over Antarctica, highlighting important areas for future development.
R. S. Humphries, A. R. Klekociuk, R. Schofield, M. Keywood, J. Ward, and S. R. Wilson
Atmos. Chem. Phys., 16, 2185–2206, https://doi.org/10.5194/acp-16-2185-2016, https://doi.org/10.5194/acp-16-2185-2016, 2016
Short summary
Short summary
This work represents the first observational study of atmospheric sub-micron aerosols in the East Antarctic pack ice region and found springtime aerosol concentrations were higher than any observed elsewhere in the Antarctic and Southern Ocean region. Further analysis suggested these aerosols formed in the Antarctic free troposphere. Their subsequent transport to the Southern Ocean, as suggest by trajectory analyses, could help to reduce the discrepancy in the radiative budget in the region.
C. S. M. Turney, C. J. Fogwill, A. R. Klekociuk, T. D. van Ommen, M. A. J. Curran, A. D. Moy, and J. G. Palmer
The Cryosphere, 9, 2405–2415, https://doi.org/10.5194/tc-9-2405-2015, https://doi.org/10.5194/tc-9-2405-2015, 2015
Short summary
Short summary
Recent trends in ocean circulation, sea ice and climate over the Southern Ocean and Antarctica are highly complex. Here we report a new snow core from the South Pole alongside reanalysis of 20th century global atmospheric circulation. We demonstrate for the first time that atmospheric pressure anomalies in the mid-latitudes act as "gatekeepers" to meridional exchange over continental Antarctica, modulated by the tropical Pacific, with potentially significant impacts on surface mass balance.
R. S. Humphries, R. Schofield, M. D. Keywood, J. Ward, J. R. Pierce, C. M. Gionfriddo, M. T. Tate, D. P. Krabbenhoft, I. E. Galbally, S. B. Molloy, A. R. Klekociuk, P. V. Johnston, K. Kreher, A. J. Thomas, A. D. Robinson, N. R. P. Harris, R. Johnson, and S. R. Wilson
Atmos. Chem. Phys., 15, 13339–13364, https://doi.org/10.5194/acp-15-13339-2015, https://doi.org/10.5194/acp-15-13339-2015, 2015
Short summary
Short summary
An atmospheric new particle formation event that was observed in the pristine East Antarctic pack ice during a springtime voyage in 2012 is characterised in terms of formation and growth rates. Known nucleation mechanisms (e.g. those involving sulfate, iodine and organics) were unable to explain observations; however, correlations with total gaseous mercury were found, leading to the suggestion of a possible mercury-driven nucleation mechanism not previously described.
J. M. Siddaway, S. V. Petelina, D. J. Karoly, A. R. Klekociuk, and R. J. Dargaville
Atmos. Chem. Phys., 13, 4413–4427, https://doi.org/10.5194/acp-13-4413-2013, https://doi.org/10.5194/acp-13-4413-2013, 2013
S. P. Alexander, D. J. Murphy, and A. R. Klekociuk
Atmos. Chem. Phys., 13, 3121–3132, https://doi.org/10.5194/acp-13-3121-2013, https://doi.org/10.5194/acp-13-3121-2013, 2013
Related subject area
Subject: Radiation | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Ground-based noontime D-region electron density climatology over northern Norway
OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines
Global nighttime atomic oxygen abundances from GOMOS hydroxyl airglow measurements in the mesopause region
Technical note: Bimodality in mesospheric OH rotational population distributions and implications for temperature measurements
How long do satellites need to overlap? Evaluation of climate data stability from overlapping satellite records
Resolving the mesospheric nighttime 4.3 µm emission puzzle: comparison of the CO2(ν3) and OH(ν) emission models
TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece
Comparison of VLT/X-shooter OH and O2 rotational temperatures with consideration of TIMED/SABER emission and temperature profiles
OH populations and temperatures from simultaneous spectroscopic observations of 25 bands
CO2(ν2)-O quenching rate coefficient derived from coincidental SABER/TIMED and Fort Collins lidar observations of the mesosphere and lower thermosphere
Relativistic electron beams above thunderclouds
Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds
Stability of temperatures from TIMED/SABER v1.07 (2002–2009) and Aura/MLS v2.2 (2004–2009) compared with OH(6-2) temperatures observed at Davis Station, Antarctica
Toralf Renkwitz, Mani Sivakandan, Juliana Jaen, and Werner Singer
Atmos. Chem. Phys., 23, 10823–10834, https://doi.org/10.5194/acp-23-10823-2023, https://doi.org/10.5194/acp-23-10823-2023, 2023
Short summary
Short summary
The paper focuses on remote sensing of the lowermost part of the ionosphere (D region) between ca. 50 and 90 km altitude, which overlaps widely with the mesosphere. We present a climatology of electron density over northern Norway, covering solar-maximum and solar-minimum conditions (2014–2022). Excluding detected energetic particle precipitation events, we derived a quiet-profile climatology. We also found a spring–fall asymmetry, while a symmetric solar zenith angle dependence was expected.
Stefan Noll, Holger Winkler, Oleg Goussev, and Bastian Proxauf
Atmos. Chem. Phys., 20, 5269–5292, https://doi.org/10.5194/acp-20-5269-2020, https://doi.org/10.5194/acp-20-5269-2020, 2020
Short summary
Short summary
Line emission from hydroxyl (OH) molecules at altitudes of about 90 km strongly contributes to the Earth's night-sky brightness and is therefore used as an important indicator of atmospheric chemistry and dynamics. However, interpreting the measurements can be ambiguous since necessary molecular parameters and the internal state of OH are not well known. Based on high-quality spectral data, we investigated these issues and found solutions for a better understanding of the OH line intensities.
Qiuyu Chen, Martin Kaufmann, Yajun Zhu, Jilin Liu, Ralf Koppmann, and Martin Riese
Atmos. Chem. Phys., 19, 13891–13910, https://doi.org/10.5194/acp-19-13891-2019, https://doi.org/10.5194/acp-19-13891-2019, 2019
Short summary
Short summary
Atomic oxygen is one of the most important trace species in the mesopause region. A common technique to derive it from satellite measurements is to measure airglow emissions involved in the photochemistry of oxygen. In this work, hydroxyl nightglow measured by the GOMOS instrument on Envisat is used to derive a 10-year dataset of atomic oxygen in the middle and upper atmosphere. Annual and semiannual oscillations are observed in the data. The new data are consistent with various other datasets.
Konstantinos S. Kalogerakis
Atmos. Chem. Phys., 19, 2629–2634, https://doi.org/10.5194/acp-19-2629-2019, https://doi.org/10.5194/acp-19-2629-2019, 2019
Short summary
Short summary
Light emission from energetic hydroxyl radical, OH*, is a prominent feature in spectra of the night sky. It is routinely used to determine the temperature of the atmosphere near 90 km. This note shows that the common practice of using only a few emission features from low rotational excitation to determine rotational temperatures does not account for the bimodality of the OH population distributions and can lead to large systematic errors.
Elizabeth C. Weatherhead, Jerald Harder, Eduardo A. Araujo-Pradere, Greg Bodeker, Jason M. English, Lawrence E. Flynn, Stacey M. Frith, Jeffrey K. Lazo, Peter Pilewskie, Mark Weber, and Thomas N. Woods
Atmos. Chem. Phys., 17, 15069–15093, https://doi.org/10.5194/acp-17-15069-2017, https://doi.org/10.5194/acp-17-15069-2017, 2017
Short summary
Short summary
Satellite overlap is often carried out as a check on the stability of the data collected. We looked at how length of overlap influences how much information can be derived from the overlap period. Several results surprised us: the confidence we could have in the matchup of two records was independent of the offset, and understanding of the relative drift between the two satellite data sets improved significantly with 2–3 years of overlap. Sudden jumps could easily be confused with drift.
Peter A. Panka, Alexander A. Kutepov, Konstantinos S. Kalogerakis, Diego Janches, James M. Russell, Ladislav Rezac, Artem G. Feofilov, Martin G. Mlynczak, and Erdal Yiğit
Atmos. Chem. Phys., 17, 9751–9760, https://doi.org/10.5194/acp-17-9751-2017, https://doi.org/10.5194/acp-17-9751-2017, 2017
Short summary
Short summary
Recently, theoretical and laboratory studies have suggested an additional
nighttime channel of transfer of vibrational energy of OH molecules to CO2 in the
mesosphere and lower thermosphere (MLT). We show that new mechanism brings
modelled 4.3 μm emissions very close to the SABER/TIMED measurements. This
renders new opportunities for the application of the CO2 4.3 μm observations in
the study of the energetics and dynamics of the nighttime MLT.
Melina-Maria Zempila, Jos H. G. M. van Geffen, Michael Taylor, Ilias Fountoulakis, Maria-Elissavet Koukouli, Michiel van Weele, Ronald J. van der A, Alkiviadis Bais, Charikleia Meleti, and Dimitrios Balis
Atmos. Chem. Phys., 17, 7157–7174, https://doi.org/10.5194/acp-17-7157-2017, https://doi.org/10.5194/acp-17-7157-2017, 2017
Short summary
Short summary
NILU irradiances at five UV channels were used to produce CIE, vitamin D, and DNA- damage daily doses via a neural network (NN) model. The NN was trained with collocated weighted Brewer spectra and uncertainty in the NILU-derived UV effective doses was 7.5 %. TEMIS UV products were found to be ~ 12.5 % higher than the NILU estimates. The results improve for cloud-free days with differences of 0.57 % for CIE, 1.22 % for vitamin D, and 1.18 % for DNA damage, with standard deviations of ~ 11–13 %.
Stefan Noll, Wolfgang Kausch, Stefan Kimeswenger, Stefanie Unterguggenberger, and Amy M. Jones
Atmos. Chem. Phys., 16, 5021–5042, https://doi.org/10.5194/acp-16-5021-2016, https://doi.org/10.5194/acp-16-5021-2016, 2016
Short summary
Short summary
We compare temperatures derived from simultaneous observations of 25 OH and two O2 mesospheric airglow bands taken with the X-shooter spectrograph at the Very Large Telescope in Chile. Considering emission and temperature profile data from the radiometer SABER on the TIMED satellite, we find significant time-dependent non-thermal contributions to the OH-based temperatures, especially for bands originating from high vibrational levels. Many studies of the mesopause region are affected.
S. Noll, W. Kausch, S. Kimeswenger, S. Unterguggenberger, and A. M. Jones
Atmos. Chem. Phys., 15, 3647–3669, https://doi.org/10.5194/acp-15-3647-2015, https://doi.org/10.5194/acp-15-3647-2015, 2015
Short summary
Short summary
We discuss a high-quality data set of simultaneous observations of 25 OH bands with an astronomical echelle spectrograph. These data allowed us to analyse band-dependent OH populations and temperatures. In particular, we could find different non-LTE contributions to OH rotational temperatures depending on band, line set, and observing time. This is critical for mesopause studies that use these temperatures as a proxy of the true temperatures.
A. G. Feofilov, A. A. Kutepov, C.-Y. She, A. K. Smith, W. D. Pesnell, and R. A. Goldberg
Atmos. Chem. Phys., 12, 9013–9023, https://doi.org/10.5194/acp-12-9013-2012, https://doi.org/10.5194/acp-12-9013-2012, 2012
M. Füllekrug, R. Roussel-Dupré, E. M. D. Symbalisty, J. J. Colman, O. Chanrion, S. Soula, O. van der Velde, A. Odzimek, A. J. Bennett, V. P. Pasko, and T. Neubert
Atmos. Chem. Phys., 11, 7747–7754, https://doi.org/10.5194/acp-11-7747-2011, https://doi.org/10.5194/acp-11-7747-2011, 2011
M. Füllekrug, C. Hanuise, and M. Parrot
Atmos. Chem. Phys., 11, 667–673, https://doi.org/10.5194/acp-11-667-2011, https://doi.org/10.5194/acp-11-667-2011, 2011
W. J. R. French and F. J. Mulligan
Atmos. Chem. Phys., 10, 11439–11446, https://doi.org/10.5194/acp-10-11439-2010, https://doi.org/10.5194/acp-10-11439-2010, 2010
Cited articles
Akmaev, R. A., Fomichev, V. I., and Zhu, X.: Impact of middle-atmospheric
composition changes on greenhouse cooling in the upper atmosphere, J. Atmos.
Sol.-Terr. Phys., 68, 1879–1889,
https://doi.org/10.1016/j.jastp.2006.03.008, 2006.
Ammosov, P., Gavrilyeva, G., Ammosova, A., and Koltovskoi, I.: Response of
the mesopause temperatures to solar activity over Yakutia in 1999–2013,
Adv. Sp. Res., 54, 2518–2524, https://doi.org/10.1016/J.ASR.2014.06.007, 2014.
Azeem, S. M. I., Sivjee, G. G., Won, Y.-I., and Mutiso, C.: Solar cycle
signature and secular long-term trend in OH airglow temperature observations
at South Pole, Antarctica, J. Geophys. Res.-Sp. Phys., 112, A01305,
https://doi.org/10.1029/2005JA011475, 2007.
Beig, G.: Trends in the mesopause region temperature and our present
understanding-an update, Phys. Chem. Earth, 31, 3–9,
https://doi.org/10.1016/j.pce.2005.03.007, 2006.
Beig, G.: Long-term trends in the temperature of the mesosphere/lower
thermosphere region: 1. Anthropogenic influences, J. Geophys. Res.-Sp.
Phys., 116, A00H11, https://doi.org/10.1029/2011JA016646, 2011a.
Beig, G.: Long-term trends in the temperature of the mesosphere/lower
thermosphere region: 2. Solar response, J. Geophys. Res.-Sp. Phys., 116,
A00H12, https://doi.org/10.1029/2011JA016766, 2011b.
Beig, G., Keckhut, P., Lowe, R. P., Roble, R. G., Mlynczak, M. G., Scheer,
J., Fomichev, V. I., Offermann, D., French, W. J. R., Shepherd, M. G.,
Semenov, A. I., Remsberg, E. E., She, C. Y., Lübken, F. J., Bremer, J.,
Clemesha, B. R., Stegman, J., Sigernes, F., and Fadnavis, S.: Review of
mesospheric temperature trends, Rev. Geophys., 41, 1015,
https://doi.org/10.1029/2002RG000121, 2003.
Beig, G., Scheer, J., Mlynczak, M. G., and Keckhut, P.: Overview of the
temperature response in the mesosphere and lower thermosphere to solar
activity, Rev. Geophys., 46, RG3002, https://doi.org/10.1029/2007RG000236, 2008.
Bengtsson, L., Hagemann, S., and Hodges, K. I.: Can climate trends be
calculated from reanalysis data?, J. Geophys. Res., 109, D11111,
https://doi.org/10.1029/2004JD004536, 2004.
Bremer, J. and Peters, D.: Influence of stratospheric ozone changes on
long-term trends in the meso- and lower thermosphere, J. Atmos. Sol. Terr.
Phys., 70, 1473–1481, 2008.
Brooke, J. S. A., Bernath, P. F., Western, C. M., Sneden, C., Afşar, M.,
Li, G., and Gordon, I. E.: Line strengths of rovibrational and rotational
transitions in the X 2 Π ground state of OH, J. Quant. Spectrosc.
Ra., 168, 142–157, https://doi.org/10.1016/j.jqsrt.2015.07.021, 2016.
Burns, G. and French, J.: Rotational temperature studies of the hydroxyl airglow layer above Davis, Antarctica, Ver. 8, Australian Antarctic Data Centre, available at: https://data.aad.gov.au/metadata/records/Davis_OH_airglow/ (last access: 15 May 2020), 2002.
Burns, G. B., Kawahara, T. D., French, W. J. R., Nomura, A., and Klekociuk,
A. R.: A comparison of hydroxyl rotational temperatures from Davis
(69∘ S, 78∘ E) with sodium lidar temperatures from Syowa
(69∘ S, 39∘ E), Geophys. Res. Lett., 30, 1025,
https://doi.org/10.1029/2002GL016413, 2003.
Clemesha, B., Takahashi, H., Simonich, D., Gobbi, D., and Batista, P.:
Experimental evidence for solar cycle and long-term change in the
low-latitude MLT region, J. Atmos. Sol.-Terr. Phys., 67,
191–196, https://doi.org/10.1016/j.jastp.2004.07.027, 2005.
Espy, P. J., Ochoa Fernández, S., Forkman, P., Murtagh, D., and Stegman, J.: The role of the QBO in the inter-hemispheric coupling of summer mesospheric temperatures, Atmos. Chem. Phys., 11, 495–502, https://doi.org/10.5194/acp-11-495-2011, 2011.
Fomichev, V. I., Jonsson, A. I., de Grandpré, J., Beagley, S. R.,
McLandress, C., Semeniuk, K., and Shepherd, T. G.: Response of the middle
atmosphere to CO2 doubling: Results from the Canadian middle atmosphere
model, J. Clim., 20, 1121–1144, https://doi.org/10.1175/JCLI4030.1, 2007.
French, W. J. R. and Burns, G. B.: The influence of large-scale oscillations
on long-term trend assessment in hydroxyl temperatures over Davis,
Antarctica, J. Atmos. Sol.-Terr. Phys., 66, 493–506,
https://doi.org/10.1016/j.jastp.2004.01.027, 2004.
French, W. J. R. and Klekociuk, A. R.: Long-term trends in Antarctic winter
hydroxyl temperatures, J. Geophys. Res., 116, D00P09,
https://doi.org/10.1029/2011JD015731, 2011.
French, W. J. R. and Mulligan, F. J.: Stability of temperatures from TIMED/SABER v1.07 (2002–2009) and Aura/MLS v2.2 (2004–2009) compared with OH(6-2) temperatures observed at Davis Station, Antarctica, Atmos. Chem. Phys., 10, 11439–11446, https://doi.org/10.5194/acp-10-11439-2010, 2010.
French, W. J. R., Burns, G. B., Finlayson, K., Greet, P. A., Lowe, R. P., and
Williams, P. F. B.: Hydroxyl (6-2) airglow emission intensity ratios for
rotational temperature determination, Ann. Geophys., 18, 1293–1303,
https://doi.org/10.1007/s00585-000-1293-2, 2000.
French, W. J. R., Klekociuk, A. R., and Mulligan, F. J.: Analysis of 24 years of
mesopause region OH rotational temperature observations at Davis,
Antarctica – Part 2: Evidence of a quasi-quadrennial oscillation (QQO) in the
polar mesosphere, Atmos. Chem. Phys., in review, 2020.
Gao, H., Xu, J., and Chen, G.: The responses of the nightglow emissions
observed by the TIMED/SABER satellite to solar radiation, J. Geophys. Res.-Sp. Phys., 121, 1627–1642, https://doi.org/10.1002/2015JA021624, 2016.
García-Comas, M., López-González, M. J., González-Galindo, F., de la Rosa, J. L., López-Puertas, M., Shepherd, M. G., and Shepherd, G. G.: Mesospheric OH layer altitude at midlatitudes: variability over the Sierra Nevada Observatory in Granada, Spain (37∘ N, 3∘ W), Ann. Geophys., 35, 1151–1164, https://doi.org/10.5194/angeo-35-1151-2017, 2017.
Garcia, R. R., López-Puertas, M., Funke, B., Marsh, D. R., Kinnison, D.
E., Smith, A. K., and González-Galindo, F.: On the distribution of CO2
and CO in the mesosphere and lower thermosphere, J. Geophys. Res., 119,
5700–5718, https://doi.org/10.1002/2013JD021208, 2014.
Garcia, R. R., Yue, J., and Russell, J. M.: Middle atmosphere temperature
trends in the 20 th and 21 st centuries simulated with the Whole Atmosphere
Community Climate Model (WACCM), J. Geophys. Res.-Sp. Phys., 124, 7984–7993,
https://doi.org/10.1029/2019ja026909, 2019.
Greet, P. A., French, W. J. R., Burns, G. B., Williams, P. F. B., Lowe, R.
P., and Finlayson, K.: OH(6-2) spectra and rotational temperature
measurements at Davis, Antarctica, Ann. Geophys., 16, 77–89,
https://doi.org/10.1007/s00585-997-0077-3, 1997.
Grygalashvyly, M., Sonnemann, G. R., Lübken, F. J., Hartogh, P., and
Berger, U.: Hydroxyl layer: Mean state and trends at midlatitudes, J.
Geophys. Res. Atmos., 119, 12391–12419, https://doi.org/10.1002/2014JD022094,
2014.
Holmen, S. E., Dyrland, M. E., and Sigernes, F.: Mesospheric temperatures
derived from three decades of hydroxyl airglow measurements from
Longyearbyen, Svalbard (78∘ N), Acta Geophys., 62, 302–315,
https://doi.org/10.2478/s11600-013-0159-4, 2014.
Huang, T.-Y.: Influences of CO2 increase, solar cycle variation, and
geomagnetic activity on airglow from 1960 to 2015, J. Atmos.
Sol.-Terr. Phys., 171, 164–175, https://doi.org/10.1016/J.JASTP.2017.06.008,
2018.
Jacobi, C., Lilienthal, F., Geißler, C., and Krug, A.: Long-term
variability of mid-latitude mesosphere-lower thermosphere winds over Collm
(51∘ N, 13∘ E), J. Atmos. Sol.-Terr. Phys., 136,
174–186, https://doi.org/10.1016/j.jastp.2015.05.006, 2015.
Kalicinsky, C., Knieling, P., Koppmann, R., Offermann, D., Steinbrecht, W., and Wintel, J.: Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations, Atmos. Chem. Phys., 16, 15033–15047, https://doi.org/10.5194/acp-16-15033-2016, 2016.
Kalicinsky, C., Peters, D. H. W., Entzian, G., Knieling, P., and Matthias,
V.: Observational evidence for a quasi-bidecadal oscillation in the summer
mesopause region over Western Europe, J. Atmos. Sol.-Terr. Phys.,
178, 7–16, https://doi.org/10.1016/j.jastp.2018.05.008, 2018.
Karlsson, B. and Shepherd, T. G.: The improbable clouds at the edge of the
atmosphere, Phys. Today, 71, 30–36, https://doi.org/10.1063/PT.3.3946, 2018.
Kim, G., Kim, J.-H., Kim, Y. H., and Lee, Y. S.: Long-term trend of
mesospheric temperatures over Kiruna (68∘ N, 21∘ E)
during 2003–2014, J. Atmos. Sol.-Terr. Phys., 161, 83–87,
https://doi.org/10.1016/j.jastp.2017.06.018, 2017.
Kvifte, G.: Temperature measurements from OH bands, Planet, Space
Sci., 5, 153–157, https://doi.org/10.1016/0032-0633(61)90090-3, 1961.
Langhoff, S. R., Werner, H. J., and Rosmus, P.: Theoretical Transition
Probabilities for the OH Meinel System, J. Mol. Spectrosc., 118, 507–529,
1986.
Laštovička, J.: A review of recent progress in trends in the
upper atmosphere, J. Atmos. Sol.-Terr. Phys., 163, 2–13,
https://doi.org/10.1016/j.jastp.2017.03.009, 2017.
Liu, G. and Shepherd, G. G.: An empirical model for the altitude of the OH
nightglow emission, Geophys. Res. Lett., 33, L09805,
https://doi.org/10.1029/2005GL025297, 2006.
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A., Manney, G. L., Millán Valle, L. F.,
Pumphrey, H. C., Santee, M. L., Schwartz, M. J., Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W.,
Martinez, E., and Lay, R. R.: Earth Observing System (EOS) Aura
Microwave Limb Sounder (MLS) Version4.2x Level 2 data quality and
description document Version 4.2x–3.1, 1–163, available at:
https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf (last access: 15 May 2020), 2018.
López-Puertas, M., Funke, B., Jurado-Navarro, A., García-Comas, M.,
Gardini, A., Boone, C. D., Rezac, L., and Garcia, R. R.: Validation of the
MIPAS CO2 volume mixing ratio in themesosphere and lower thermosphere and
comparison with WACCM simulations, J. Geophys. Res., 122, 8345–8366,
https://doi.org/10.1002/2017JD026805, 2017.
Lübken, F.-J., Berger, U., and Baumgarten, G.: Temperature trends in the
midlatitude summer mesosphere, J. Geophys. Res.-Atmos., 118,
13347–13360, https://doi.org/10.1002/2013JD020576, 2013.
Mertens, C. J., Mlynczak, M. G., López-Puertas, M., Wintersteiner, P.
P., Picard, R. H., Winick, J. R., Gordley, L. L., and Russell III, J. M.:
Retrieval of kinetic temperature and carbon dioxide abundance from nonlocal
thermodynamic equilibrium limb emission measurements made by the SABER
experiment on the TIMED satellite, Proc SPIE 4882, Remote Sensing of
Clouds and the Atmosphere VII, 162–171, 2003.
Mies, F. H.: Calculated vibrational transition probabilities of OH(X2Π), J. Mol. Spectrosc., 53, 150–188, https://doi.org/10.1016/0022-2852(74)90125-8,
1974.
Mulligan, F. J., Dyrland, M. E., Sigernes, F., and Deehr, C. S.: Inferring hydroxyl layer peak heights from ground-based measurements of OH(6-2) band integrated emission rate at Longyearbyen (78∘ N, 16∘ E), Ann. Geophys., 27, 4197–4205, https://doi.org/10.5194/angeo-27-4197-2009, 2009.
Murphy, D. J., French, W. J. R., and Vincent, R. A.: Long-period planetary
waves in the mesosphere and lower thermosphere above Davis, Antarctica, J.
Atmos. Sol.-Terr. Phys., 69, 2118–2138,
https://doi.org/10.1016/J.JASTP.2007.06.008, 2007.
Nath, O. and Sridharan, S.: Long-term variabilities and tendencies in zonal
mean TIMED–SABER ozone and temperature in the middle atmosphere at
10–15∘ N, J. Atmos. Sol.-Terr. Phys., 120, 1–8,
https://doi.org/10.1016/j.jastp.2014.08.010, 2014.
Noll, S., Winkler, H., Goussev, O., and Proxauf, B.: OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1102, in review, 2019.
Offermann, D., Jarisch, M., Donner, M., Steinbrecht, W., and Semenov, A. I.:
OH temperature re-analysis forced by recent variance increases, J. Atmos.
Sol.-Terr. Phys., 68, 1924–1933,
https://doi.org/10.1016/J.JASTP.2006.03.007, 2006.
Offermann, D., Hoffmann, P., Knieling, P., Koppmann, R., Oberheide, J., and
Steinbrecht, W.: Long-term trends and solar cycle variations of mesospheric
temperature and dynamics, J. Geophys. Res., 115, D18127,
https://doi.org/10.1029/2009JD013363, 2010.
Perminov, V. I., Semenov, A. I., Medvedeva, I. V., and Pertsev, N. N.:
Temperature variations in the mesopause region according to the
hydroxyl-emission observations at midlatitudes, Geomagn. Aeron., 54,
230–239, https://doi.org/10.1134/S0016793214020157, 2014.
Perminov, V. I., Semenov, A. I., Pertsev, N. N., Medvedeva, I. V., Dalin, P.
A., and Sukhodoev, V. A.: Multi-year behaviour of the midnight OH*
temperature according to observations at Zvenigorod over 2000–2016, Adv.
Sp. Res., 61, 1901–1908, https://doi.org/10.1016/J.ASR.2017.07.020, 2018.
Pertsev, N. and Perminov, V.: Response of the mesopause airglow to solar activity inferred from measurements at Zvenigorod, Russia, Ann. Geophys., 26, 1049–1056, https://doi.org/10.5194/angeo-26-1049-2008, 2008.
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00
empirical model of the atmosphere: Statistical comparisons and scientific
issues, J. Geophys. Res.-Sp. Phys., 107, 1468, https://doi.org/10.1029/2002JA009430, 2002.
Qian, L., Jacobi, C., and McInerney, J.: Trends and Solar Irradiance Effects
in the Mesosphere, J. Geophys. Res.-Sp. Phys., 124, 1343–1360,
https://doi.org/10.1029/2018JA026367, 2019.
Randall, C. E., Harvey, V. L., Siskind, D. E., France, J., Bernath, P. F., Boone, C. D., and Walker K. A.: NOx
descent in the Arctic middle atmosphere in early 2009, Geophys. Res. Lett., 36, L18811,
https://doi.org/10.1029/2009GL039706, 2009.
Reid, I. M., Spargo, A. J., Woithe, J. M., Klekociuk, A. R., Younger, J. P., and Sivjee, G. G.: Seasonal MLT-region nightglow intensities, temperatures, and emission heights at a Southern Hemisphere midlatitude site, Ann. Geophys., 35, 567–582, https://doi.org/10.5194/angeo-35-567-2017, 2017.
Reisin, E. R., Scheer, J., Dyrland, M. E., Sigernes, F., Deehr, C. S.,
Schmidt, C., Höppner, K., Bittner, M., Ammosov, P. P., Gavrilyeva, G.
A., Stegman, J., Perminov, V. I., Semenov, A. I., Knieling, P., Koppmann,
R., Shiokawa, K., Lowe, R. P., López-González, M. J.,
Rodríguez, E., Zhao, Y., Taylor, M. J., Buriti, R. A., Espy, P. J.,
French, W. J. R., Eichmann, K.-U., Burrows, J. P., and von Savigny, C.:
Traveling planetary wave activity from mesopause region airglow temperatures
determined by the Network for the Detection of Mesospheric Change (NDMC), J.
Atmos. Sol.-Terr. Phys., 119, 71–82,
https://doi.org/10.1016/J.JASTP.2014.07.002, 2014.
Rezac, L., Jian, Y., Yue, J., Russell, J. M., Kutepov, A., Garcia, R.,
Walker, K., and Bernath, P.: Validation of the global distribution of CO2
volume mixing ratio in the mesosphere and lower thermosphere from SABER, J.
Geophys. Res., 120, 12067–12081, https://doi.org/10.1002/2015JD023955, 2015.
Roble, R. G.: On the feasibility of developing a global atmospheric model
extending from the ground to the exosphere, Washington DC American Geophysical Union Geophysical Monograph Series, edited by: Siskind, D. E.,
Eckermann, S. D., and Summers, M. E., 53–67, 2000.
Roble, R. G. and Dickinson, R. E.: How will changes in carbon dioxide and
methane modify the mean structure of the mesosphere and thermosphere?,
Geophys. Res. Lett., 16, 1441–1444, https://doi.org/10.1029/GL016i012p01441, 1989.
Russell III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock Jr., J. J., and Esplin, R. W.: Overview of the SABER
experiment and preliminary calibration results, Proc. SPIE 3756, Optical Spectroscopic Tech. Instrum. Atmos.
Space Res. III, 277–288, https://doi.org/10.1117/12.366382, 1999 (data available at: http://saber.gats-inc.com/data.php, last access: 15 May 2020).
Scheer, J., Reisin, E. R., and Mandrini, C. H.: Solar activity signatures in
mesopause region temperatures and atomic oxygen related airglow brightness
at El Leoncito, Argentina, J. Atmos. Sol.-Terr. Phys., 67,
145–154, https://doi.org/10.1016/j.jastp.2004.07.023, 2005.
Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A.,
Diehl, T., Fomichev, V. I., Kinnison, D., Marsh, D., and Walters, S.: The
HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the
11-year solar cycle and CO2 doubling, J. Clim., 19, 3903–3931,
https://doi.org/10.1175/JCLI3829.1, 2006.
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J.,
Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., Cofield, R. E.,
Daffer, W. H., Drouin, B. J., Fetzer, E. J., Fuller, R. A., Jarnot, R. F.,
Jiang, J. H., Jiang, Y. B., Knosp, B. W., Krüger, K., Li, J.-L. F.,
Mlynczak, M. G., Pawson, S., Russell, J. M., Santee, M. L., Snyder, W. V.,
Stek, P. C., Thurstans, R. P., Tompkins, A. M., Wagner, P. A., Walker, K.
A., Waters, J. W., and Wu, D. L.: Validation of the Aura Microwave Limb
Sounder temperature and geopotential height measurements, J. Geophys. Res.,
113, D15S11, https://doi.org/10.1029/2007jd008783, 2008 (data available at: https://mls.jpl.nasa.gov, last access: 15 May 2020).
Sivakandan, M., Ramkumar, T. K., Taori, A., Rao, V., and Niranjan, K.:
Long-term variation of OH peak emission altitude and volume emission rate
over Indian low latitudes, J. Atmos. Sol.-Terr. Phys., 138–139,
161–168, https://doi.org/10.1016/j.jastp.2016.01.012, 2016.
Sivjee, G. G.: Airglow hydroxyl emissions, Planet. Space Sci., 40,
235–242, https://doi.org/10.1016/0032-0633(92)90061-R, 1992.
Solomon, S. C., Liu, H., Marsh, D. R., McInerney, J. M., Qian, L., and Vitt,
F. M.: Whole Atmosphere Simulation of Anthropogenic Climate Change, Geophys.
Res. Lett., 45, 1567–1576, https://doi.org/10.1002/2017GL076950, 2018.
Sonnemann, G. R., Hartogh, P., Berger, U., and Grygalashvyly, M.: Hydroxyl layer: trend of number density and intra-annual variability, Ann. Geophys., 33, 749–767, https://doi.org/10.5194/angeo-33-749-2015, 2015.
Tang, C., Liu, D., Wei, H., Wang, Y., Dai, C., Wu, P., Zhu, W., and Rao, R.:
The response of the temperature of cold-point mesopause to solar activity
based on SABER data set, J. Geophys. Res.-Sp. Phys., 121, 7245–7255,
https://doi.org/10.1002/2016JA022538, 2016.
Teiser, G. and von Savigny, C.: Variability of OH(3-1) and OH(6-2) emission
altitude and volume emission rate from 2003 to 2011, J. Atmos. Sol.-Terr. Phys., 161, 28–42, https://doi.org/10.1016/J.JASTP.2017.04.010, 2017.
Thulasiraman, S. and Nee, J. B.: Further evidence of a two-level mesopause
and its variations from UARS high-resolution Doppler imager temperature
data, J. Geophys. Res., 107, 4355, https://doi.org/10.1029/2000JD000118, 2002.
Turnbull, D. N. and Lowe, R. P.: New hydroxyl transition probabilities and
their importance in airglow studies, Planet. Space Sci., 37, 723–738,
https://doi.org/10.1016/0032-0633(89)90042-1, 1989.
van der Loo, M. P. J. and Groenenboom, G. C.: Theoretical transition
probabilities for the OH Meinel system, J. Chem. Phys., 126, 114314,
https://doi.org/10.1063/1.2646859, 2007.
Venturini, M. S., Bageston, J. V., Caetano, N. R., Peres, L. V., Bencherif, H., and Schuch, N. J.: Mesopause region temperature variability and its trend in southern Brazil, Ann. Geophys., 36, 301–310, https://doi.org/10.5194/angeo-36-301-2018, 2018.
von Savigny, C.: Variability of OH(3-1) emission altitude from 2003 to
2011: Long-term stability and universality of the emission rate–altitude
relationship, J. Atmos. Sol.-Terr. Phys., 127, 120–128,
https://doi.org/10.1016/J.JASTP.2015.02.001, 2015.
von Savigny, C., McDade, I. C., Eichmann, K.-U., and Burrows, J. P.: On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations, Atmos. Chem. Phys., 12, 8813–8828, https://doi.org/10.5194/acp-12-8813-2012, 2012.
von Zahn, U., Höffner, J., Eska, V., and Alpers, M.: The mesopause
altitude: Only two distinctive levels worldwide?, Geophys. Res. Lett.,
23, 3231–3234, https://doi.org/10.1029/96GL03041, 1996.
Wüst, S., Bittner, M., Yee, J.-H., Mlynczak, M. G., and Russell III, J. M.: Variability of the Brunt–Väisälä frequency at the OH* layer height, Atmos. Meas. Tech., 10, 4895–4903, https://doi.org/10.5194/amt-10-4895-2017, 2017.
Xu, J., Liu, H.-L., Yuan, W., Smith, A. K., Roble, R. G., Mertens, C. J.,
Russell, J. M., and Mlynczak, M. G.: Mesopause structure from Thermosphere,
Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED)/Sounding of the
Atmosphere Using Broadband Emission Radiometry (SABER) observations, J.
Geophys. Res., 112, D09102, https://doi.org/10.1029/2006JD007711, 2007.
Xu, J., Gao, H., Smith, A. K., and Zhu, Y. :Using TIMED/SABER nightglow
observations to investigate hydroxyl emission mechanisms in the mesopause
region, J. Geophys.Res., 117, D02301, https://doi.org/10.1029/2011JD016342, 2012.
Yuan, T., Solomon, S. C., She, C.-Y., Krueger, D. A., and Liu, H. -L.: The
long-term trends of nocturnal mesopause temperature and altitude revealed by
Na lidar observations between 1990 and 2018 at mid-latitude, J. Geophys.
Res.-Atmos., 124, 5970–5980, https://doi.org/10.1029/2018JD029828, 2019.
Short summary
In this study, we analyse 24 years of atmospheric temperatures from the mesopause region (~87 km altitude) derived from ground-based spectrometer observations of hydroxyl airglow at Davis station, Antarctica (68° S, 78° E). These data are used to quantify the effect of the solar cycle and the long-term trend due to increasing greenhouse gas emissions on the atmosphere at this level. A record-low winter-average temperature is reported for 2018 and comparisons are made with satellite observations.
In this study, we analyse 24 years of atmospheric temperatures from the mesopause region (~87 km...
Altmetrics
Final-revised paper
Preprint