Articles | Volume 20, issue 11
https://doi.org/10.5194/acp-20-6379-2020
https://doi.org/10.5194/acp-20-6379-2020
Research article
 | 
04 Jun 2020
Research article |  | 04 Jun 2020

Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 1: long-term trends

W. John R. French, Frank J. Mulligan, and Andrew R. Klekociuk

Related authors

Assessing the cloud radiative bias at Macquarie Island in the ACCESS-AM2 model
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023,https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
Analysis of 24 years of mesopause region OH rotational temperature observations at Davis, Antarctica – Part 2: Evidence of a quasi-quadrennial oscillation (QQO) in the polar mesosphere
W. John R. French, Andrew R. Klekociuk, and Frank J. Mulligan
Atmos. Chem. Phys., 20, 8691–8708, https://doi.org/10.5194/acp-20-8691-2020,https://doi.org/10.5194/acp-20-8691-2020, 2020
Short summary
Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere
Kane A. Stone, Olaf Morgenstern, David J. Karoly, Andrew R. Klekociuk, W. John French, N. Luke Abraham, and Robyn Schofield
Atmos. Chem. Phys., 16, 2401–2415, https://doi.org/10.5194/acp-16-2401-2016,https://doi.org/10.5194/acp-16-2401-2016, 2016
Short summary

Related subject area

Subject: Radiation | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Ground-based noontime D-region electron density climatology over northern Norway
Toralf Renkwitz, Mani Sivakandan, Juliana Jaen, and Werner Singer
Atmos. Chem. Phys., 23, 10823–10834, https://doi.org/10.5194/acp-23-10823-2023,https://doi.org/10.5194/acp-23-10823-2023, 2023
Short summary
OH level populations and accuracies of Einstein-A coefficients from hundreds of measured lines
Stefan Noll, Holger Winkler, Oleg Goussev, and Bastian Proxauf
Atmos. Chem. Phys., 20, 5269–5292, https://doi.org/10.5194/acp-20-5269-2020,https://doi.org/10.5194/acp-20-5269-2020, 2020
Short summary
Global nighttime atomic oxygen abundances from GOMOS hydroxyl airglow measurements in the mesopause region
Qiuyu Chen, Martin Kaufmann, Yajun Zhu, Jilin Liu, Ralf Koppmann, and Martin Riese
Atmos. Chem. Phys., 19, 13891–13910, https://doi.org/10.5194/acp-19-13891-2019,https://doi.org/10.5194/acp-19-13891-2019, 2019
Short summary
Technical note: Bimodality in mesospheric OH rotational population distributions and implications for temperature measurements
Konstantinos S. Kalogerakis
Atmos. Chem. Phys., 19, 2629–2634, https://doi.org/10.5194/acp-19-2629-2019,https://doi.org/10.5194/acp-19-2629-2019, 2019
Short summary
How long do satellites need to overlap? Evaluation of climate data stability from overlapping satellite records
Elizabeth C. Weatherhead, Jerald Harder, Eduardo A. Araujo-Pradere, Greg Bodeker, Jason M. English, Lawrence E. Flynn, Stacey M. Frith, Jeffrey K. Lazo, Peter Pilewskie, Mark Weber, and Thomas N. Woods
Atmos. Chem. Phys., 17, 15069–15093, https://doi.org/10.5194/acp-17-15069-2017,https://doi.org/10.5194/acp-17-15069-2017, 2017
Short summary

Cited articles

Akmaev, R. A., Fomichev, V. I., and Zhu, X.: Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere, J. Atmos. Sol.-Terr. Phys., 68, 1879–1889, https://doi.org/10.1016/j.jastp.2006.03.008, 2006. 
Ammosov, P., Gavrilyeva, G., Ammosova, A., and Koltovskoi, I.: Response of the mesopause temperatures to solar activity over Yakutia in 1999–2013, Adv. Sp. Res., 54, 2518–2524, https://doi.org/10.1016/J.ASR.2014.06.007, 2014. 
Azeem, S. M. I., Sivjee, G. G., Won, Y.-I., and Mutiso, C.: Solar cycle signature and secular long-term trend in OH airglow temperature observations at South Pole, Antarctica, J. Geophys. Res.-Sp. Phys., 112, A01305, https://doi.org/10.1029/2005JA011475, 2007. 
Beig, G.: Trends in the mesopause region temperature and our present understanding-an update, Phys. Chem. Earth, 31, 3–9, https://doi.org/10.1016/j.pce.2005.03.007, 2006. 
Beig, G.: Long-term trends in the temperature of the mesosphere/lower thermosphere region: 1. Anthropogenic influences, J. Geophys. Res.-Sp. Phys., 116, A00H11, https://doi.org/10.1029/2011JA016646, 2011a. 
Short summary
In this study, we analyse 24 years of atmospheric temperatures from the mesopause region (~87 km altitude) derived from ground-based spectrometer observations of hydroxyl airglow at Davis station, Antarctica (68° S, 78° E). These data are used to quantify the effect of the solar cycle and the long-term trend due to increasing greenhouse gas emissions on the atmosphere at this level. A record-low winter-average temperature is reported for 2018 and comparisons are made with satellite observations.
Altmetrics
Final-revised paper
Preprint