Articles | Volume 20, issue 6
https://doi.org/10.5194/acp-20-3999-2020
https://doi.org/10.5194/acp-20-3999-2020
Research article
 | 
02 Apr 2020
Research article |  | 02 Apr 2020

Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China

Yu-Chi Lin, Yan-Lin Zhang, Mei-Yi Fan, and Mengying Bao

Related authors

Sources and trends of black carbon aerosol in the megacity of Nanjing, eastern China, after the China Clean Action Plan and Three-Year Action Plan
Abudurexiati Abulimiti, Yanlin Zhang, Mingyuan Yu, Yihang Hong, Yu-Chi Lin, Chaman Gul, and Fang Cao
Atmos. Chem. Phys., 25, 6161–6178, https://doi.org/10.5194/acp-25-6161-2025,https://doi.org/10.5194/acp-25-6161-2025, 2025
Short summary
Hydroxymethanesulfonate (HMS) Formation under Urban and Marine Atmosphere: role of aerosol ionic strength
Rongshuang Xu, Yu-Chi Lin, Siyu Bian, Feng Xie, and Yan-Lin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-683,https://doi.org/10.5194/egusphere-2025-683, 2025
Short summary
Impact of fossil and non-fossil fuel sources on the molecular compositions of water-soluble humic-like substances in PM2.5 at a suburban site of Yangtze River Delta, China
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yihang Hong, Yu-Chi Lin, Mingyuan Yu, Hongxing Jiang, Zhineng Cheng, Rongshuang Xu, and Xiaoying Yang
Atmos. Chem. Phys., 23, 8305–8324, https://doi.org/10.5194/acp-23-8305-2023,https://doi.org/10.5194/acp-23-8305-2023, 2023
Short summary
Measurement report: High contributions of halocarbon and aromatic compounds to atmospheric volatile organic compounds in an industrial area
Ahsan Mozaffar, Yan-Lin Zhang, Yu-Chi Lin, Feng Xie, Mei-Yi Fan, and Fang Cao
Atmos. Chem. Phys., 21, 18087–18099, https://doi.org/10.5194/acp-21-18087-2021,https://doi.org/10.5194/acp-21-18087-2021, 2021
Short summary
Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermal–optical carbon analyzer
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yu-Chi Lin, Yuhang Wang, Xiaoyan Liu, Wenqi Zhang, Meiyi Fan, Feng Xie, Robert Cary, Joshua Dixon, and Lihua Zhou
Atmos. Meas. Tech., 14, 4053–4068, https://doi.org/10.5194/amt-14-4053-2021,https://doi.org/10.5194/amt-14-4053-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Advances in characterization of black carbon particles and their associated coatings using the soot-particle aerosol mass spectrometer in Singapore, a complex city environment
Mutian Ma, Laura-Hélèna Rivellini, Yichen Zong, Markus Kraft, Liya E. Yu, and Alex King Yin Lee
Atmos. Chem. Phys., 25, 8185–8211, https://doi.org/10.5194/acp-25-8185-2025,https://doi.org/10.5194/acp-25-8185-2025, 2025
Short summary
Iron isotopes suggest significant aerosol dissolution over the Pacific Ocean
Capucine Camin, François Lacan, Catherine Pradoux, Marie Labatut, Anne Johansen, and James W. Murray
Atmos. Chem. Phys., 25, 8213–8228, https://doi.org/10.5194/acp-25-8213-2025,https://doi.org/10.5194/acp-25-8213-2025, 2025
Short summary
Enrichment of organic nitrogen in fog residuals observed in the Italian Po Valley
Fredrik Mattsson, Almuth Neuberger, Liine Heikkinen, Yvette Gramlich, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Paul Zieger, Ilona Riipinen, and Claudia Mohr
Atmos. Chem. Phys., 25, 7973–7989, https://doi.org/10.5194/acp-25-7973-2025,https://doi.org/10.5194/acp-25-7973-2025, 2025
Short summary
Asian dust transport of proteinaceous matter from the Gobi Desert to northern China
Ren-Guo Zhu, Hua-Yun Xiao, Meiju Yin, Hao Xiao, Zhongkui Zhou, Yuanyuan Pan, Guo Wei, and Cheng Liu
Atmos. Chem. Phys., 25, 7699–7718, https://doi.org/10.5194/acp-25-7699-2025,https://doi.org/10.5194/acp-25-7699-2025, 2025
Short summary
Machine-learning-assisted chemical characterization and optical properties of atmospheric brown carbon in Nanjing, China
Yu Huang, Xingru Li, Dan Dan Huang, Ruoyuan Lei, Binhuang Zhou, Yunjiang Zhang, and Xinlei Ge
Atmos. Chem. Phys., 25, 7619–7645, https://doi.org/10.5194/acp-25-7619-2025,https://doi.org/10.5194/acp-25-7619-2025, 2025
Short summary

Cited articles

Bian, Y. X., Zhao, C. S., Ma, N., Chen, J., and Xu, W. Y.: A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain, Atmos. Chem. Phys., 14, 6417–6426, https://doi.org/10.5194/acp-14-6417-2014, 2014. 
Brauer, M., Hoek, G., Vliet, V. P., Meliefste, K., Fischer, P. H., Wijga, A., Koopman, L. P., Neijens, H. J., Gerritsen, J., Kerkhof, M., Heinrich, J., Bellander, T., and Brunekreef, B.: Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children, Am. J. Resp. Crit. Care, 166, 1092–1098, https://doi.org/10.1164/rccm.200108-007OC, 2002. 
Brown, S. S. and Stutz, J.: Nighttime radical observation and chemistry, Chem. Soc. Rev., 41, 6405–6447, https://doi.org/10.1039/c2cs35181a, 2012. 
Calvert, J. G. and Stockwell, W. R.: Acid generation in the troposphere by gas-phase chemistry, Environ. Sci. Technol., 17, 428–443, https://doi.org/10.1021/es00115a727, 1983. 
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos. Environ., 42, 1–42, https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008. 
Download
Short summary
(1) Nitrate was a dominant contributing species in water-soluble inorganic ions during the high PM2.5 events in Nanjing. (2) Nitrate aerosols in Nanjing during the PM2.5 events were mainly produced by hydrolysis of N2O5 in preexisting aerosols under ammonium-rich regimes. (3) Control in NOx emissions would inhibit production of nitrate aerosols since NH4NO3 formation was HNO3 limited in Nanjing.
Share
Altmetrics
Final-revised paper
Preprint