Articles | Volume 20, issue 4
https://doi.org/10.5194/acp-20-2303-2020
https://doi.org/10.5194/acp-20-2303-2020
Technical note
 | 
26 Feb 2020
Technical note |  | 26 Feb 2020

Technical note: Deep learning for creating surrogate models of precipitation in Earth system models

Theodore Weber, Austin Corotan, Brian Hutchinson, Ben Kravitz, and Robert Link

Related authors

Using Optimization Tools to Explore Stratospheric Aerosol Injection Strategies
Ezra Brody, Yan Zhang, Douglas G. MacMartin, Daniele Visioni, Ben Kravitz, and Ewa M. Bednarz
EGUsphere, https://doi.org/10.5194/egusphere-2024-3974,https://doi.org/10.5194/egusphere-2024-3974, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
G6-1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024,https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Hemispherically symmetric strategies for stratospheric aerosol injection
Yan Zhang, Douglas G. MacMartin, Daniele Visioni, Ewa M. Bednarz, and Ben Kravitz
Earth Syst. Dynam., 15, 191–213, https://doi.org/10.5194/esd-15-191-2024,https://doi.org/10.5194/esd-15-191-2024, 2024
Short summary
Injection strategy – a driver of atmospheric circulation and ozone response to stratospheric aerosol geoengineering
Ewa M. Bednarz, Amy H. Butler, Daniele Visioni, Yan Zhang, Ben Kravitz, and Douglas G. MacMartin
Atmos. Chem. Phys., 23, 13665–13684, https://doi.org/10.5194/acp-23-13665-2023,https://doi.org/10.5194/acp-23-13665-2023, 2023
Short summary
Opinion: The scientific and community-building roles of the Geoengineering Model Intercomparison Project (GeoMIP) – past, present, and future
Daniele Visioni, Ben Kravitz, Alan Robock, Simone Tilmes, Jim Haywood, Olivier Boucher, Mark Lawrence, Peter Irvine, Ulrike Niemeier, Lili Xia, Gabriel Chiodo, Chris Lennard, Shingo Watanabe, John C. Moore, and Helene Muri
Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023,https://doi.org/10.5194/acp-23-5149-2023, 2023
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis
Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li
Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025,https://doi.org/10.5194/acp-25-157-2025, 2025
Short summary
Can pollen affect precipitation?
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 25, 183–197, https://doi.org/10.5194/acp-25-183-2025,https://doi.org/10.5194/acp-25-183-2025, 2025
Short summary
Potential impacts of marine fuel regulations on an Arctic stratocumulus case and its radiative response
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
Atmos. Chem. Phys., 25, 119–142, https://doi.org/10.5194/acp-25-119-2025,https://doi.org/10.5194/acp-25-119-2025, 2025
Short summary
The impact of the mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 14145–14175, https://doi.org/10.5194/acp-24-14145-2024,https://doi.org/10.5194/acp-24-14145-2024, 2024
Short summary
The role of ascent timescales for warm conveyor belt (WCB) moisture transport into the upper troposphere and lower stratosphere (UTLS)
Cornelis Schwenk and Annette Miltenberger
Atmos. Chem. Phys., 24, 14073–14099, https://doi.org/10.5194/acp-24-14073-2024,https://doi.org/10.5194/acp-24-14073-2024, 2024
Short summary

Cited articles

Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon budget associated with land use change, Glob. Change Biol., 16, 3327–3348, https://doi.org/10.1111/j.1365-2486.2010.02202.x, 2011. a
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270, 2011. a
Bellucci, A., Haarsma, R., Bellouin, N., Booth, B., Cagnazzo, C., van den Hurk, B., Keenlyside, N., Koenigk, T., Massonnet, F., Materia, S., and Weiss, M.: Advancements in decadal climate predictability: The role of nonoceanic drivers, Rev. Geophys., 53, 165–202, https://doi.org/10.1002/2014RG000473, 2015. a
Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks, in: Advances in Neural Information Processing Systems, NIPS Proceedings, 1171–1179, 2015. a, b
Bengio, Y.: Practical recommendations for gradient-based training of deep architectures, in: Neural networks: Tricks of the trade, 437–478, Springer, 2012. a
Download
Short summary
Climate model emulators can save computer time but are less accurate than full climate models. We use neural networks to build emulators of precipitation, trained on existing climate model runs. By doing so, we can capture nonlinearities and how the past state of a model (to some degree) shapes the future state. Our emulator outperforms a persistence forecast of precipitation.
Altmetrics
Final-revised paper
Preprint