Articles | Volume 20, issue 4
https://doi.org/10.5194/acp-20-2303-2020
https://doi.org/10.5194/acp-20-2303-2020
Technical note
 | 
26 Feb 2020
Technical note |  | 26 Feb 2020

Technical note: Deep learning for creating surrogate models of precipitation in Earth system models

Theodore Weber, Austin Corotan, Brian Hutchinson, Ben Kravitz, and Robert Link

Related authors

Assessing the Impact of Solar Climate Intervention on Future U.S. Weather Using a Convection-Permitting WRF Model
Lantao Sun, James W. Hurrell, Kristen L. Rasmussen, Bali Summers, Erin A. Sherman, and Ben Kravitz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3490,https://doi.org/10.5194/egusphere-2025-3490, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A Climate Intervention Dynamical Emulator (CIDER) for Scenario Space Exploration
Jared Farley, Douglas G. MacMartin, Daniele Visioni, Ben Kravitz, Ewa Bednarz, Alistair Duffey, and Matthew Henry
EGUsphere, https://doi.org/10.5194/egusphere-2025-1830,https://doi.org/10.5194/egusphere-2025-1830, 2025
Short summary
Using Optimization Tools to Explore Stratospheric Aerosol Injection Strategies
Ezra Brody, Yan Zhang, Douglas G. MacMartin, Daniele Visioni, Ben Kravitz, and Ewa M. Bednarz
EGUsphere, https://doi.org/10.5194/egusphere-2024-3974,https://doi.org/10.5194/egusphere-2024-3974, 2025
Short summary
G6-1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024,https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Hemispherically symmetric strategies for stratospheric aerosol injection
Yan Zhang, Douglas G. MacMartin, Daniele Visioni, Ewa M. Bednarz, and Ben Kravitz
Earth Syst. Dynam., 15, 191–213, https://doi.org/10.5194/esd-15-191-2024,https://doi.org/10.5194/esd-15-191-2024, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Ambient and intrinsic dependencies of evolving ice-phase particles within a decaying winter storm during IMPACTS
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 25, 8087–8106, https://doi.org/10.5194/acp-25-8087-2025,https://doi.org/10.5194/acp-25-8087-2025, 2025
Short summary
High-resolution modeling of early contrail evolution from hydrogen-powered aircraft
Annemarie Lottermoser and Simon Unterstrasser
Atmos. Chem. Phys., 25, 7903–7924, https://doi.org/10.5194/acp-25-7903-2025,https://doi.org/10.5194/acp-25-7903-2025, 2025
Short summary
Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025,https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary
Failed cyclogenesis of a mesoscale convective system near Cabo Verde: the role of the Saharan trade wind layer among other inhibiting factors observed during the CADDIWA field campaign
Guillaume Feger, Jean-Pierre Chaboureau, Thibaut Dauhut, Julien Delanoë, and Pierre Coutris
Atmos. Chem. Phys., 25, 7447–7465, https://doi.org/10.5194/acp-25-7447-2025,https://doi.org/10.5194/acp-25-7447-2025, 2025
Short summary
Sensitivities of simulated mixed-phase Arctic multilayer clouds to primary and secondary ice processes
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025,https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary

Cited articles

Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century carbon budget associated with land use change, Glob. Change Biol., 16, 3327–3348, https://doi.org/10.1111/j.1365-2486.2010.02202.x, 2011. a
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270, 2011. a
Bellucci, A., Haarsma, R., Bellouin, N., Booth, B., Cagnazzo, C., van den Hurk, B., Keenlyside, N., Koenigk, T., Massonnet, F., Materia, S., and Weiss, M.: Advancements in decadal climate predictability: The role of nonoceanic drivers, Rev. Geophys., 53, 165–202, https://doi.org/10.1002/2014RG000473, 2015. a
Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks, in: Advances in Neural Information Processing Systems, NIPS Proceedings, 1171–1179, 2015. a, b
Bengio, Y.: Practical recommendations for gradient-based training of deep architectures, in: Neural networks: Tricks of the trade, 437–478, Springer, 2012. a
Download
Short summary
Climate model emulators can save computer time but are less accurate than full climate models. We use neural networks to build emulators of precipitation, trained on existing climate model runs. By doing so, we can capture nonlinearities and how the past state of a model (to some degree) shapes the future state. Our emulator outperforms a persistence forecast of precipitation.
Share
Altmetrics
Final-revised paper
Preprint