Articles | Volume 20, issue 4
https://doi.org/10.5194/acp-20-2303-2020
https://doi.org/10.5194/acp-20-2303-2020
Technical note
 | 
26 Feb 2020
Technical note |  | 26 Feb 2020

Technical note: Deep learning for creating surrogate models of precipitation in Earth system models

Theodore Weber, Austin Corotan, Brian Hutchinson, Ben Kravitz, and Robert Link

Viewed

Total article views: 3,904 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,786 1,049 69 3,904 92 81
  • HTML: 2,786
  • PDF: 1,049
  • XML: 69
  • Total: 3,904
  • BibTeX: 92
  • EndNote: 81
Views and downloads (calculated since 11 Apr 2019)
Cumulative views and downloads (calculated since 11 Apr 2019)

Viewed (geographical distribution)

Total article views: 3,904 (including HTML, PDF, and XML) Thereof 3,653 with geography defined and 251 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 14 Dec 2024
Download
Short summary
Climate model emulators can save computer time but are less accurate than full climate models. We use neural networks to build emulators of precipitation, trained on existing climate model runs. By doing so, we can capture nonlinearities and how the past state of a model (to some degree) shapes the future state. Our emulator outperforms a persistence forecast of precipitation.
Altmetrics
Final-revised paper
Preprint