Articles | Volume 20, issue 24
https://doi.org/10.5194/acp-20-16117-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-16117-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil–atmosphere exchange flux of total gaseous mercury (TGM) at subtropical and temperate forest catchments
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085,
China
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085,
China
University of Chinese Academy of Sciences, Beijing, 100049, China
Xiaoshan Zhang
State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085,
China
University of Chinese Academy of Sciences, Beijing, 100049, China
Charles T. Driscoll
Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, USA
Che-Jen Lin
Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, USA
Related authors
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Ting Wang, Buyun Du, Inke Forbrich, Jun Zhou, Joshua Polen, Elsie M. Sunderland, Prentiss H. Balcom, Celia Chen, and Daniel Obrist
Biogeosciences, 21, 1461–1476, https://doi.org/10.5194/bg-21-1461-2024, https://doi.org/10.5194/bg-21-1461-2024, 2024
Short summary
Short summary
The strong seasonal increases of Hg in aboveground biomass during the growing season and the lack of changes observed after senescence in this salt marsh ecosystem suggest physiologically controlled Hg uptake pathways. The Hg sources found in marsh aboveground tissues originate from a mix of sources, unlike terrestrial ecosystems, where atmospheric GEM is the main source. Belowground plant tissues mostly take up Hg from soils. Overall, the salt marsh currently serves as a small net Hg sink.
Jonas O. Sommar, Xinyu Shi, Xueling Tang, Guangyi Sun, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 25, 12233–12334, https://doi.org/10.5194/acp-25-12233-2025, https://doi.org/10.5194/acp-25-12233-2025, 2025
Short summary
Short summary
A more thorough understanding of the complex processes involved in the atmospheric Hg cycle has been achieved. The dynamics of the cycle are influenced by a rapid redox chemistry with several oxidation states and effects of multiphase interactions. This review provides a detailed analysis of the atmospheric chemistry of Hg in both the lower and the upper atmosphere, together with a synthesis of the latest kinetic, thermochemical, photochemical, and isotopic fractionation data.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Ting Wang, Buyun Du, Inke Forbrich, Jun Zhou, Joshua Polen, Elsie M. Sunderland, Prentiss H. Balcom, Celia Chen, and Daniel Obrist
Biogeosciences, 21, 1461–1476, https://doi.org/10.5194/bg-21-1461-2024, https://doi.org/10.5194/bg-21-1461-2024, 2024
Short summary
Short summary
The strong seasonal increases of Hg in aboveground biomass during the growing season and the lack of changes observed after senescence in this salt marsh ecosystem suggest physiologically controlled Hg uptake pathways. The Hg sources found in marsh aboveground tissues originate from a mix of sources, unlike terrestrial ecosystems, where atmospheric GEM is the main source. Belowground plant tissues mostly take up Hg from soils. Overall, the salt marsh currently serves as a small net Hg sink.
Lyla L. Taylor, Charles T. Driscoll, Peter M. Groffman, Greg H. Rau, Joel D. Blum, and David J. Beerling
Biogeosciences, 18, 169–188, https://doi.org/10.5194/bg-18-169-2021, https://doi.org/10.5194/bg-18-169-2021, 2021
Short summary
Short summary
Enhanced rock weathering (ERW) is a carbon dioxide removal (CDR) strategy involving soil amendments with silicate rock dust. Over 15 years, a small silicate application led to net CDR of 8.5–11.5 t CO2/ha in an acid-rain-impacted New Hampshire forest. We accounted for the total carbon cost of treatment and compared effects with an adjacent, untreated forest. Our results suggest ERW can improve the greenhouse gas balance of similar forests in addition to mitigating acid rain effects.
Cited articles
Agnan, Y., Le, D. T., Moore, C., Edwards, G., and Obrist, D.: New
constraints on terrestrial surface-atmosphere fluxes of gaseous elemental
mercury using a global database, Environ. Sci. Techol., 50,
507–524, https://doi.org/10.1021/acs.est.5b04013, 2016.
Angot, H., Dastoor, A., De Simone, F., Gårdfeldt, K., Gencarelli, C. N., Hedgecock, I. M., Langer, S., Magand, O., Mastromonaco, M. N., Nordstrøm, C., Pfaffhuber, K. A., Pirrone, N., Ryjkov, A., Selin, N. E., Skov, H., Song, S., Sprovieri, F., Steffen, A., Toyota, K., Travnikov, O., Yang, X., and Dommergue, A.: Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models, Atmos. Chem. Phys., 16, 10735–10763, https://doi.org/10.5194/acp-16-10735-2016, 2016.
Breuer, L., Kiese, R., and Butterbachbahl, K.: Temperature and moisture
effects on nitrification rates in tropical rain-forest soils, Soil Sci.
Soc. Am. J., 66, 399–402, 2002.
Carpi, A., Fostier, A. H., Orta, O. R., dos Santos, J. C., and Gittings, M.:
Gaseous mercury emissions from soil following forest loss and land use
changes: Field experiments in the United States and Brazil, Atmos.
Environ., 96, 423–429, https://doi.org/10.1016/j.atmosenv.2014.08.004, 2014.
Chen, Y., Yin, Y., Shi, J., Liu, G., Hu, L., Liu, J., Cai, Y., and Jiang,
G.: Analytical methods, formation, and dissolution of cinnabar and its
impact on environmental cycle of mercury, Critical Reviews in Environmental
Science and Technology, 47, 2415–2447, https://doi.org/10.1080/10643389.2018.1429764, 2017.
Cheng, Z., Tang, Y., Li, E., Wu, Q., Wang, L., Liu, K., Wang, S., Huang, Y.,
and Duan, L.: Mercury accumulation in soil from atmospheric deposition in
temperate steppe of Inner Mongolia, China, Environ. Poll., 258, 113692,
https://doi.org/10.1016/j.envpol.2019.113692, 2020.
Choi, H.-D. and Holsen, T. M.: Gaseous mercury emissions from unsterilized
and sterilized soils: The effect of temperature and UV radiation,
Environ. Poll., 157, 1673–1678, https://doi.org/10.1016/j.envpol.2008.12.014,
2009a.
Choi, H. D. and Holsen, T. M.: Gaseous mercury fluxes from the forest floor
of the Adirondacks, Environ. Pollut., 157, 592–600, 2009b.
Du, B., Zhou, J., Zhou, L., Fan, X., and Zhou, J.: Mercury distribution in
the foliage and soil profiles of a subtropical forest: Process for mercury
retention in soils, J. Geochem. Explor., 205, 106337,
https://doi.org/10.1016/j.gexplo.2019.106337, 2019.
Durnford, D. and Dastoor, A.: The behavior of mercury in the cryosphere: A
review of what we know from observations, J. Geophys. Res.-Atmos., 116, D06305, https://doi.org/10.1029/2010jd014809, 2011.
Eckley, C. S., Gustin, M., Lin, C. J., Li, X., and Miller, M. B.: The
influence of dynamic chamber design and operating parameters on calculated
surface-to-air mercury fluxes, Atmos. Environ., 44, 194–203,
https://doi.org/10.1016/j.atmosenv.2009.10.013, 2010.
Eckley, C. S., Blanchard, P., Mclennan, D., Mintz, R., and Sekela, M.:
Soil–air mercury flux near a large industrial emission source before and
after closure (Flin Flon, Manitoba, Canada), Environ. Sci. Technol., 49, 9750–9757, 2015.
Fang, J., Liu, G., Zhu, B., Wang, X., and Liu, S.: Carbon budgets of three
temperate forest ecosystems in Dongling Mt., Beijing, China, Sci.
China Ser. D, 50, 92–101, https://doi.org/10.1007/s11430-007-2031-3, 2007.
FAO: UNESCO soil map of the world, revised legend, in: World Res. Rep., FAO, Rome, 138,
1988.
Fraser, A., Dastoor, A., and Ryjkov, A.: How important is biomass burning in Canada to mercury contamination?, Atmos. Chem. Phys., 18, 7263–7286, https://doi.org/10.5194/acp-18-7263-2018, 2018.
Fu, X., Feng, X., and Wang, S.: Exchange fluxes of Hg between surfaces and
atmosphere in the eastern flank of Mount Gongga, Sichuan province,
southwestern China, J. Geophys. Res.-Atmos., 113, 253–270, 2008.
Gao, Y., Wang, Z., Zhang, X., and Wang, C.: Observation and estimation of
mercury exchange fluxes from soil under different crop cultivars and
planting densities in North China Plain, Environ. Pollut., 259,
113833, https://doi.org/10.1016/j.envpol.2019.113833, 2020.
Gustin, M. S.: Are mercury emissions from geologic sources significant? A
status report, Sci. Total Environ., 304, 153–167, https://doi.org/10.1016/S0048-9697(02)00565-X, 2003.
Gustin, M. S. and Stamenkovic, J.: Effect of watering and soil moisture on
mercury emissions from soils, Biogeochemistry, 76, 215–232, 2005.
Gustin, M. S., Engle, M., Ericksen, J., Lyman, S., Stamenkovic, J., and Xin,
M.: Mercury exchange between the atmosphere and low mercury containing
substrates, Appl. Geochem., 21, 1913–1923, 2006.
Hararuk, O., Obrist, D., and Luo, Y.: Modelling the sensitivity of soil mercury storage to climate-induced changes in soil carbon pools, Biogeosciences, 10, 2393–2407, https://doi.org/10.5194/bg-10-2393-2013, 2013.
Hartman, J. S., Weisberg, P. J., Pillai, R., Ericksen, J. A., Kuiken, T.,
Lindberg, S. E., Zhang, H., Rytuba, J. J., and Gustin, M. S.: Application of
a rule-based model to estimate mercury exchange for three background biomes
in the continental United States, Environ. Sci. Technol., 43,
4989–4994, https://doi.org/10.1021/es900075q, 2009.
Haynes, K. M., Kane, E. S., Potvin, L., Lilleskov, E. A., Kolka, R. K., and
Mitchell, C. P. J.: Gaseous mercury fluxes in peatlands and the potential
influence of climate change, Atmos. Environ., 154, 247–259,
https://doi.org/10.1016/j.atmosenv.2017.01.049, 2017.
Hou, H. Y.: Vegetation Map of P.R. China (1:4,000,000), Map Press of China, Beijing, 1982.
Howard, D. and Edwards, G. C.: Mercury fluxes over an Australian alpine grassland and observation of nocturnal atmospheric mercury depletion events, Atmos. Chem. Phys., 18, 129–142, https://doi.org/10.5194/acp-18-129-2018, 2018.
Johnson, D. W., Benesch, J. A., Gustin, M. S., Schorran, D. S., Lindberg, S.
E., and Coleman, J. S.: Experimental evidence against diffusion control of
Hg evasion from soils, Sci. Total Environ., 304, 175–184, https://doi.org/10.1016/S0048-9697(02)00567-3, 2003.
Kamp, J., Skov, H., Jensen, B., and Sørensen, L. L.: Fluxes of gaseous elemental mercury (GEM) in the High Arctic during atmospheric mercury depletion events (AMDEs), Atmos. Chem. Phys., 18, 6923–6938, https://doi.org/10.5194/acp-18-6923-2018, 2018.
Kiese, R. and Butterbach-Bahl, K.: N2O and CO2 emissions from three
different tropical forest sites in the wet tropics of Queensland, Australia,
Soil Biol. Biochem., 34, 975–987, 2002.
Kocman, D. and Horvat, M.: A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment, Atmos. Chem. Phys., 10, 1417–1426, https://doi.org/10.5194/acp-10-1417-2010, 2010.
Kumari, A., Kumar, B., Manzoor, S., and Kulshrestha, U.: Status of
Atmospheric Mercury Research in South Asia: A Review, Aerosol Air
Qual. Res., 15, 1092–1109, https://doi.org/10.4209/aaqr.2014.05.0098, 2015.
Kuss, J., Krüger, S., Ruickoldt, J., and Wlost, K.-P.: High-resolution measurements of elemental mercury in surface water for an improved quantitative understanding of the Baltic Sea as a source of atmospheric mercury, Atmos. Chem. Phys., 18, 4361–4376, https://doi.org/10.5194/acp-18-4361-2018, 2018.
Li, F., Ma, C., and Zhang, P.: Mercury Deposition, Climate Change and
Anthropogenic Activities: A Review, Front. Earth Sci., 8, 316,
https://doi.org/10.3389/feart.2020.00316, 2020.
Lin, C. J., Gustin, M. S., Singhasuk, P., Eckley, C., and Miller, M.:
Empirical models for estimating mercury flux from soils, Environ.
Sci. Technol., 44, 8522–8528, 2010.
Lin, H., Tong, Y., Yin, X., Zhang, Q., Zhang, H., Zhang, H., Chen, L., Kang, S., Zhang, W., Schauer, J., de Foy, B., Bu, X., and Wang, X.: First measurement of atmospheric mercury species in Qomolangma Natural Nature Preserve, Tibetan Plateau, and evidence oftransboundary pollutant invasion, Atmos. Chem. Phys., 19, 1373–1391, https://doi.org/10.5194/acp-19-1373-2019, 2019.
Liu, K., Wu, Q., Wang, L., Wang, S., Liu, T., Ding, D., Tang, Y., Li, G.,
Tian, H., Duan, L., Wang, X., Fu, X., Feng, X., and Hao, J.:
Measure-specific effectiveness of air pollution control on China's
atmospheric mercury concentration and deposition during 2013-2017,
Environ. Sci. Technol., 53, 8938–8946,
https://doi.org/10.1021/acs.est.9b02428, 2019.
Luo, Y.: Mercury input, output and transport in forest ecosystems in
southern China, PhD thesis, Tsinghua University, Beijing, China,
1–112, 2015.
Ly Sy Phu, N., Zhang, L., Lin, D.-W., Lin, N.-H., and Sheu, G.-R.:
Eight-year dry deposition of atmospheric mercury to a tropical high mountain
background site downwind of the East Asian continent, Environ.
Pollut., 255, 113128, https://doi.org/10.1016/j.envpol.2019.113128, 2019.
Ma, J., Hu, Y., Bu, R., Chang, Y., Deng, H., and Qin, Q.: Predicting Impacts
of Climate Change on the Aboveground Carbon Sequestration Rate of a
Temperate Forest in Northeastern China, Plos One, 9, e96157,
https://doi.org/10.1371/journal.pone.0096157, 2014.
Ma, M., Wang, D., Sun, R., Shen, Y., and Huang, L.: Gaseous mercury
emissions from subtropical forested and open field soils in a national
nature reserve, southwest China, Atmos. Environ., 64, 116–123, 2013.
Ma, M., Sun, T., Du, H., and Wang, D.: A Two-Year Study on Mercury Fluxes
from the Soil under Different Vegetation Cover in a Subtropical Region,
South China, Atmosphere-Basel, 9, 30, https://doi.org/10.3390/atmos9010030, 2018.
Manca, G., Ammoscato, I., Esposito, G., Ianniello, A., Nardino, M., and
Sprovieri, F.: Dynamics of snow-air mercury exchange at Ny Ålesund
during springtime 2011, E3S Web of Conferences, EDP Sciences, 1, 03010, https://doi.org/10.1051/e3sconf/20130103010, 2013.
Maxwell, J. A., Holsen, T. M., and Mondal, S.: Gaseous elemental mercury
(GEM) emissions from snow surfaces in northern New York, Plos One, 8,
e69342, https://doi.org/10.1371/journal.pone.0069342, 2013.
Mo, F., Li, X., He, S., and Wang, X.: Evaluation of soil and water
conservation capacity of different forest types in Dongling Mountain,
Shengtai Xuebao, Acta Ecologica Sinica, 31, 5009–5016, 2011.
Nagati, M., Roy, M., DesRochers, A., Bergeron, Y., and Gardes, M.:
Importance of soil, stand, and mycorrhizal fungi
inabiesbalsameaestablishment in the boreal forest, Forests, 11, 815,
https://doi.org/10.3390/f11080815, 2020.
Obrist, D.: Mercury distribution across 14 U.S. forests. Part II: Patterns
of methyl mercury concentrations and areal mass of total and methyl mercury,
Environ. Sci. Technol., 46, 5921–5930, https://doi.org/10.1021/es2045579, 2012.
Obrist, D., Faïn, X., and Berger, C.: Gaseous elemental mercury
emissions and CO2 respiration rates in terrestrial soils under controlled
aerobic and anaerobic laboratory conditions, Sci. Total
Environ., 408, 1691–1700, 2010.
Obrist, D., Pokharel, A. K., and Moore, C.: Vertical profile measurements of
soil air suggest immobilization of gaseous elemental mercury in mineral
soil, Environ. Sci. Technol., 48, 2242–2252, https://doi.org/10.1021/es4048297, 2014.
Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., and
Selin, N. E.: A review of global environmental mercury processes in response
to human and natural perturbations: Changes of emissions, climate, and land
use, Ambio, 47, 116–140, https://doi.org/10.1007/s13280-017-1004-9, 2018.
O'Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., Wang, S.,
Tack, F. M. G., and Rinklebe, J.: Mercury speciation, transformation, and
transportation in soils, atmospheric flux, and implications for risk
management: A critical review, Environ. Int., 126, 747–761,
https://doi.org/10.1016/j.envint.2019.03.019, 2019.
Olson, C., Jiskra, M., Biester, H., Chow, J., and Obrist, D.: Mercury in
Active-Layer Tundra Soils of Alaska: Concentrations, Pools, Origins, and
Spatial Distribution, Global Biogeochem. Cy., 32, 1058–1073,
https://doi.org/10.1029/2017gb005840, 2018.
Osterwalder, S., Sommar, J., Akerblom, S., Jocher, G., Fritsche, J.,
Nilsson, M. B., Bishop, K., and Alewell, C.: Comparative study of elemental
mercury flux measurement techniques over a Fennoscandian boreal peatland,
Atmos. Environ., 172, 16–25, https://doi.org/10.1016/j.atmosenv.2017.10.025, 2018.
Osterwalder, S., Huang, J.-H., Shetaya, W. H., Agnan, Y., Frossard, A.,
Frey, B., Alewell, C., Kretzschmar, R., Biester, H., and Obrist, D.: Mercury
emission from industrially contaminated soils in relation to chemical,
microbial, and meteorological factors, Environ. Pollut., 250,
944–952, https://doi.org/10.1016/j.envpol.2019.03.093, 2019.
Outridge, P. M., Mason, R. P., Wang, F., Guerrero, S., and
Heimburger-Boavida, L. E.: Updated global and oceanic mercury budgets for
the united nations global mercury assessment 2018, Environ. Sci. Technol., 52, 11466–11477, https://doi.org/10.1021/acs.est.8b01246, 2018.
Pan, L., Lin, C.-J., Carmichael, G. R., Streets, D. G., Tang, Y., Woo,
J.-H., Shetty, S. K., Chu, H.-W., Ho, T. C., Friedli, H. R., and Feng, X.:
Study of atmospheric mercury budget in East Asia using STEM-Hg modeling
system, Sci. Total Environ., 408, 3277–3291,
https://doi.org/10.1016/j.scitotenv.2010.04.039, 2010.
Pannu, R., Siciliano, S. D., and O'Driscoll, N. J.: Quantifying the effects
of soil temperature, moisture and sterilization on elemental mercury
formation in boreal soils, Environ. Poll., 193, 138–146, https://doi.org/10.1016/j.envpol.2014.06.023, 2014.
Peleg, M., Tas, E., Matveev, V., Obrist, D., Moore, C. W., Gabay, M., and
Luria, M.: Observational evidence for involvement of nitrate radicals in
nighttime oxidation of mercury, Environ. Sci. Technol., 49,
14008–14018, https://doi.org/10.1021/acs.est.5b03894, 2015.
Perez-Rodriguez, M., Biester, H., Aboal, J. R., Toro, M., and Martinez
Cortizas, A.: Thawing of snow and ice caused extraordinary high and fast
mercury fluxes to lake sediments in Antarctica, Geochim. Cosmochim.
Ac., 248, 109–122, https://doi.org/10.1016/j.gca.2019.01.009, 2019.
Richardson, J. B. and Friedland, A. J.: Mercury in coniferous and deciduous upland forests in northern New England, USA: implications of climate change, Biogeosciences, 12, 6737–6749, https://doi.org/10.5194/bg-12-6737-2015, 2015.
Risch, M. R., DeWild, J. F., Gay, D. A., Zhang, L., Boyer, E. W., and
Krabbenhoft, D. P.: Atmospheric mercury deposition to forests in the eastern
USA, Environ. Poll., 228, 8–18, https://doi.org/10.1016/j.envpol.2017.05.004, 2017.
Slemr, F., Weigelt, A., Ebinghaus, R., Bieser, J., Brenninkmeijer, C. A. M., Rauthe-Schöch, A., Hermann, M., Martinsson, B. G., van Velthoven, P., Bönisch, H., Neumaier, M., Zahn, A., and Ziereis, H.: Mercury distribution in the upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC observatory: 2014–2016, Atmos. Chem. Phys., 18, 12329–12343, https://doi.org/10.5194/acp-18-12329-2018, 2018.
Sørbotten, L.-E.: Hill slope unsaturated flowpaths and soil moisture
variability in a forested catchment in Southwest China, MSc thesis, Department of Plant and Environmental Sciences, University of Life Sciences, Oslo, Norway, 2011.
Spolaor, A., Barbaro, E., Cappelletti, D., Turetta, C., Mazzola, M., Giardi, F., Björkman, M. P., Lucchetta, F., Dallo, F., Pfaffhuber, K. A., Angot, H., Dommergue, A., Maturilli, M., Saiz-Lopez, A., Barbante, C., and Cairns, W. R. L.: Diurnal cycle of iodine, bromine, and mercury concentrations in Svalbard surface snow, Atmos. Chem. Phys., 19, 13325–13339, https://doi.org/10.5194/acp-19-13325-2019, 2019.
St Louis, V. L., Graydon, J. A., Lehnherr, I., Amos, H. M., Sunderland, E.
M., St Pierre, K. A., Emmerton, C. A., Sandilands, K., Tate, M., Steffen,
A., and Humphreys, E. R.: Atmospheric Concentrations and Wet/Dry Loadings of
Mercury at the Remote Experimental Lakes Area, Northwestern Ontario, Canada,
Environ. Sci. Technol., 53, 8017–8026, https://doi.org/10.1021/acs.est.9b01338, 2019.
Sun, T., Ma, M., Wang, X., Wang, Y., Du, H., Xiang, Y., Xu, Q., Xie, Q., and
Wang, D.: Mercury transport, transformation and mass balance on a
perspective of hydrological processes in a subtropical forest of China,
Environ. Poll., 254, 113065, https://doi.org/10.1016/j.envpol.2019.113065, 2019.
Teixeira, D. C., Lacerda, L. D., and Silva-Filho, E. V.: Foliar mercury
content from tropical trees and its correlation with physiological
parameters in situ, Environ. Pollut., 242, 1050–1057,
https://doi.org/10.1016/j.envpol.2018.07.120, 2018.
Wang, Q., Luo, Y., Du, B., Ye, Z., and Duan, L.: Influencing factors of
mercury emission flux from forest soil at tieshanping, chongqing,
Environ. Sci., 35, 1922–1927, 2014 (in Chinese with English abstract).
Wang, S., Feng, X., Qiu, G., Fu, X., and Wei, Z.: Characteristics of mercury
exchange flux between soil and air in the heavily air-polluted area, eastern
Guizhou, China, Atmos. Environ., 41, 5584–5594, 2007.
Wang, X., Bao, Z., Lin, C.-J., Yuan, W., and Feng, X.: Assessment of global
mercury deposition through litterfall, Environ. Sci. Technol., 50, 8548–8557, 2016.
Wang, X., Lin, C.-J., Feng, X., Yuan, W., Fu, X., Zhang, H., Wu, Q., and
Wang, S.: Assessment of regional mercury deposition and emission outflow in
mainland China, J. Geophys. Res.-Atmos., 123, 9868–9890,
https://doi.org/10.1029/2018jd028350, 2018.
Wang, Z., Zhang, X., Xiao, J., Zhijia, C., and Yu, P.: Mercury fluxes and
pools in three subtropical forested catchments, southwest China,
Environ. Poll., 157, 801–808, https://doi.org/10.1016/j.envpol.2008.11.018, 2009.
Wang, Z. H., Zhang, G., Wang, Y., Zhao, Y. X., and Sun, X. J.: Research on
mercury flux between snow and air under the condition of seasonal snow cover
environment, J. Agro-Environ. Sci., 32, 601–606, 2013.
Wright, L. P., Zhang, L., and Marsik, F. J.: Overview of mercury dry deposition, litterfall, and throughfall studies, Atmos. Chem. Phys., 16, 13399–13416, https://doi.org/10.5194/acp-16-13399-2016, 2016.
Wu, Z., Dai, E., Wu, Z., and Lin, M.: Future forest dynamics under climate
change, land use change, and harvest in subtropical forests in Southern
China, Landscape Ecol., 34, 843–863, https://doi.org/10.1007/s10980-019-00809-8, 2019.
Xin, M. and Gustin, M. S.: Gaseous elemental mercury exchange with low
mercury containing soils: Investigation of controlling factors, Appl.
Geochem., 22, 1451–1466, 2007.
Yu, Q., Luo, Y., Xu, G., Wu, Q., Wang, S., Hao, J., and Duan, L.:
Subtropical forests act as mercury sinks but as net sources of gaseous
elemental mercury in south China, Environ. Sci. Technol., 54,
2772–2779, https://doi.org/10.1021/acs.est.9b06715, 2020.
Yuan, W., Sommar, J., Lin, C.-J., Wang, X., Li, K., Liu, Y., Zhang, H., Lu,
Z., Wu, C., and Feng, X.: Stable Isotope Evidence Shows Re-emission of
Elemental Mercury Vapor Occurring after Reductive Loss from Foliage,
Environ. Sci. Technol., 53, 651–660, https://doi.org/10.1021/acs.est.8b04865,
2019a.
Yuan, W., Wang, X., Lin, C.-J., Sommar, J., Lu, Z., and Feng, X.: Process
factors driving dynamic exchange of elemental mercury vapor over soil in
broadleaf forest ecosystems, Atmos. Environ., 219, 117047,
https://doi.org/10.1016/j.atmosenv.2019.117047, 2019b.
Zarate-Valdez, J. L., Zasoski, R. J., and Lauchli, A.: Short-term effects of
moisture content on soil solution pH and soil Eh, Soil Sci., 171,
423–431, 2006.
Zhang, G., Wang, N., Ai, J.-C., Zhang, L., Yang, J., and Liu, Z.-Q.:
Characteristics of mercury exchange flux between soil and atmosphere under
the snow retention and snow melting control, Huanjing Kexue, Chinese Journal of Environmental Science website, 34, 468–475, 2013.
Zhang, H., Lindberg, S. E., Marsik, F. J., and Keeler, G. J.: Mercury
air/surface exchange kinetics of background soils of the tahquamenon river
watershed in the Michigan Upper Peninsula, Water Air Soil Pollut.,
126, 151–169, 2001.
Zhang, H., Lindberg, S. E., Barnett, M. O., Vette, A. F., and Gustin, M. S.:
Dynamic flux chamber measurement of gaseous mercury emission fluxes over
soils. Part 1: simulation of gaseous mercury emissions from soils using a
two-resistance exchange interface model, Atmos. Environ., 36,
835–846, 2002.
Zhang, H., Nizzetto, L., Feng, X., Borga, K., Sommar, J., Fu, X., Zhang, H.,
Zhang, G., and Larssen, T.: Assessing Air-Surface Exchange and Fate of
Mercury in a Subtropical Forest Using a Novel Passive Exchange-Meter Device,
Environ. Sci. Technol., 53, 4869–4879,
https://doi.org/10.1021/acs.est.8b06343, 2019a.
Zhang, L., Zhou, P., Cao, S., and Zhao, Y.: Atmospheric mercury deposition over the land surfaces and the associated uncertainties in observations and simulations: a critical review, Atmos. Chem. Phys., 19, 15587–15608, https://doi.org/10.5194/acp-19-15587-2019, 2019b.
Zhang, Q., Huang, J., Wang, F., Mark, L., Xu, J., Armstrong, D., Li, C.,
Zhang, Y., and Kang, S.: Mercury distribution and deposition in glacier snow
over western China, Environ. Sci. Technol., 46, 5404–5413, https://doi.org/10.1021/es300166x, 2012.
Zhou, J., Wang, Z., Zhang, X., and Chen, J.: Distribution and elevated soil
pools of mercury in an acidic subtropical forest of southwestern China,
Environ. Poll., 202, 187–195, https://doi.org/10.1016/j.envpol.2015.03.021, 2015.
Zhou, J., Wang, Z., Sun, T., Zhang, H., and Zhang, X.: Mercury in
terrestrial forested systems with highly elevated mercury deposition in
southwestern China: The risk to insects and potential release from
wildfires, Environ. Poll., 212, 188–196, https://doi.org/10.1016/j.envpol.2016.01.003, 2016.
Zhou, J., Wang, Z., Zhang, X., and Gao, Y.: Mercury concentrations and pools
in four adjacent coniferous and deciduous upland forests in Beijing, China,
J. Geophys. Res-Biogeosci., 122, 1260–1274, 2017a.
Zhou, J., Wang, Z., Zhang, X., and Sun, T.: Investigation of factors
affecting mercury emission from subtropical forest soil: A field controlled
study in southwestern China, J. Geochem. Explor., 176,
128–135, https://doi.org/10.1016/j.gexplo.2015.10.007, 2017b.
Zhou, J., Wang, Z., and Zhang, X.: Deposition and fate of mercury in
litterfall, litter, and soil in coniferous and broad-leaved forests, J. Geophys. Res-Biogeo., 123, 2590–2603, https://doi.org/10.1029/2018jg004415, 2018.
Zhou, J., Du, B., Shang, L., Wang, Z., Cui, H., Fan, X., and Zhou, J.:
Mercury fluxes, budgets, and pools in forest ecosystems of China: A review,
Crit. Rev. Env. Sci. Technol., 50, 1411–1450, 2020a.
Zhou, J., Wang, Z., Zhang, X., and Driscoll, C. T.: Measurement of vertical
distribution of gaseous elemental mercury concentration in soil pore air at
subtropical and temperate forests, Environ. Sci. Technol., in review, 2020b.
Zhu, W., Lin, C.-J., Wang, X., Sommar, J., Fu, X., and Feng, X.: Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review, Atmos. Chem. Phys., 16, 4451–4480, https://doi.org/10.5194/acp-16-4451-2016, 2016.
Short summary
Mercury (Hg) emissions from natural resources have a large uncertainty, which is mainly derived from the forest. A long-term and multiplot (10) study of soil–air fluxes at subtropical and temperate forests was conducted. Forest soils are an important atmospheric Hg source, especially for subtropical forests. The compensation points imply that the atmospheric Hg concentration plays a critical role in inhibiting Hg emissions from the forest floor. Climate change can enhance soil Hg emissions.
Mercury (Hg) emissions from natural resources have a large uncertainty, which is mainly derived...
Altmetrics
Final-revised paper
Preprint