Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-15297-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-15297-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of warm clouds to large particles in measured marine aerosol size distributions – a theoretical study
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
Orit Altaratz
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
Guy Dagan
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
Zev Levin
School of Earth Sciences, Department of Geophysics, Tel Aviv University, Ramat Aviv, Israel
Assaf Vardi
Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
Related authors
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Short summary
A part of continental shallow convective cumulus (Cu) was shown to share properties such as organization and formation over vegetated areas, thus named green Cu. Mechanisms behind the formed patterns are not understood. We use different metrics and an empirical orthogonal function (EOF) to decompose the dataset and quantify organization factors (cloud streets and gravity waves). We show that clouds form a highly organized grid structure over hundreds of kilometers at the field lifetime.
Huan Liu, Ilan Koren, Orit Altaratz, and Shutian Mu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2574, https://doi.org/10.5194/egusphere-2025-2574, 2025
Short summary
Short summary
Clouds play a crucial role in Earth's climate by reflecting sunlight and trapping heat. Understanding how clouds respond to global warming (cloud feedback) is essential for climate change. However, the natural climate variability, like ENSO, can distort these estimates. Relying on long-term reanalysis data and simulations, this study finds that ENSO with a typical periodicity of 2–7 years can introduce a significant bias on cloud feedback estimates on even decadal to century time scales.
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024, https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Short summary
We examine the combined effect of aerosols and sea surface temperature (SST) on clouds under equilibrium conditions in cloud-resolving radiative–convective equilibrium simulations. We demonstrate that the aerosol–cloud interaction's effect on top-of-atmosphere energy gain strongly depends on the underlying SST, while the shortwave part of the spectrum is significantly more sensitive to SST. Furthermore, increasing aerosols influences upper-troposphere stability and thus anvil cloud fraction.
Manuel Santos Gutiérrez, Mickaël David Chekroun, and Ilan Koren
EGUsphere, https://doi.org/10.48550/arXiv.2405.11545, https://doi.org/10.48550/arXiv.2405.11545, 2024
Preprint withdrawn
Short summary
Short summary
This letter explores a novel approach for the formation of cloud droplets in rising adiabatic air parcels. Our approach combines microphysical equations accounting for moisture, updrafts and concentration of aerosols. Our analysis reveals three regimes: A) Low moisture and high concentration can hinder activation; B) Droplets can activate and stabilize above critical sizes, and C) sparse clouds can have droplets exhibiting activation and deactivation cycles.
Huan Liu, Ilan Koren, Orit Altaratz, and Mickaël D. Chekroun
Atmos. Chem. Phys., 23, 6559–6569, https://doi.org/10.5194/acp-23-6559-2023, https://doi.org/10.5194/acp-23-6559-2023, 2023
Short summary
Short summary
Clouds' responses to global warming contribute the largest uncertainty in climate prediction. Here, we analyze 42 years of global cloud cover in reanalysis data and show a decreasing trend over most continents and an increasing trend over the tropical and subtropical oceans. A reduction in near-surface relative humidity can explain the decreasing trend in cloud cover over land. Our results suggest potential stress on the terrestrial water cycle, associated with global warming.
Elisa T. Sena, Ilan Koren, Orit Altaratz, and Alexander B. Kostinski
Atmos. Chem. Phys., 22, 16111–16122, https://doi.org/10.5194/acp-22-16111-2022, https://doi.org/10.5194/acp-22-16111-2022, 2022
Short summary
Short summary
We used record-breaking statistics together with spatial information to create record-breaking SST maps. The maps reveal warming patterns in the overwhelming majority of the ocean and coherent islands of cooling, where low records occur more frequently than high ones. Some of these cooling spots are well known; however, a surprising elliptical area in the Southern Ocean is observed as well. Similar analyses can be performed on other key climatological variables to explore their trend patterns.
Guy Dagan
Atmos. Chem. Phys., 22, 15767–15775, https://doi.org/10.5194/acp-22-15767-2022, https://doi.org/10.5194/acp-22-15767-2022, 2022
Short summary
Short summary
Using idealized simulations we demonstrate that the equilibrium climate sensitivity (ECS), i.e. the increase in surface temperature under equilibrium conditions due to doubling of the CO2 concentration, increases with the aerosol concentration. The ECS increase is explained by a faster increase in precipitation efficiency with warming under high aerosol concentrations, which more efficiently depletes the water from the cloud and thus is manifested as an increase in the cloud feedback parameter.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Eshkol Eytan, Ilan Koren, Orit Altaratz, Mark Pinsky, and Alexander Khain
Atmos. Chem. Phys., 21, 16203–16217, https://doi.org/10.5194/acp-21-16203-2021, https://doi.org/10.5194/acp-21-16203-2021, 2021
Short summary
Short summary
Describing cloud mixing processes is among the most challenging fronts in cloud physics. Therefore, the adiabatic fraction (AF) that serves as a mixing measure is a valuable metric. We use high-resolution (10 m) simulations of single clouds with a passive tracer to test the skill of different methods used to derive AF. We highlight a method that is insensitive to the available cloud samples and allows considering microphysical effects on AF estimations in different environmental conditions.
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Short summary
A part of continental shallow convective cumulus (Cu) was shown to share properties such as organization and formation over vegetated areas, thus named green Cu. Mechanisms behind the formed patterns are not understood. We use different metrics and an empirical orthogonal function (EOF) to decompose the dataset and quantify organization factors (cloud streets and gravity waves). We show that clouds form a highly organized grid structure over hundreds of kilometers at the field lifetime.
Cited articles
Allen, S., Allen, D., Moss, K., Le Roux, G., Phoenix, V. R., and Sonke, J. E.:
Examination of the ocean as a source for atmospheric microplastics, PloS one,
15, e0232746, https://doi.org/10.1371/journal.pone.0232746, 2020. a
Beard, K. V. and Ochs III, H. T.: Warm-rain initiation: An overview of
microphysical mechanisms, J. Appl. Meteorol., 32, 608–625, 1993. a
Betzer, P. R., Carder, K. L., Duce, R. A., Merrill, J. T., Tindale, N. W., Uematsu, M., Costello, D. K., Young, R. W., Feely, R. A., Breland, J. A., Bernstein, R. E., and Greco, A. M.: Long-range
transport of giant mineral aerosol particles, Nature, 336, 568–571, https://doi.org/10.1038/336568a0, 1988.
a
Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., and Sukumaran, S.:
Plastic rain in protected areas of the United States, Science, 368,
1257–1260, 2020. a
Cheng, W. Y., Carrió, G. G., Cotton, W. R., and Saleeby, S. M.: Influence
of cloud condensation and giant cloud condensation nuclei on the development
of precipitating trade wind cumuli in a large eddy simulation, J.
Geophys. Res.-Atmos., 114, D08201, https://doi.org/10.1029/2008JD011011, 2009. a, b, c
Dagan, G., Koren, I., Altaratz, O., and Feingold, G.: Feedback mechanisms of
shallow convective clouds in a warmer climate as demonstrated by changes in
buoyancy, Environ. Res. Lett., 13, 054033, https://doi.org/10.1088/1748-9326/aac178, 2018. a
Dror, T., Flores, J. M., Altaratz Stollar, O., Dagan, G., Levin, Z., Vardi, A., and Koren, I.: Data from: Sensitivity of warm clouds to large particles in measured marine aerosol size distributions – a theoretical study, Weizmann Institute of Science Library, https://doi.org/10.34933/wis.000005, 2020. a
Dusek, U., Frank, G., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size matters more than
chemistry for cloud-nucleating ability of aerosol particles, Science, 312,
1375–1378, 2006. a
Exton, H. J., Latham, J., Park, P. M., Smith, M. H., and Allan, R. R.: The Production and Dispersal of Maritime Aerosol, in: Oceanic Whitecaps, edited by: Monahan, E. C. and Niocaill, G. M., Oceanographic Sciences Library, vol. 2, Springer, Dordrecht, the Netherlands, https://doi.org/10.1007/978-94-009-4668-2_17, 1986. a
Flores, J., Bourdin, G., Altaratz, O., Trainic, M., Lang-Yona, N., Dzimban, E., Steinau, S., Tettich, F., Planes, S., Allemand, D., Agostini, S., Banaigs, B., Boissin, E., Boss, E., Douville, E., Forcioli, D., Furla, P., Galand, P. E., Sullivan, M. B., Gilson, É., Lombard, F., Moulin, C., Pesant, S., Poulain, J., Reynaud, S., Romac, S., Sunagawa, S., Thomas, O. P., Troublé, R., de Vargas, C., Vega Thurber, R., Voolstra, C. R., Wincker, P., Zoccola, D., Bowler, C., Gorsky, G., Rudich, Y., Vardi, A., and Koren, I.: Tara Pacific
Expedition’s Atmospheric Measurements of Marine Aerosols across the
Atlantic and Pacific Oceans: Overview and Preliminary Results, B. Am. Meteorol. Soc., 101, 536–554, 2020. a, b, c, d
Garstang, M. and Betts, A. K.: A review of the tropical boundary layer and
cumulus convection: Structure, parameterization, and modeling, B. Am. Meteorol. Soc., 55, 1195–1205, 1974. a
Gorsky, G., Bourdin, G., Lombard, F., Pedrotti, M. L., Audrain, S., Bin, N., Boss, E., Bowler, C., Cassar, N., Caudan, L., Chabot, G., Cohen, N. R., Cron, D., De Vargas, C., Dolan, J. R., Douville, E., Elineau, A., Flores, J. M., Ghiglione, J. F., Haëntjens, N., Hertau, M., John, S. G., Kelly, R. L., Koren, I., Lin, Y., Marie, D., Moulin, C., Moucherie, Y., Pesant, S., Picheral, M., Poulain, J., Pujo-Pay, M., Reverdin, G., Romac, S., Sullivan, M. B., Trainic, M., Tressol, M., Troublé, R., Vardi, A., Voolstra, C. R., Wincker, P., Agostini, S., Banaigs, B., Boissin, E., Forcioli, D., Furla, P., Galand, P. E., Gilson, E., Reynaud, S., Sunagawa, S., Thomas, O. P., Thurber, R. L. V., Zoccola, D., Planes, S., Allemand, D., and Karsenti, E.: Expanding Tara Oceans
protocols for underway, ecosystemic sampling of the ocean-atmosphere
interface during Tara Pacific expedition (2016–18), Front. Mar. Sci., 6, 750, https://doi.org/10.3389/fmars.2019.00750, 2019. a
Gunn, R. and Phillips, B.: An experimental investigation of the effect of air
pollution on the initiation of rain, J. Meteorol., 14, 272–280,
1957. a
Gupta, D., Kim, H., Park, G., Li, X., Eom, H.-J., and Ro, C.-U.: Hygroscopic properties of NaCl and NaNO3 mixture particles as reacted inorganic sea-salt aerosol surrogates, Atmos. Chem. Phys., 15, 3379–3393, https://doi.org/10.5194/acp-15-3379-2015, 2015. a
Hand, J. L. and Kreidenweis, S. M.: A new method for retrieving particle
refractive index and effective density from aerosol size distribution data,
Aerosol Sci. Tech., 36, 1012–1026, 2002. a
Köhler, H.: The nucleus in and the growth of hygroscopic droplets,
T. Faraday Soc., 32, 1152–1161, 1936. a
Koren, I., Altaratz, O., and Dagan, G.: Aerosol effect on the mobility of cloud
droplets, Environ. Res. Lett., 10, 104011, https://doi.org/10.1088/1748-9326/10/10/104011, 2015. a
Kumar, P., Nenes, A., and Sokolik, I. N.: Importance of adsorption for CCN
activity and hygroscopic properties of mineral dust aerosol, Geophys.
Res. Lett., 36, L24804, https://doi.org/10.1029/2009GL040827, 2009. a
Low, T. and List, R.: Collision, coalescence and breakup of raindrops. Part II:
Parameterization of fragment size distributions, J. Atmos.
Sci., 39, 1607–1619, 1982. a
McTaggart-Cowan, J. D. and List, R.: Collision and breakup of water drops at
terminal velocity, J. Atmos. Sci., 32, 1401–1411, 1975. a
Middleton, N., Betzer, P., and Bull, P.: Long-range transport of “giant”
aeolian quartz grains: linkage with discrete sedimentary sources and
implications for protective particle transfer, Mar. Geol., 177, 411–417,
2001. a
Mülmenstädt, J. and Feingold, G.: The radiative forcing of
aerosol-cloud interactions in liquid clouds: wrestling and embracing
uncertainty, Curr. Clim. Change Rep., 4, 23–40, 2018. a
Nenes, A., Murray, B., and Bougiatioti, A.: Mineral dust and its microphysical interactions with clouds, in: Mineral Dust, edited by: Knippertz, P. and Stuut, J.-B. W., Springer Netherlands, Dordrecht, the Netherlands, 287–325, 2014. a
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. a
Pinsky, M., Mazin, I., Korolev, A., and Khain, A.: Supersaturation and
diffusional droplet growth in liquid clouds, J. Atmos.
Sci., 70, 2778–2793, 2013. a
Planes, S., Allemand, D., Agostini, S., Banaigs, B., Boissin, E., Boss, E., Bourdin, G., Bowler, C., Douville, E., Flores, J. M., Forcioli, D., Furla, P., Galand, P. E., Ghiglione, J.-F., Gilson, E., Lombard, F., Moulin, C., Pesant, S., Poulain, J., Reynaud, S., Romac, S., Sullivan, M. B., Sunagawa, S., Thomas, O. P., Troublé, R., de Vargas, C., Vega Thurber, R., Voolstra, C. R., Wincker, P., Zoccola, D., and Tara Pacific Consortium: The Tara
Pacific expedition – A pan-ecosystemic approach of the “-omics”
complexity of coral reef holobionts across the Pacific Ocean, PLoS biology,
17, e3000483, https://doi.org/10.1371/journal.pbio.3000483, 2019. a
Posselt, D., Van Den Heever, S., and Stephens, G.: Trimodal cloudiness and
tropical stable layers in simulations of radiative convective equilibrium,
Geophys. Res. Lett., 35, L08802, https://doi.org/10.1029/2007GL033029, 2008. a, b
Pruppacher, H. and Klett, J.: Cloud Chemistry, in: Microphysics of Clouds and Precipitation, Atmospheric and Oceanographic Sciences Library, vol. 18, Springer, Dordrecht, the Netherlands, https://doi.org/10.1007/978-0-306-48100-0_17, 2010. a
Reisin, T., Levin, Z., and Tzivion, S.: Rain production in convective clouds as
simulated in an axisymmetric model with detailed microphysics. Part I:
Description of the model, J. Atmos. Sci., 53, 497–519,
1996. a
Rosenfeld, D., Lahav, R., Khain, A., and Pinsky, M.: The role of sea spray in
cleansing air pollution over ocean via cloud processes, Science, 297,
1667–1670, 2002. a
Rosenfeld, D., Kaufman, Y. J., and Koren, I.: Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols, Atmos. Chem. Phys., 6, 2503–2511, https://doi.org/10.5194/acp-6-2503-2006, 2006. a
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S.,
Reissell, A., and Andreae, M. O.: Flood or drought: how do aerosols affect
precipitation?, Science, 321, 1309–1313, 2008. a
Schulz, M., de Leeuw, G., and Balkanski, Y.: Sea-salt aerosol source functions
and emissions, in: Emissions of Atmospheric Trace Compounds, edited by: Granier, C., Artaxo, P., and Reeves, C. E., Springer Netherlands, Dordrecht, the Netherlands, 333–359, 2004. a
Seifert, A. and Heus, T.: Large-eddy simulation of organized precipitating trade wind cumulus clouds, Atmos. Chem. Phys., 13, 5631–5645, https://doi.org/10.5194/acp-13-5631-2013, 2013. a
Seigel, R. B.: Shallow cumulus mixing and subcloud-layer responses to
variations in aerosol loading, J. Atmos. Sci., 71,
2581–2603, 2014. a
Seiki, T. and Nakajima, T.: Aerosol effects of the condensation process on a
convective cloud simulation, J. Atmos. Sci., 71,
833–853, 2014. a
Squires, P.: The microstructure and colloidal stability of warm clouds, Tellus A,
10, 262–271, 1958. a
Tegen, I., Harrison, S. P., Kohfeld, K., Prentice, I. C., Coe, M., and Heimann,
M.: Impact of vegetation and preferential source areas on global dust
aerosol: Results from a model study, J. Geophys. Res.-Atmos., 107, 4576, https://doi.org/10.1029/2001JD000963, 2002. a
Teller, A. and Levin, Z.: The effects of aerosols on precipitation and dimensions of subtropical clouds: a sensitivity study using a numerical cloud model, Atmos. Chem. Phys., 6, 67–80, https://doi.org/10.5194/acp-6-67-2006, 2006. a, b
Twomey, S.: The influence of pollution on the shortwave albedo of clouds,
J. Atmos. Sci., 34, 1149–1152, 1977. a
Twomey, S. and Squires, P.: The influence of cloud nucleus population on the
microstructure and stability of convective clouds, Tellus A, 11, 408–411,
1959. a
Tzivion, S., Feingold, G., and Levin, Z.: An efficient numerical solution to
the stochastic collection equation, J.Atmos. Sci., 44,
3139–3149, 1987. a
Tzivion, S., Reisin, T., and Levin, Z.: Numerical simulation of hygroscopic
seeding in a convective cloud, J. Appl. Meteorol., 33, 252–267,
1994. a
van der Does, M., Knippertz, P., Zschenderlein, P., Harrison, R. G., and Stuut,
J.-B. W.: The mysterious long-range transport of giant mineral dust
particles, Sci. Adv., 4, eaau2768, https://doi.org/10.1126/sciadv.aau2768, 2018. a
Warner, C., Simpson, J., Martin, D., Suchman, D., Mosher, F., and Reinking, R.:
Shallow convection on day 261 of GATE/mesoscale arcs, Mon. Weather Rev.,
107, 1617–1635, 1979. a
Warner, J.: A reduction in rainfall associated with smoke from sugar-cane
fires – An inadvertent weather modification?, J. Appl. Meteorol.,
7, 247–251, 1968. a
Xue, H., Feingold, G., and Stevens, B.: Aerosol effects on clouds,
precipitation, and the organization of shallow cumulus convection, J. Atmos. Sci., 65, 392–406, 2008. a
Yin, Y., Levin, Z., Reisin, T., and Tzivion, S.: Seeding convective clouds with
hygroscopic flares: Numerical simulations using a cloud model with detailed
microphysics, J. Appl. Meteorol., 39, 1460–1472,
2000a. a
Yuan, T.: Cloud macroscopic organization: order emerging from randomness, Atmos. Chem. Phys., 11, 7483–7490, https://doi.org/10.5194/acp-11-7483-2011, 2011. a
Zuidema, P., Li, Z., Hill, R. J., Bariteau, L., Rilling, B., Fairall, C.,
Brewer, W. A., Albrecht, B., and Hare, J.: On trade wind cumulus cold pools,
J. Atmos. Sci., 69, 258–280, 2012. a
Short summary
We used in situ aerosol measurements over the Atlantic, Caribbean, and Pacific to initialize a cloud model and study the impact of aerosol concentration and sizes on warm clouds. We show that high aerosol concentration increases cloud mass and reduces surface rain when giant particles (diameter > 9 µm) are present. The large aerosols changed the timing and magnitude of internal cloud processes and resulted in an enhanced evaporation below cloud base and dramatically reduced surface rain.
We used in situ aerosol measurements over the Atlantic, Caribbean, and Pacific to initialize a...
Altmetrics
Final-revised paper
Preprint