Articles | Volume 20, issue 23
Atmos. Chem. Phys., 20, 15297–15306, 2020
https://doi.org/10.5194/acp-20-15297-2020
Atmos. Chem. Phys., 20, 15297–15306, 2020
https://doi.org/10.5194/acp-20-15297-2020
Research article
09 Dec 2020
Research article | 09 Dec 2020

Sensitivity of warm clouds to large particles in measured marine aerosol size distributions – a theoretical study

Tom Dror et al.

Related authors

Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021,https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Do Arctic mixed-phase clouds sometimes dissipate due to insufficient aerosol? Evidence from comparisons between observations and idealized simulations
Lucas J. Sterzinger, Joseph Sedlar, Heather Guy, Ryan R. Neely III, and Adele L. Igel
Atmos. Chem. Phys., 22, 8973–8988, https://doi.org/10.5194/acp-22-8973-2022,https://doi.org/10.5194/acp-22-8973-2022, 2022
Short summary
Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation
Pooja Verma and Ulrike Burkhardt
Atmos. Chem. Phys., 22, 8819–8842, https://doi.org/10.5194/acp-22-8819-2022,https://doi.org/10.5194/acp-22-8819-2022, 2022
Short summary
Impact of Holuhraun volcano aerosols on clouds in cloud-system-resolving simulations
Mahnoosh Haghighatnasab, Jan Kretzschmar, Karoline Block, and Johannes Quaas
Atmos. Chem. Phys., 22, 8457–8472, https://doi.org/10.5194/acp-22-8457-2022,https://doi.org/10.5194/acp-22-8457-2022, 2022
Short summary
Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022,https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Convective updrafts near sea-breeze fronts
Shizuo Fu, Richard Rotunno, and Huiwen Xue
Atmos. Chem. Phys., 22, 7727–7738, https://doi.org/10.5194/acp-22-7727-2022,https://doi.org/10.5194/acp-22-7727-2022, 2022
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. a, b
Allen, S., Allen, D., Moss, K., Le Roux, G., Phoenix, V. R., and Sonke, J. E.: Examination of the ocean as a source for atmospheric microplastics, PloS one, 15, e0232746, https://doi.org/10.1371/journal.pone.0232746, 2020. a
Altaratz, O., Koren, I., Remer, L., and Hirsch, E.: Cloud invigoration by aerosols – Coupling between microphysics and dynamics, Atmos. Res., 140, 38–60, 2014. a, b
Beard, K. V. and Ochs III, H. T.: Warm-rain initiation: An overview of microphysical mechanisms, J. Appl. Meteorol., 32, 608–625, 1993. a
Betzer, P. R., Carder, K. L., Duce, R. A., Merrill, J. T., Tindale, N. W., Uematsu, M., Costello, D. K., Young, R. W., Feely, R. A., Breland, J. A., Bernstein, R. E., and Greco, A. M.: Long-range transport of giant mineral aerosol particles, Nature, 336, 568–571, https://doi.org/10.1038/336568a0, 1988.  a
Download
Short summary
We used in situ aerosol measurements over the Atlantic, Caribbean, and Pacific to initialize a cloud model and study the impact of aerosol concentration and sizes on warm clouds. We show that high aerosol concentration increases cloud mass and reduces surface rain when giant particles (diameter > 9 µm) are present. The large aerosols changed the timing and magnitude of internal cloud processes and resulted in an enhanced evaporation below cloud base and dramatically reduced surface rain.
Altmetrics
Final-revised paper
Preprint