Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-14139-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-14139-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The determination of highly time-resolved and source-separated black carbon emission rates using radon as a tracer of atmospheric dynamics
Aerosol d.o.o., Ljubljana, 1000, Slovenia
Centre for Atmospheric Research, University of Nova Gorica, Nova
Gorica, 5000, Slovenia
Luka Drinovec
Aerosol d.o.o., Ljubljana, 1000, Slovenia
Centre for Atmospheric Research, University of Nova Gorica, Nova
Gorica, 5000, Slovenia
Department of Condensed Matter Physics, Jožef Stefan Institute,
Ljubljana, 1000, Slovenia
Irena Ježek
Aerosol d.o.o., Ljubljana, 1000, Slovenia
Janja Vaupotič
Department of Environmental Sciences, Jožef Stefan Institute,
Ljubljana, 1000, Slovenia
Matevž Lenarčič
Aerovizija d.o.o., Ljubljana, 1000, Slovenia
Domen Grauf
Aerovizija d.o.o., Ljubljana, 1000, Slovenia
Longlong Wang
Centre for Atmospheric Research, University of Nova Gorica, Nova
Gorica, 5000, Slovenia
School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi’an, 710048, China
Maruška Mole
Centre for Atmospheric Research, University of Nova Gorica, Nova
Gorica, 5000, Slovenia
Quasar Science Resources S.L., Madrid, 28232, Spain
Samo Stanič
Centre for Atmospheric Research, University of Nova Gorica, Nova
Gorica, 5000, Slovenia
Griša Močnik
Aerosol d.o.o., Ljubljana, 1000, Slovenia
Centre for Atmospheric Research, University of Nova Gorica, Nova
Gorica, 5000, Slovenia
Department of Condensed Matter Physics, Jožef Stefan Institute,
Ljubljana, 1000, Slovenia
Related authors
Balint Alfoldy, Asta Gregorič, Matic Ivančič, Irena Ježek, and Martin Rigler
Atmos. Meas. Tech., 16, 135–152, https://doi.org/10.5194/amt-16-135-2023, https://doi.org/10.5194/amt-16-135-2023, 2023
Short summary
Short summary
Atmospheric concentrations and source apportionment (SA) of black carbon (BC) and CO2 were determined in an urban environment during a heating season. BC particles were attributed to two major sources: traffic and heating. The BC SA was implemented by an Aethalometer model used for the SA of CO2 supposing that the source-specific CO2 components are correlated with the corresponding BC. Source-specific emission factors were determined as a ratio of corresponding BC and CO2 components.
Olga B. Popovicheva, Nikolaos Evangeliou, Vasilii O. Kobelev, Marina A. Chichaeva, Konstantinos Eleftheriadis, Asta Gregorič, and Nikolay S. Kasimov
Atmos. Chem. Phys., 22, 5983–6000, https://doi.org/10.5194/acp-22-5983-2022, https://doi.org/10.5194/acp-22-5983-2022, 2022
Short summary
Short summary
Measurements of black carbon (BC) combined with atmospheric transport modeling reveal that gas flaring from oil and gas extraction in Kazakhstan, Volga-Ural, Komi, Nenets and western Siberia contributes the largest share of surface BC in the Russian Arctic dominating over domestic, industrial and traffic sectors. Pollution episodes show an increasing trend in concentration levels and frequency as the station is in the Siberian gateway of the highest anthropogenic pollution to the Russian Arctic.
Kristina Glojek, Griša Močnik, Honey Dawn C. Alas, Andrea Cuesta-Mosquera, Luka Drinovec, Asta Gregorič, Matej Ogrin, Kay Weinhold, Irena Ježek, Thomas Müller, Martin Rigler, Maja Remškar, Dominik van Pinxteren, Hartmut Herrmann, Martina Ristorini, Maik Merkel, Miha Markelj, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 5577–5601, https://doi.org/10.5194/acp-22-5577-2022, https://doi.org/10.5194/acp-22-5577-2022, 2022
Short summary
Short summary
A pilot study to determine the emissions of wood burning under
real-world laboratoryconditions was conducted. We found that measured black carbon (eBC) and particulate matter (PM) in rural shallow terrain depressions with residential wood burning could be much greater than predicted by models. The exceeding levels are a cause for concern since similar conditions can be expected in numerous hilly and mountainous regions across Europe, where approximately 20 % of the total population lives.
Luca Ferrero, Asta Gregorič, Griša Močnik, Martin Rigler, Sergio Cogliati, Francesca Barnaba, Luca Di Liberto, Gian Paolo Gobbi, Niccolò Losi, and Ezio Bolzacchini
Atmos. Chem. Phys., 21, 4869–4897, https://doi.org/10.5194/acp-21-4869-2021, https://doi.org/10.5194/acp-21-4869-2021, 2021
Short summary
Short summary
The work experimentally quantifies the impact of cloudiness and cloud type on the atmospheric heating rate of black and brown carbon. The most impacting clouds were stratocumulus, altostratus and stratus. Clouds caused a decrease of the heating rate of about 12 % per okta. The black carbon decease was slightly higher with respect to that of brown carbon. This study highlights the need to take into account the role of cloudiness when modelling light-absorbing aerosol climate forcing.
Irena Ježek Brecelj, Asta Gregorič, Lucijan Zgonik, Tjaša Rutar, Matic Ivančič, Bálint Alföldy, Griša Močnik, and Martin Rigler
Atmos. Chem. Phys., 25, 9113–9125, https://doi.org/10.5194/acp-25-9113-2025, https://doi.org/10.5194/acp-25-9113-2025, 2025
Short summary
Short summary
Following a major car industry scandal involving diesel emissions tests, the European Union (EU) introduced new testing procedures. However, concerns remained about their effectiveness. Our independent study examined real-world vehicle emissions and revealed encouraging findings: modern diesel cars perform as well as, or even better than, gasoline cars in terms of nitrogen oxide emissions. We found the same pattern for soot particles, challenging common perceptions about diesel's environmental impact.
Jesús Yus-Díez, Luka Drinovec, Lucas Alados-Arboledas, Gloria Titos, Elena Bazo, Andrea Casans, Diego Patrón, Xavier Querol, Adolfo Gonzalez-Romero, Carlos Perez García-Pando, and Griša Močnik
Atmos. Meas. Tech., 18, 3073–3093, https://doi.org/10.5194/amt-18-3073-2025, https://doi.org/10.5194/amt-18-3073-2025, 2025
Short summary
Short summary
We have used absorption from a photothermal interferometer and scattering measurements to evaluate the most deployed filter photometers used to measure absorption for monitoring networks. We used soot- and dust-dominated aerosol samples in both laboratory and ambient settings. Our results indicated that one of these filter photometers, the MAAP (Multiangle Absorption Photometer), usually used as a pseudo-reference instrument, had 47 % higher absorption values than our reference measurements.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 25, 3161–3189, https://doi.org/10.5194/acp-25-3161-2025, https://doi.org/10.5194/acp-25-3161-2025, 2025
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed urban emission impact on surrounding areas. CRI full period averages at 520 nm were 1.41 – 0.037i (urban), 1.52 – 0.038i (peri-urban), and 1.50 – 0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22 % of absorption at 370 nm.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Valeria Mardoñez, Marco Pandolfi, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Andrés Alastuey, Jean-Luc Besombes, Isabel Moreno R., Noemi Perez, Griša Močnik, Patrick Ginot, Radovan Krejci, Vladislav Chrastny, Alfred Wiedensohler, Paolo Laj, Marcos Andrade, and Gaëlle Uzu
Atmos. Chem. Phys., 23, 10325–10347, https://doi.org/10.5194/acp-23-10325-2023, https://doi.org/10.5194/acp-23-10325-2023, 2023
Short summary
Short summary
La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. The sources of particulate matter (PM) in this conurbation were not previously investigated. This study identified 11 main sources of PM, of which dust and vehicular emissions stand out as the main ones. The influence of regional biomass combustion and local waste combustion was also observed, with the latter being a major source of hazardous compounds.
Balint Alfoldy, Asta Gregorič, Matic Ivančič, Irena Ježek, and Martin Rigler
Atmos. Meas. Tech., 16, 135–152, https://doi.org/10.5194/amt-16-135-2023, https://doi.org/10.5194/amt-16-135-2023, 2023
Short summary
Short summary
Atmospheric concentrations and source apportionment (SA) of black carbon (BC) and CO2 were determined in an urban environment during a heating season. BC particles were attributed to two major sources: traffic and heating. The BC SA was implemented by an Aethalometer model used for the SA of CO2 supposing that the source-specific CO2 components are correlated with the corresponding BC. Source-specific emission factors were determined as a ratio of corresponding BC and CO2 components.
Luka Drinovec, Uroš Jagodič, Luka Pirker, Miha Škarabot, Mario Kurtjak, Kristijan Vidović, Luca Ferrero, Bradley Visser, Jannis Röhrbein, Ernest Weingartner, Daniel M. Kalbermatter, Konstantina Vasilatou, Tobias Bühlmann, Celine Pascale, Thomas Müller, Alfred Wiedensohler, and Griša Močnik
Atmos. Meas. Tech., 15, 3805–3825, https://doi.org/10.5194/amt-15-3805-2022, https://doi.org/10.5194/amt-15-3805-2022, 2022
Short summary
Short summary
A new photothermal interferometer (PTAAM-2λ) for artefact-free determination of the aerosol absorption coefficient at two wavelengths is presented. The instrument is calibrated with NO2 and polydisperse nigrosin, resulting in very low uncertainties of the absorption coefficients: 4 % at 532 nm and 6 % at 1064 nm. The instrument’s performance makes the PTAAM-2λ a strong candidate for reference measurements of the aerosol absorption coefficient.
Olga B. Popovicheva, Nikolaos Evangeliou, Vasilii O. Kobelev, Marina A. Chichaeva, Konstantinos Eleftheriadis, Asta Gregorič, and Nikolay S. Kasimov
Atmos. Chem. Phys., 22, 5983–6000, https://doi.org/10.5194/acp-22-5983-2022, https://doi.org/10.5194/acp-22-5983-2022, 2022
Short summary
Short summary
Measurements of black carbon (BC) combined with atmospheric transport modeling reveal that gas flaring from oil and gas extraction in Kazakhstan, Volga-Ural, Komi, Nenets and western Siberia contributes the largest share of surface BC in the Russian Arctic dominating over domestic, industrial and traffic sectors. Pollution episodes show an increasing trend in concentration levels and frequency as the station is in the Siberian gateway of the highest anthropogenic pollution to the Russian Arctic.
Kristina Glojek, Griša Močnik, Honey Dawn C. Alas, Andrea Cuesta-Mosquera, Luka Drinovec, Asta Gregorič, Matej Ogrin, Kay Weinhold, Irena Ježek, Thomas Müller, Martin Rigler, Maja Remškar, Dominik van Pinxteren, Hartmut Herrmann, Martina Ristorini, Maik Merkel, Miha Markelj, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 5577–5601, https://doi.org/10.5194/acp-22-5577-2022, https://doi.org/10.5194/acp-22-5577-2022, 2022
Short summary
Short summary
A pilot study to determine the emissions of wood burning under
real-world laboratoryconditions was conducted. We found that measured black carbon (eBC) and particulate matter (PM) in rural shallow terrain depressions with residential wood burning could be much greater than predicted by models. The exceeding levels are a cause for concern since similar conditions can be expected in numerous hilly and mountainous regions across Europe, where approximately 20 % of the total population lives.
Daniel M. Kalbermatter, Griša Močnik, Luka Drinovec, Bradley Visser, Jannis Röhrbein, Matthias Oscity, Ernest Weingartner, Antti-Pekka Hyvärinen, and Konstantina Vasilatou
Atmos. Meas. Tech., 15, 561–572, https://doi.org/10.5194/amt-15-561-2022, https://doi.org/10.5194/amt-15-561-2022, 2022
Short summary
Short summary
Soot particles with varying amounts of secondary organic matter coating were generated and used to compare a series of aerosol-absorption-measuring instruments: filter-based and photoacoustic instruments as well as photo-thermal interferometers. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. The system can be used for the inter-comparison and characterisation of instruments.
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
Anna K. Tobler, Alicja Skiba, Francesco Canonaco, Griša Močnik, Pragati Rai, Gang Chen, Jakub Bartyzel, Miroslaw Zimnoch, Katarzyna Styszko, Jaroslaw Nęcki, Markus Furger, Kazimierz Różański, Urs Baltensperger, Jay G. Slowik, and Andre S. H. Prevot
Atmos. Chem. Phys., 21, 14893–14906, https://doi.org/10.5194/acp-21-14893-2021, https://doi.org/10.5194/acp-21-14893-2021, 2021
Short summary
Short summary
Kraków is among the cities with the highest particulate matter levels within Europe. We conducted long-term and highly time-resolved measurements of the chemical composition of submicron particlulate matter (PM1). Combined with advanced source apportionment techniques, which allow for time-dependent factor profiles, our results elucidate that traffic and residential heating (biomass burning and coal combustion) as well as oxygenated organic aerosol are the key PM sources in Kraków.
Jesús Yus-Díez, Vera Bernardoni, Griša Močnik, Andrés Alastuey, Davide Ciniglia, Matic Ivančič, Xavier Querol, Noemí Perez, Cristina Reche, Martin Rigler, Roberta Vecchi, Sara Valentini, and Marco Pandolfi
Atmos. Meas. Tech., 14, 6335–6355, https://doi.org/10.5194/amt-14-6335-2021, https://doi.org/10.5194/amt-14-6335-2021, 2021
Short summary
Short summary
Here we characterize the multiple-scattering factor, C, of the dual-spot Aethalometer AE33 and its cross-sensitivity to scattering and wavelength dependence for three background stations: urban, regional and mountaintop. C was obtained for two sets of filter tapes: M8020 and M8060. The cross-sensitivity to scattering and wavelength dependence of C were determined by inter-comparing with other absorption and scattering measurements including multi-angle off-line absorption measurements.
Andrea Cuesta-Mosquera, Griša Močnik, Luka Drinovec, Thomas Müller, Sascha Pfeifer, María Cruz Minguillón, Björn Briel, Paul Buckley, Vadimas Dudoitis, Javier Fernández-García, María Fernández-Amado, Joel Ferreira De Brito, Veronique Riffault, Harald Flentje, Eimear Heffernan, Nikolaos Kalivitis, Athina-Cerise Kalogridis, Hannes Keernik, Luminita Marmureanu, Krista Luoma, Angela Marinoni, Michael Pikridas, Gerhard Schauer, Norbert Serfozo, Henri Servomaa, Gloria Titos, Jesús Yus-Díez, Natalia Zioła, and Alfred Wiedensohler
Atmos. Meas. Tech., 14, 3195–3216, https://doi.org/10.5194/amt-14-3195-2021, https://doi.org/10.5194/amt-14-3195-2021, 2021
Short summary
Short summary
Measurements of black carbon must be conducted with instruments operating in quality-checked and assured conditions to generate reliable and comparable data. Here, 23 Aethalometers monitoring black carbon mass concentrations in European networks were characterized and intercompared. The influence of different aerosol sources, maintenance activities, and the filter material on the instrumental variabilities were investigated. Good agreement and in general low deviations were seen.
Vera Bernardoni, Luca Ferrero, Ezio Bolzacchini, Alice Corina Forello, Asta Gregorič, Dario Massabò, Griša Močnik, Paolo Prati, Martin Rigler, Luca Santagostini, Francesca Soldan, Sara Valentini, Gianluigi Valli, and Roberta Vecchi
Atmos. Meas. Tech., 14, 2919–2940, https://doi.org/10.5194/amt-14-2919-2021, https://doi.org/10.5194/amt-14-2919-2021, 2021
Short summary
Short summary
An instrument-dependent wavelength-independent parameter (C) is often used to face multiple-scattering issues affecting aerosol light absorption measurements by Aethalometers. Instead, we determined multi-wavelength C by comparison with absorption measurements of samples collected in parallel performed by an instrument developed in-house. Considering C wavelength dependence, harmonized results were obtained applying source and component apportionment models to data from different Aethalometers.
Luca Ferrero, Asta Gregorič, Griša Močnik, Martin Rigler, Sergio Cogliati, Francesca Barnaba, Luca Di Liberto, Gian Paolo Gobbi, Niccolò Losi, and Ezio Bolzacchini
Atmos. Chem. Phys., 21, 4869–4897, https://doi.org/10.5194/acp-21-4869-2021, https://doi.org/10.5194/acp-21-4869-2021, 2021
Short summary
Short summary
The work experimentally quantifies the impact of cloudiness and cloud type on the atmospheric heating rate of black and brown carbon. The most impacting clouds were stratocumulus, altostratus and stratus. Clouds caused a decrease of the heating rate of about 12 % per okta. The black carbon decease was slightly higher with respect to that of brown carbon. This study highlights the need to take into account the role of cloudiness when modelling light-absorbing aerosol climate forcing.
Jesús Yus-Díez, Marina Ealo, Marco Pandolfi, Noemí Perez, Gloria Titos, Griša Močnik, Xavier Querol, and Andrés Alastuey
Atmos. Chem. Phys., 21, 431–455, https://doi.org/10.5194/acp-21-431-2021, https://doi.org/10.5194/acp-21-431-2021, 2021
Short summary
Short summary
Here we describe the vertical profiles of extensive (scattering and absorption) and intensive (e.g. albedo and asymmetry parameter) aerosol optical properties from coupling ground-based measurements from two sites in north-eastern Spain and airborne measurements performed with an aircraft. We analyse different aerosol layers along the vertical profile for a regional pollution episode and a Saharan dust intrusion. The results show a change with height depending on the different measured layers.
Bradley Visser, Jannis Röhrbein, Peter Steigmeier, Luka Drinovec, Griša Močnik, and Ernest Weingartner
Atmos. Meas. Tech., 13, 7097–7111, https://doi.org/10.5194/amt-13-7097-2020, https://doi.org/10.5194/amt-13-7097-2020, 2020
Short summary
Short summary
Here we report on the development of a novel single-beam photothermal interferometer and its use in the measurement of aerosol light absorption. We demonstrate how light-absorbing gases can be used to calibrate the instrument and how this absorption is automatically subtracted during normal operation. The performance of the instrument is compared to a standard filter-based instrument using a black carbon test aerosol. The 60 s detection limit is found to be less than 10 Mm-1.
Cited articles
Allegrini, I., Febo, A., Pasini, A., and Schiarini, S.: Monitoring of the nocturnal mixed layer by means of participate radon progeny measurement, J. Geophys. Res.-Atmos., 99, 18765–18777, https://doi.org/10.1029/94JD00783, 1994.
Athanasopoulou, E., Speyer, O., Brunner, D., Vogel, H., Vogel, B., Mihalopoulos, N., and Gerasopoulos, E.: Changes in domestic heating fuel use in Greece: effects on atmospheric chemistry and radiation, Atmos. Chem. Phys., 17, 10597–10618, https://doi.org/10.5194/acp-17-10597-2017, 2017.
Aurela, M., Saarikoski, S., Timonen, H., Aalto, P., Keronen, P., Saarnio,
K., Teinilä, K., Kulmala, M., and Hillamo, R.: Carbonaceous aerosol at a
forested and an urban background sites in Southern Finland, Atmos. Environ.,
45, 1394–1401, https://doi.org/10.1016/j.atmosenv.2010.12.039, 2011.
Blanco-Alegre, C., Calvo, A. I., Coz, E., Castro, A., Oduber, F., Prevot, A.
S. H., Mocnik, G., and Fraile, R.: Quantification of source specific black
carbon scavenging using an aethalometer and a disdrometer, Environ. Pollut.,
246, 336–345, https://doi.org/10.1016/j.envpol.2018.11.102, 2019.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C.,
Streets, D. G., and Trautmann, N. M.: Historical emissions of black and
organic carbon aerosol from energy-related combustion, 1850–2000, Global
Biogeochem. Cy., 21, 1944–9224, https://doi.org/10.1029/2006GB002840, 2007.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171,
2013.
Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S.-W., Evan, S., McKeen, S. A., Hsie, E.-Y., Frost, G. J., Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., Nowak, J. B., Roberts, J. M., Wofsy, S. C., Santoni, G. W., Oda, T., and Trainer, M.: Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts, Atmos. Chem. Phys., 13, 3661–3677, https://doi.org/10.5194/acp-13-3661-2013, 2013.
Cape, J. N., Coyle, M., and Dumitrean, P.: The atmospheric lifetime of black
carbon, Atmos. Environ., 59, 256–263, https://doi.org/10.1016/j.atmosenv.2012.05.030, 2012.
Carslaw, D. C. and Ropkins, K.: openair – An R package for air quality data analysis, Environ. Model. Soft., 27–28, 52–61,
https://doi.org/10.1016/j.envsoft.2011.09.008, 2012.
Chambers, S. D., Podstawczyńska, A., Williams, A. G., and Pawlak, W.:
Characterising the influence of atmospheric mixing state on Urban Heat
Island Intensity using Radon-222, Atmos. Environ., 147, 355–368,
https://doi.org/10.1016/j.atmosenv.2016.10.026, 2016.
Chambers, S. D., Podstawczyńska, A., Pawlak, W., Fortuniak, K.,
Williams, A. G., and Griffiths, A. D.: Characterizing the State of the Urban
Surface Layer Using Radon-222, J. Geophys. Res.-Atmos., 124, 770–788,
https://doi.org/10.1029/2018jd029507, 2019.
Crawford, J., Chambers, S., Cohen, D. D., Dyer, L., Wang, T., and
Zahorowski, W.: Receptor modelling using Positive Matrix Factorisation, back
trajectories and Radon-222, Atmos. Environ., 41, 6823–6837,
https://doi.org/10.1016/j.atmosenv.2007.04.048, 2007.
Crawford, J., Chambers, S., Cohen, D., Williams, A., Griffiths, A., and
Stelcer, E.: Assessing the impact of atmospheric stability on locally and
remotely sourced aerosols at Richmond, Australia, using Radon-222, Atmos.
Environ., 127, 107–117, https://doi.org/10.1016/j.atmosenv.2015.12.034,
2016.
Crilley, L. R., Bloss, W. J., Yin, J., Beddows, D. C. S., Harrison, R. M., Allan, J. D., Young, D. E., Flynn, M., Williams, P., Zotter, P., Prevot, A. S. H., Heal, M. R., Barlow, J. F., Halios, C. H., Lee, J. D., Szidat, S., and Mohr, C.: Sources and contributions of wood smoke during winter in London: assessing local and regional influences, Atmos. Chem. Phys., 15, 3149–3171, https://doi.org/10.5194/acp-15-3149-2015, 2015.
Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, 2013.
Denier van der Gon, H. A. C., Bergström, R., Fountoukis, C., Johansson, C., Pandis, S. N., Simpson, D., and Visschedijk, A. J. H.: Particulate emissions from residential wood combustion in Europe – revised estimates and an evaluation, Atmos. Chem. Phys., 15, 6503–6519, https://doi.org/10.5194/acp-15-6503-2015, 2015.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The ”dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Etiope, G. and Martinelli, G.: Migration of carrier and trace gases in the
geosphere: an overview, Phys. Earth Planet. In., 129, 185–204,
https://doi.org/10.1016/S0031-9201(01)00292-8, 2002.
Favez, O., Cachier, H., Sciare, J., Sarda-Estève, R., and Martinon, L.:
Evidence for a significant contribution of wood burning aerosols to PM2.5
during the winter season in Paris, France, Atmos. Environ., 43, 3640–3644,
https://doi.org/10.1016/j.atmosenv.2009.04.035, 2009.
Favez, O., El Haddad, I., Piot, C., Boréave, A., Abidi, E., Marchand, N., Jaffrezo, J.-L., Besombes, J.-L., Personnaz, M.-B., Sciare, J., Wortham, H., George, C., and D'Anna, B.: Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France), Atmos. Chem. Phys., 10, 5295–5314, https://doi.org/10.5194/acp-10-5295-2010, 2010.
Ferrero, L., Mocnik, G., Ferrini, B. S., Perrone, M. G., Sangiorgi, G., and
Bolzacchini, E.: Vertical profiles of aerosol absorption coefficient from
micro-Aethalometer data and Mie calculation over Milan, Sci. Total.
Environ., 409, 2824–2837, https://doi.org/10.1016/j.scitotenv.2011.04.022,
2011.
Ferrero, L., Castelli, M., Ferrini, B. S., Moscatelli, M., Perrone, M. G., Sangiorgi, G., D'Angelo, L., Rovelli, G., Moroni, B., Scardazza, F., Močnik, G., Bolzacchini, E., Petitta, M., and Cappelletti, D.: Impact of black carbon aerosol over Italian basin valleys: high-resolution measurements along vertical profiles, radiative forcing and heating rate, Atmos. Chem. Phys., 14, 9641–9664, https://doi.org/10.5194/acp-14-9641-2014, 2014.
Fuller, G. W., Tremper, A. H., Baker, T. D., Yttri, K. E., and Butterfield,
D.: Contribution of wood burning to PM10 in London, Atmos. Environ., 87,
87–94, https://doi.org/10.1016/j.atmosenv.2013.12.037, 2014.
Gjerek, M., Koleša, T., Logar, M., Matavž, L., Murovec, M., Rus, M.,
and Žabkar, R.: Kakovost zraka v Sloveniji v letu 2017 (Air quality in
Slovenia in 2017), Agencija Republike Slovenije za Okolje (Slovenian
Environment Agency), Ljubljana, 130, 2018.
Griffiths, A. D., Parkes, S. D., Chambers, S. D., McCabe, M. F., and
Williams, A. G.: Griffiths, A. D., Parkes, S. D., Chambers, S. D., McCabe, M. F., and Williams, A. G.: Improved mixing height monitoring through a combination of lidar and radon measurements, Atmos. Meas. Tech., 6, 207–218, https://doi.org/10.5194/amt-6-207-2013, 2013.
Guerrette, J. J. and Henze, D. K.: Four-dimensional variational inversion of black carbon emissions during ARCTAS-CARB with WRFDA-Chem, Atmos. Chem. Phys., 17, 7605–7633, https://doi.org/10.5194/acp-17-7605-2017, 2017.
Hansen, A. D. A., Artz, R. S., Pszenny, A. A. P., and Larson, R. E.: Aerosol black carbon and radon as tracers for air mass origin over the North Atlantic ocean, Global Biogeochem. Cy., 4, 189–199, 1990.
He, T.-Y., Gao, F., Stanič, S., Veberič, D., Bergant, K.,
Dolžan, A., and Song, X.-Q.: Scanning mobile lidar for aerosol tracking
and biological aerosol identification, Proc. SPIE, 7832, 78320U, https://doi.org/10.1117/12.868387 2010.
Helin, A., Niemi, J. V., Virkkula, A., Pirjola, L., Teinilä, K.,
Backman, J., Aurela, M., Saarikoski, S., Rönkkö, T., Asmi, E., and
Timonen, H.: Characteristics and source apportionment of black carbon in the
Helsinki metropolitan area, Finland, Atmos. Environ., 190, 87–98,
https://doi.org/10.1016/j.atmosenv.2018.07.022, 2018.
Herich, H., Gianini, M. F. D., Piot, C., Močnik, G., Jaffrezo, J. L.,
Besombes, J. L., Prévôt, A. S. H., and Hueglin, C.: Overview of the
impact of wood burning emissions on carbonaceous aerosols and PM in large
parts of the Alpine region, Atmos. Environ., 89, 64–75,
https://doi.org/10.1016/j.atmosenv.2014.02.008, 2014.
Hovorka, J., Pokorná, P., Hopke, P. K., Křůmal, K., Mikuška,
P., and Píšová, M.: Wood combustion, a dominant source of
winter aerosol in residential district in proximity to a large automobile
factory in Central Europe, Atmos. Environ., 113, 98–107,
https://doi.org/10.1016/j.atmosenv.2015.04.068, 2015.
IPCC: Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, in: Climate Change 2013: the
Physical Science Basis, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cmbridge, United Kingdom and New
York, USA, 2013.
Janssen, N. A., Hoek, G., Simic-Lawson, M., Fischer, P., van Bree, L., ten
Brink, H., Keuken, M., Atkinson, R. W., Anderson, H. R., Brunekreef, B., and
Cassee, F. R.: Black carbon as an additional indicator of the adverse health
effects of airborne particles compared with PM10 and PM2.5, Environ. Health
Persp., 119, 1691–1699, https://doi.org/10.1289/ehp.1003369, 2011.
Janža, M., Lapanje, A., Šram, D., Rajver, D., and Novak, M.:
Research of the geological and geothermal conditions for the assessment of
the shallow geothermal potential in the area of Ljubljana, Slovenia,
Geologija, 60, 309–327, https://doi.org/10.5474/geologija.2017.022, 2017.
Jež, J.: Reasons and mechanism for soil sliding processes in the
Rebrnice area, Vipava valley, SW Slovenia, Geologija, 50, 55–63,
https://doi.org/10.5474/geologija.2007.005, 2007.
Ježek, I., Blond, N., Skupinski, G., and Močnik, G.: The traffic
emission-dispersion model for a Central-European city agrees with measured
black carbon apportioned to traffic, Atmos. Environ., 184, 177–190,
https://doi.org/10.1016/j.atmosenv.2018.04.028, 2018.
Kardos, R., Gregorič, A., Jónás, J., Vaupotič, J.,
Kovács, T., and Ishimori, Y.: Dependence of radon emanation of soil on
lithology, J. Radioanal. Nucl. Chem., 304, 1321–1327,
https://doi.org/10.1007/s10967-015-3954-3, 2015.
Karstens, U., Schwingshackl, C., Schmithüsen, D., and Levin, I.: Karstens, U., Schwingshackl, C., Schmithüsen, D., and Levin, I.: A process-based 222radon flux map for Europe and its comparison to long-term observations, Atmos. Chem. Phys., 15, 12845–12865, https://doi.org/10.5194/acp-15-12845-2015, 2015.
Kikaj, D., Vaupotič, J., and Chambers, S. D.:
Kikaj, D., Vaupotič, J., and Chambers, S. D.: Identifying persistent temperature inversion events in a subalpine basin using radon-222, Atmos. Meas. Tech., 12, 4455–4477, https://doi.org/10.5194/amt-12-4455-2019, 2019..
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017.
Leukauf, D., Gohm, A., and Rotach, M. W.: Quantifying horizontal and vertical tracer mass fluxes in an idealized valley during daytime, Atmos. Chem. Phys., 16, 13049–13066, https://doi.org/10.5194/acp-16-13049-2016, 2016.
LRTAP 2018: European Union emission inventory report 1990–2016 under the
UNECE Convention on Long-range Transboundary Air Pollution, European
Environment Agency, Luxemburg, 2018.
McGrath-Spangler, E. L., Molod, A., Ott, L. E., and Pawson, S.: Impact of planetary boundary layer turbulence on model climate and tracer transport, Atmos. Chem. Phys., 15, 7269–7286, https://doi.org/10.5194/acp-15-7269-2015, 2015.
Mole, M., Wang, L., Stanič, S., Bergant, K., Eichinger, W. E.,
Ocaña, F., Strajnar, B., Škraba, P., Vučković, M., and
Willis, W. B.: Lidar measurements of Bora wind effects on aerosol loading,
J. Quant. Spectrosc. Ra., 188, 39–45,
https://doi.org/10.1016/j.jqsrt.2016.05.020, 2017.
Mues, A., Rupakheti, M., Münkel, C., Lauer, A., Bozem, H., Hoor, P., Butler, T., and Lawrence, M. G.: Investigation of the mixing layer height derived from ceilometer measurements in the Kathmandu Valley and implications for local air quality, Atmos. Chem. Phys., 17, 8157–8176, https://doi.org/10.5194/acp-17-8157-2017, 2017.
Ochmann, A. A.: Distribution of radon activity in the atmosphere above
Wzgórza Niemczansko-Strzelinskie (South-West Poland) and its dependence
on uranium and thorium content in the underlying rock and indirect ground
basement, Ann. Geophys-Italy, 48, 117–127, 2005.
Ogrin, M., Vintar Mally, K., Planinšek, A., Gregorič, A., Drinovec,
L., and Močnik, G.: Nitrogen dioxide and black carbon concentrations in
Ljubljana, GeograFF, Ljubljana University Press, Faculty of Arts, Ljubljana,
118 pp., 2016.
Pakkanen, T. A., Kerminen, V.-M., Ojanen, C. H., Hillamo, R. E., Aarnio, P.,
and Koskentalo, T.: Atmospheric black carbon in Helsinki, Atmos. Environ.,
34, 1497–1506, https://doi.org/10.1016/S1352-2310(99)00344-1, 2000.
Pal, S., Lopez, M., Schmidt, M., Ramonet, M., Gibert, F., Xueref-Remy, I.,
and Ciais, P.: Investigation of the atmospheric boundary layer depth
variability and its impact on the 222Rn concentration at a rural site in
France, J. Geophys. Res.-Atmos., 120, 623–643, https://doi.org/10.1002/2014JD022322, 2015.
Pearson, J. E. and Jones, G. E.: Emanation of radon 222 from soils and its use as a tracer, J. Geophys. Res., 70, 5279–5290,
https://doi.org/10.1029/JZ070i020p05279, 1965.
Perrino, C., Pietrodangelo, A., and Febo, A.: An atmospheric stability index
based on radon progeny measurements for the evaluation of primary urban
pollution, Atmos. Environ., 35, 5235–5244,
https://doi.org/10.1016/S1352-2310(01)00349-1, 2001.
Podstawczyńska, A.: Differences of near-ground atmospheric Rn-222
concentration between urban and rural area with reference to microclimate
diversity, Atmos. Environ., 126, 225–234,
https://doi.org/10.1016/j.atmosenv.2015.11.037, 2016.
Pöschl, U.: Atmospheric aerosols: composition, transformation, climate
and health effects, Angew. Chem. Int. Edit., 44,
7520–7540, https://doi.org/10.1002/anie.200501122, 2005.
Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., Meng, J., Chen, P.,
and Zhao, D.: Evolution of planetary boundary layer under different weather
conditions, and its impact on aerosol concentrations, Particuology, 11,
34–40, https://doi.org/10.1016/j.partic.2012.04.005, 2013.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, 2018.
Reche, C., Querol, X., Alastuey, A., Viana, M., Pey, J., Moreno, T., Rodríguez, S., González, Y., Fernández-Camacho, R., de la Rosa, J., Dall'Osto, M., Prévôt, A. S. H., Hueglin, C., Harrison, R. M., and Quincey, P.: New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities, Atmos. Chem. Phys., 11, 6207–6227, https://doi.org/10.5194/acp-11-6207-2011, 2011.
Ricard, V., Jaffrezo, J. L., Kerminen, V. M., Hillamo, R. E., Sillanpaa, M.,
Ruellan, S., Liousse, C., and Cachier, H.: Two years of continuous aerosol
measurements in northern Finland, J. Geophys. Res.-Atmos., 107, ACH
10-11–ACH 10-17, 2002.
Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications
and Display sYstem: READY, Environ., Modell. Softw., 95,
210–228, https://doi.org/10.1016/j.envsoft.2017.06.025, 2017.
Salzano, R., Pasini, A., Casasanta, G., Cacciani, M., and Perrino, C.:
Quantitative Interpretation of Air Radon Progeny Fluctuations in Terms of
Stability Conditions in the Atmospheric Boundary Layer, Bound.-Lay.
Meteorol., 160, 529–550, https://doi.org/10.1007/s10546-016-0149-6, 2016.
Sandradewi, J., Prévôt, A. S. H., Szidat, S., Perron, N., Alfarra,
M. R., Lanz, V. A., Weingartner, E., and Baltensperger, U.: Using aerosol
light absorption measurements for the quantitative determination of wood
burning and traffic emission contributions to particulate matter, Environ.
Sci. Technol., 42, 3316–3323, https://doi.org/10.1021/es702253m, 2008a.
Sandradewi, J., Prévôt, A. S. H., Weingartner, E., Schmidhauser, R.,
Gysel, M., and Baltensperger, U.: A study of wood burning and traffic
aerosols in an Alpine valley using a multi-wavelength Aethalometer, Atmos.
Environ., 42, 101–112, https://doi.org/10.1016/j.atmosenv.2007.09.034,
2008b.
Seibert, P., Beyrich, F., Gryning, S.-E., Joffre, S., Rasmussen, A., and
Tercier, P.: Review and intercomparison of operational methods for the
determination of the mixing height, Atmos. Environ., 34, 1001–1027,
https://doi.org/10.1016/S1352-2310(99)00349-0, 2000.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics, from
air pollution to climate change, 3rd Edn., John Wiley & Sons, Hoboken, New
Jersey, 2016.
Sesana, L., Caprioli, E., and Marcazzan, G. M.: Long period study of outdoor
radon concentration in Milan and correlation between its temporal variations
and dispersion properties of atmosphere, J. Environ.
Radioactiv., 65, 147–160, https://doi.org/10.1016/s0265-931x(02)00093-0, 2003.
Stull, R. B.: An introduction to Boundary Layer Meteorology, Kluwer Academics Press, Dordrecht, The Netherlands, 670 pp., 1988.
Sun, T., Liu, L., Flanner, M. G., Kirchstetter, T. W., Jiao, C., Preble, C.
V., Chang, W. L., and Bond, T. C.: Constraining a Historical Black Carbon
Emission Inventory of the United States for 1960–2000, J. Geophys. Res.-Atmos., 124, 4004–4025, https://doi.org/10.1029/2018jd030201, 2019.
Tang, G., Zhang, J., Zhu, X., Song, T., Münkel, C., Hu, B., Schäfer, K., Liu, Z., Zhang, J., Wang, L., Xin, J., Suppan, P., and Wang, Y.: Mixing layer height and its implications for air pollution over Beijing, China, Atmos. Chem. Phys., 16, 2459–2475, https://doi.org/10.5194/acp-16-2459-2016, 2016.
Titos, G., Lyamani, H., Drinovec, L., Olmo, F. J., Močnik, G., and
Alados-Arboledas, L.: Evaluation of the impact of transportation changes on
air quality, Atmos. Environ., 114, 19–31,
https://doi.org/10.1016/j.atmosenv.2015.05.027, 2015.
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation): Sources and effects of ionizing radiation, Vol I: Sources, UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes,
2000.
Vaupotič, J., Žvab, P., Gregorič, A., Dujmovič, P., Kocman,
D., Kobal, I., Kozak, K., Mazur, J., Kochowska, E., and Haber, R.: Soil gas
radon potential on radon prone areas, Jozef Stefan Institute, IJS-DP-9694, Jozef Stefan Institute, Ljubljana, Internal report no. 9694, 37 pp.,
2007 (in Slovene).
Vaupotič, J., Gregorič, A., Kobal, I., Žvab, P., Kozak, K., Mazur, J., Kochowska, E., and Grządziel, D.: Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia, Nat. Hazards Earth Syst. Sci., 10, 895–899, https://doi.org/10.5194/nhess-10-895-2010, 2010.
Vecchi, R., Piziali, F. A., Valli, G., Favaron, M., and Bernardoni, V.:
Radon-based estimates of equivalent mixing layer heights: A long-term
assessment, Atmos. Environ., 197, 150–158, 10.1016/j.atmosenv.2018.10.020,
2018.
Wang, F., Chambers, S. D., Zhang, Z., Williams, A. G., Deng, X., Zhang, H.,
Lonati, G., Crawford, J., Griffiths, A. D., Ianniello, A., and Allegrini,
I.: Quantifying stability influences on air pollution in Lanzhou, China,
using a radon-based “stability monitor”: Seasonality and extreme events,
Atmos. Environ., 145, 376–391,
https://doi.org/10.1016/j.atmosenv.2016.09.014, 2016a.
Wang, L., Stanič, S., Bergant, K., Eichinger, W., Močnik, G.,
Drinovec, L., Vaupotič, J., Miler, M., Gosar, M., and Gregorič, A.:
Retrieval of Vertical Mass Concentration Distributions–Vipava Valley Case
Study, Remote Sens-Basel, 11, 106, https://doi.org/10.3390/rs11020106, 2019.
Wang, P., Wang, H., Wang, Y. Q., Zhang, X. Y., Gong, S. L., Xue, M., Zhou, C. H., Liu, H. L., An, X. Q., Niu, T., and Cheng, Y. L.: Inverse modeling of black carbon emissions over China using ensemble data assimilation, Atmos. Chem. Phys., 16, 989–1002, https://doi.org/10.5194/acp-16-989-2016, 2016b.
WHO: Health effects of Black Carbon, The WHO European Centre for Environment and Health, Bonn, Germany, 2012.
Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag, New York, 2009.
Williams, A. G., Zahorowski, W., Chambers, S., Griffiths, A., Hacker, J. M.,
Element, A., and Werczynski, S.: The Vertical Distribution of Radon in Clear
and Cloudy Daytime Terrestrial Boundary Layers, J. Atmos.
Sci., 68, 155–174, https://doi.org/10.1175/2010jas3576.1, 2011.
Williams, A. G., Chambers, S., and Griffiths, A.: Bulk Mixing and Decoupling
of the Nocturnal Stable Boundary Layer Characterized Using a Ubiquitous
Natural Tracer, Bound.-Lay. Meteorol., 149, 381–402,
https://doi.org/10.1007/s10546-013-9849-3, 2013.
Williams, A. G., Chambers, S. D., Conen, F., Reimann, S., Hill, M.,
Griffiths, A. D., and Crawford, J.: Radon as a tracer of atmospheric
influences on traffic-related air pollution in a small inland city, Tellus
B, 68, 30967, https://doi.org/10.3402/tellusb.v68.30967, 2016.
Zhang, Y., Favez, O., Petit, J.-E., Canonaco, F., Truong, F., Bonnaire, N., Crenn, V., Amodeo, T., Prévôt, A. S. H., Sciare, J., Gros, V., and Albinet, A.: Six-year source apportionment of submicron organic aerosols from near-continuous highly time-resolved measurements at SIRTA (Paris area, France), Atmos. Chem. Phys., 19, 14755–14776, https://doi.org/10.5194/acp-19-14755-2019, 2019.
Short summary
We present a new method for the determination of highly time-resolved and source-separated black carbon emission rates. The atmospheric dynamics is quantified using the atmospheric radon concentration. Different intensity and daily dynamics of black carbon emission rates for two different environments are presented: urban and rural area. The method can be used to assess the efficiency of pollution mitigation measures, thereby avoiding the influence of variable meteorology.
We present a new method for the determination of highly time-resolved and source-separated black...
Altmetrics
Final-revised paper
Preprint