Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12853-2020
https://doi.org/10.5194/acp-20-12853-2020
Research article
 | 
05 Nov 2020
Research article |  | 05 Nov 2020

Using machine learning to derive cloud condensation nuclei number concentrations from commonly available measurements

Arshad Arjunan Nair and Fangqun Yu

Related authors

Particle number concentrations and size distributions in the stratosphere: implications of nucleation mechanisms and particle microphysics
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, Sebastian Eastham, Christina J. Williamson, Agnieszka Kupc, and Charles A. Brock
Atmos. Chem. Phys., 23, 1863–1877, https://doi.org/10.5194/acp-23-1863-2023,https://doi.org/10.5194/acp-23-1863-2023, 2023
Short summary
Wintertime new particle formation and its contribution to cloud condensation nuclei in the Northeastern United States
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, James J. Schwab, James P. Sherman, and Yanda Zhang
Atmos. Chem. Phys., 20, 2591–2601, https://doi.org/10.5194/acp-20-2591-2020,https://doi.org/10.5194/acp-20-2591-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer deployments of ACTIVATE 2020: life cycle, transport, and distribution
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025,https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Steady-state mixing state of black carbon aerosols from a particle-resolved model
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
Atmos. Chem. Phys., 25, 1869–1881, https://doi.org/10.5194/acp-25-1869-2025,https://doi.org/10.5194/acp-25-1869-2025, 2025
Short summary
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
Atmos. Chem. Phys., 25, 1711–1724, https://doi.org/10.5194/acp-25-1711-2025,https://doi.org/10.5194/acp-25-1711-2025, 2025
Short summary
Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: implications for model constraints and emission inventories
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes W. Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
Atmos. Chem. Phys., 25, 1545–1567, https://doi.org/10.5194/acp-25-1545-2025,https://doi.org/10.5194/acp-25-1545-2025, 2025
Short summary
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of the East Asian winter monsoon circulation
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
Atmos. Chem. Phys., 25, 1273–1287, https://doi.org/10.5194/acp-25-1273-2025,https://doi.org/10.5194/acp-25-1273-2025, 2025
Short summary

Cited articles

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
Behrens, B., Salwen, C., Springston, S., and Watson, T.: ARM: AOS: aerosol chemical speciation monitor, https://doi.org/10.5439/1046180, 1990. a
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. a, b
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, https://doi.org/10.1007/bf00058655, 1996. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a, b, c
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Small particles in the atmosphere can affect cloud formation and properties and thus Earth's energy budget. These cloud condensation nuclei (CCN) contribute the largest uncertainties in climate change modeling. To reduce these uncertainties, it is important to quantify CCN numbers accurately, measurements of which are sparse. We propose and evaluate a machine learning method to estimate CCN, in the absence of their direct measurements, using more common measurements of weather and air quality.
Share
Altmetrics
Final-revised paper
Preprint