Articles | Volume 20, issue 21
Research article
05 Nov 2020
Research article |  | 05 Nov 2020

Using machine learning to derive cloud condensation nuclei number concentrations from commonly available measurements

Arshad Arjunan Nair and Fangqun Yu

Related authors

Particle number concentrations and size distributions in the stratosphere: implications of nucleation mechanisms and particle microphysics
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, Sebastian Eastham, Christina J. Williamson, Agnieszka Kupc, and Charles A. Brock
Atmos. Chem. Phys., 23, 1863–1877,,, 2023
Short summary
Wintertime new particle formation and its contribution to cloud condensation nuclei in the Northeastern United States
Fangqun Yu, Gan Luo, Arshad Arjunan Nair, James J. Schwab, James P. Sherman, and Yanda Zhang
Atmos. Chem. Phys., 20, 2591–2601,,, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104,,, 2024
Short summary
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128,,, 2024
Short summary
Sensitivity of global direct aerosol shortwave radiative forcing to uncertainties in aerosol optical properties
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081,,, 2024
Short summary
Molecular-level study on the role of methanesulfonic acid in iodine oxoacid nucleation
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000,,, 2024
Short summary
Regional to global distributions, trends, and drivers of biogenic volatile organic compound emission from 2001 to 2020
Hao Wang, Xiaohong Liu, Chenglai Wu, and Guangxing Lin
Atmos. Chem. Phys., 24, 3309–3328,,, 2024
Short summary

Cited articles

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230,, 1989. a
Behrens, B., Salwen, C., Springston, S., and Watson, T.: ARM: AOS: aerosol chemical speciation monitor,, 1990. a
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,, 2001. a, b
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140,, 1996. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,, 2001. a, b, c

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Small particles in the atmosphere can affect cloud formation and properties and thus Earth's energy budget. These cloud condensation nuclei (CCN) contribute the largest uncertainties in climate change modeling. To reduce these uncertainties, it is important to quantify CCN numbers accurately, measurements of which are sparse. We propose and evaluate a machine learning method to estimate CCN, in the absence of their direct measurements, using more common measurements of weather and air quality.
Final-revised paper