Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10687-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-10687-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Trends in eastern China agricultural fire emissions derived from a combination of geostationary (Himawari) and polar (VIIRS) orbiter fire radiative power products
King's College London, Leverhulme Centre for Wildfires, Environment and Society, Department of Geography, Aldwych, London WC2B 4BG, UK
NERC National Centre for Earth Observation (NCEO), Aldwych, London WC2B 4BG, UK
Mark C. de Jong
King's College London, Leverhulme Centre for Wildfires, Environment and Society, Department of Geography, Aldwych, London WC2B 4BG, UK
NERC National Centre for Earth Observation (NCEO), Aldwych, London WC2B 4BG, UK
Martin J. Wooster
King's College London, Leverhulme Centre for Wildfires, Environment and Society, Department of Geography, Aldwych, London WC2B 4BG, UK
NERC National Centre for Earth Observation (NCEO), Aldwych, London WC2B 4BG, UK
Weidong Xu
King's College London, Leverhulme Centre for Wildfires, Environment and Society, Department of Geography, Aldwych, London WC2B 4BG, UK
NERC National Centre for Earth Observation (NCEO), Aldwych, London WC2B 4BG, UK
Lili Wang
LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing 100029, PR China
Related authors
No articles found.
Farrer Owsley-Brown, Martin J. Wooster, Mark J. Grosvenor, and Yanan Liu
Atmos. Meas. Tech., 17, 6247–6264, https://doi.org/10.5194/amt-17-6247-2024, https://doi.org/10.5194/amt-17-6247-2024, 2024
Short summary
Short summary
Landscape fires produce vast amounts of smoke, affecting the atmosphere locally and globally. Whether a fire is flaming or smouldering strongly impacts the rate at which smoke is produced as well as its composition. This study tested two methods to determine these combustion phases in laboratory fires and compared them to the smoke emitted. One of these methods improved estimates of smoke emission significantly. This suggests potential for improvement in global emission estimates.
Roland Vernooij, Tom Eames, Jeremy Russell-Smith, Cameron Yates, Robin Beatty, Jay Evans, Andrew Edwards, Natasha Ribeiro, Martin Wooster, Tercia Strydom, Marcos Vinicius Giongo, Marco Assis Borges, Máximo Menezes Costa, Ana Carolina Sena Barradas, Dave van Wees, and Guido R. Van der Werf
Earth Syst. Dynam., 14, 1039–1064, https://doi.org/10.5194/esd-14-1039-2023, https://doi.org/10.5194/esd-14-1039-2023, 2023
Short summary
Short summary
Savannas account for over half of global landscape fire emissions. Although environmental and fuel conditions affect the ratio of species the fire emits, these dynamics have not been implemented in global models. We measured CO2, CO, CH4, and N2O emission factors (EFs), fuel parameters, and fire severity proxies during 129 individual fires. We identified EF patterns and trained models to estimate EFs of these species based on satellite observations, reducing the estimation error by 60–85 %.
Hannah M. Nguyen, Jiangping He, and Martin J. Wooster
Atmos. Chem. Phys., 23, 2089–2118, https://doi.org/10.5194/acp-23-2089-2023, https://doi.org/10.5194/acp-23-2089-2023, 2023
Short summary
Short summary
This work presents novel advances in the estimation of open biomass burning emissions via the first fully "top-down" approach to exploit satellite-derived observations of fire radiative power and carbon monoxide over Africa. We produce a 16-year record of fire-generated CO emissions and dry matter consumed per unit area for Africa and evaluate these emissions estimates through their use in an atmospheric model, whose simulation output is then compared to independent satellite observations of CO.
Benjamin Foreback, Lubna Dada, Kaspar R. Daellenbach, Chao Yan, Lili Wang, Biwu Chu, Ying Zhou, Tom V. Kokkonen, Mona Kurppa, Rosaria E. Pileci, Yonghong Wang, Tommy Chan, Juha Kangasluoma, Lin Zhuohui, Yishou Guo, Chang Li, Rima Baalbaki, Joni Kujansuu, Xiaolong Fan, Zemin Feng, Pekka Rantala, Shahzad Gani, Federico Bianchi, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, Yongchun Liu, and Pauli Paasonen
Atmos. Chem. Phys., 22, 11089–11104, https://doi.org/10.5194/acp-22-11089-2022, https://doi.org/10.5194/acp-22-11089-2022, 2022
Short summary
Short summary
This study analyzed air quality in Beijing during the Chinese New Year over 7 years, including data from a new in-depth measurement station. This is one of few studies to look at long-term impacts, including the outcome of firework restrictions starting in 2018. Results show that firework pollution has gone down since 2016, indicating a positive result from the restrictions. Results of this study may be useful in making future decisions about the use of fireworks to improve air quality.
Roland Vernooij, Patrik Winiger, Martin Wooster, Tercia Strydom, Laurent Poulain, Ulrike Dusek, Mark Grosvenor, Gareth J. Roberts, Nick Schutgens, and Guido R. van der Werf
Atmos. Meas. Tech., 15, 4271–4294, https://doi.org/10.5194/amt-15-4271-2022, https://doi.org/10.5194/amt-15-4271-2022, 2022
Short summary
Short summary
Landscape fires are a substantial emitter of greenhouse gases and aerosols. Previous studies have indicated savanna emission factors to be highly variable. Improving fire emission estimates, and understanding future climate- and human-induced changes in fire regimes, requires in situ measurements. We present a drone-based method that enables the collection of a large amount of high-quality emission factor measurements that do not have the biases of aircraft or surface measurements.
Zhuohui Lin, Yonghong Wang, Feixue Zheng, Ying Zhou, Yishuo Guo, Zemin Feng, Chang Li, Yusheng Zhang, Simo Hakala, Tommy Chan, Chao Yan, Kaspar R. Daellenbach, Biwu Chu, Lubna Dada, Juha Kangasluoma, Lei Yao, Xiaolong Fan, Wei Du, Jing Cai, Runlong Cai, Tom V. Kokkonen, Putian Zhou, Lili Wang, Tuukka Petäjä, Federico Bianchi, Veli-Matti Kerminen, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 12173–12187, https://doi.org/10.5194/acp-21-12173-2021, https://doi.org/10.5194/acp-21-12173-2021, 2021
Short summary
Short summary
We find that ammonium nitrate and aerosol water content contributed most during low mixing layer height conditions; this may further trigger enhanced formation of sulfate and organic aerosol via heterogeneous reactions. The results of this study contribute towards a more detailed understanding of the aerosol–chemistry–radiation–boundary layer feedback that is likely to be responsible for explosive aerosol mass growth events in urban Beijing.
Yunyan Jiang, Jinyuan Xin, Ying Wang, Guiqian Tang, Yuxin Zhao, Danjie Jia, Dandan Zhao, Meng Wang, Lindong Dai, Lili Wang, Tianxue Wen, and Fangkun Wu
Atmos. Chem. Phys., 21, 6111–6128, https://doi.org/10.5194/acp-21-6111-2021, https://doi.org/10.5194/acp-21-6111-2021, 2021
Short summary
Short summary
Multiscale-circulation coupling affects pollution by changing the planetary boundary layer (PBL) structure. The multilayer PBL under cyclonic circulation has no diurnal variation; the temperature inversion and zero-speed zone can reach 600–900 m with strong mountain winds. The monolayer PBL under southwestern circulation can reach 2000 m; the inversion is lower than nocturnal PBL (400 m) with strong ambient winds. The zonal winds' vertical shear produces the inversion under western circulation.
Jinhui Gao, Ying Li, Bin Zhu, Bo Hu, Lili Wang, and Fangwen Bao
Atmos. Chem. Phys., 20, 10831–10844, https://doi.org/10.5194/acp-20-10831-2020, https://doi.org/10.5194/acp-20-10831-2020, 2020
Short summary
Short summary
Light extinction of aerosols can decease surface ozone mainly via reducing photochemical production of ozone. However, it also leads to high levels of ozone aloft being entrained down to the surface which partly counteracts the reduction in surface ozone. The impact of aerosols is more sensitive to local ozone, which suggests that while controlling the levels of aerosols, controlling the local ozone precursors is an effective way to suppress the increase of ozone over China at present.
Yuning Xie, Gehui Wang, Xinpei Wang, Jianmin Chen, Yubao Chen, Guiqian Tang, Lili Wang, Shuangshuang Ge, Guoyan Xue, Yuesi Wang, and Jian Gao
Atmos. Chem. Phys., 20, 5019–5033, https://doi.org/10.5194/acp-20-5019-2020, https://doi.org/10.5194/acp-20-5019-2020, 2020
Short summary
Short summary
As a result of strict emission control, nitrate-dominated PM2.5 in pollution episodes was observed in urban Beijing during the winter of 2017–2018. With the help of sufficient ammonia, particle pH could increase to near neutral (5.4) as particulate nitrate fraction increases. Further tests imply that airborne particle hygroscopicity would be enhanced at moderate RH in nitrate-dominated particles, and pH elevation will be accelerated when ammonia and particulate nitrate both increase.
Yonghong Wang, Miao Yu, Yuesi Wang, Guiqian Tang, Tao Song, Putian Zhou, Zirui Liu, Bo Hu, Dongsheng Ji, Lili Wang, Xiaowan Zhu, Chao Yan, Mikael Ehn, Wenkang Gao, Yuepeng Pan, Jinyuan Xin, Yang Sun, Veli-Matti Kerminen, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 20, 45–53, https://doi.org/10.5194/acp-20-45-2020, https://doi.org/10.5194/acp-20-45-2020, 2020
Short summary
Short summary
We found a positive particle matter-mixing layer height feedback at three observation platforms at the 325 m Beijing meteorology tower, which is characterized by a shallower mixing layer height and a higher particle matter concentration. Measurements of solar radiation, aerosol chemical composition, meteorology parameters, trace gases and turbulent kinetic energy (TKE) could explain the feedback mechanism to some extent.
Jingda Liu, Lili Wang, Mingge Li, Zhiheng Liao, Yang Sun, Tao Song, Wenkang Gao, Yonghong Wang, Yan Li, Dongsheng Ji, Bo Hu, Veli-Matti Kerminen, Yuesi Wang, and Markku Kulmala
Atmos. Chem. Phys., 19, 14477–14492, https://doi.org/10.5194/acp-19-14477-2019, https://doi.org/10.5194/acp-19-14477-2019, 2019
Short summary
Short summary
We analyzed the surface ozone variation characteristics and quantified the impact of synoptic and local meteorological factors on northern China during the warm season based on multi-city, in situ ozone and meteorological data, as well as meteorological reanalysis. The results of quantitative exploration on synoptic and local meteorological factors influencing both interannual and day-to-day ozone variations will provide the scientific basis for evaluating emission reduction measures.
Yonghong Wang, Yuesi Wang, Lili Wang, Tuukka Petäjä, Qiaozhi Zha, Chongshui Gong, Sixuan Li, Yuepeng Pan, Bo Hu, Jinyuan Xin, and Markku Kulmala
Atmos. Chem. Phys., 19, 5881–5888, https://doi.org/10.5194/acp-19-5881-2019, https://doi.org/10.5194/acp-19-5881-2019, 2019
Short summary
Short summary
Satellite observations combined with in situ measurements demonstrate that increased inorganic aerosol fractions of NO2 and SO2 contribute to air pollution and frequently occurring haze in China from 1980 to 2010. Currently, the reduction of nitrate, sulfate and their precursor gases would contribute towards better visibility in China.
Robert J. Parker, Hartmut Boesch, Martin J. Wooster, David P. Moore, Alex J. Webb, David Gaveau, and Daniel Murdiyarso
Atmos. Chem. Phys., 16, 10111–10131, https://doi.org/10.5194/acp-16-10111-2016, https://doi.org/10.5194/acp-16-10111-2016, 2016
Short summary
Short summary
The current El Niño event has had a dramatic impact on the amount of Indonesian biomass burning and subsequent greenhouse gas emission. We have used satellite observations of CH4 and CO2 of these fires to probe aspects of their chemical composition. We show large enhancements in the amount of these species, due to the fire emissions. The ability to determine large-scale emission ratios from space allows the combustion behaviour of very large regions of burning to be characterised and understood.
Niels Andela, Guido R. van der Werf, Johannes W. Kaiser, Thijs T. van Leeuwen, Martin J. Wooster, and Caroline E. R. Lehmann
Biogeosciences, 13, 3717–3734, https://doi.org/10.5194/bg-13-3717-2016, https://doi.org/10.5194/bg-13-3717-2016, 2016
Short summary
Short summary
Landscape fires occur on a large scale in savannas and grasslands, affecting ecosystems and air quality. We combined two satellite-derived datasets to derive fuel consumption per unit of area burned for savannas and grasslands in the (sub)tropics. Fire return periods, vegetation productivity, vegetation type and human land management were all important drivers of its spatial distribution. The results can be used to improve fire emission modelling and management or to detect ecosystem degradation.
Gabriel Pereira, Ricardo Siqueira, Nilton E. Rosário, Karla L. Longo, Saulo R. Freitas, Francielle S. Cardozo, Johannes W. Kaiser, and Martin J. Wooster
Atmos. Chem. Phys., 16, 6961–6975, https://doi.org/10.5194/acp-16-6961-2016, https://doi.org/10.5194/acp-16-6961-2016, 2016
Short summary
Short summary
Fires associated with land use and land cover changes release large amounts of aerosols and trace gases into the atmosphere. Although several inventories of biomass burning emissions cover Brazil, there are still considerable uncertainties and differences among them. However, results indicate that emission derived via similar methods tend to agree with one other, but aerosol emissions from fires with particularly high biomass consumption still lead to an underestimation.
Mark C. de Jong, Martin J. Wooster, Karl Kitchen, Cathy Manley, Rob Gazzard, and Frank F. McCall
Nat. Hazards Earth Syst. Sci., 16, 1217–1237, https://doi.org/10.5194/nhess-16-1217-2016, https://doi.org/10.5194/nhess-16-1217-2016, 2016
Short summary
Short summary
We present a percentile-based calibration of the Canadian Forest Fire Weather Index (FWI) System for the United Kingdom (UK), developed from numerical weather prediction data, and evaluate it using historic wildfire records. The Fine Fuel Moisture Code, Initial Spread Index and final FWI component of the FWI system show the greatest predictive skill for UK wildfires. Our findings provide useful insights for any future redevelopment of the current operational UK fire danger rating system.
R. Paugam, M. Wooster, S. Freitas, and M. Val Martin
Atmos. Chem. Phys., 16, 907–925, https://doi.org/10.5194/acp-16-907-2016, https://doi.org/10.5194/acp-16-907-2016, 2016
Short summary
Short summary
Landscape fire plume height controls fire emissions release in the atmosphere, in particular their transport that may also affect the longevity, chemical conversion, and fate of the plumes chemical constituents. Here, we review how such landscape-scale fire smoke plume injection heights are represented in large-scale atmospheric transport models aiming to represent the impacts of wildfire emissions on component of the Earth system.
M. J. Wooster, G. Roberts, P. H. Freeborn, W. Xu, Y. Govaerts, R. Beeby, J. He, A. Lattanzio, D. Fisher, and R. Mullen
Atmos. Chem. Phys., 15, 13217–13239, https://doi.org/10.5194/acp-15-13217-2015, https://doi.org/10.5194/acp-15-13217-2015, 2015
Short summary
Short summary
Landscape fires strongly influence atmospheric chemistry, composition, and climate. Characterizing such fires at very high temporal resolution is best achieved using thermal observations of actively burning fires made from geostationary Earth Observation satellites. Here we detail the Fire Radiative Power (FRP) products generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from data collected by the Meteosat geostationary satellites.
G. Roberts, M. J. Wooster, W. Xu, P. H. Freeborn, J.-J. Morcrette, L. Jones, A. Benedetti, H. Jiangping, D. Fisher, and J. W. Kaiser
Atmos. Chem. Phys., 15, 13241–13267, https://doi.org/10.5194/acp-15-13241-2015, https://doi.org/10.5194/acp-15-13241-2015, 2015
Short summary
Short summary
Characterising the dynamics of wildfires at high temporal resolution is best achieved using observations from geostationary satellite sensors. The SEVIRI Fire Radiative Power (FRP) products have been developed using such imagery at up to 15-minute temporal frequency. These data are used to estimate wildfire fuel consumption and to the characterise smoke emissions from the 2007 Peloponnese "mega fires" within an atmospheric transport model.
N. Andela, J. W. Kaiser, G. R. van der Werf, and M. J. Wooster
Atmos. Chem. Phys., 15, 8831–8846, https://doi.org/10.5194/acp-15-8831-2015, https://doi.org/10.5194/acp-15-8831-2015, 2015
Short summary
Short summary
The polar orbiting MODIS instruments provide four daily observations of the fire diurnal cycle, resulting in erroneous fire radiative energy (FRE) estimates. Using geostationary SEVIRI data, we explore the fire diurnal cycle and its drivers for Africa to develop a new method to estimate global FRE in near real-time using MODIS. The fire diurnal cycle varied with climate and vegetation type, and including information on the fire diurnal cycle in the model significantly improved the FRE estimates.
S. Gonzi, P. I. Palmer, R. Paugam, M. Wooster, and M. N. Deeter
Atmos. Chem. Phys., 15, 4339–4355, https://doi.org/10.5194/acp-15-4339-2015, https://doi.org/10.5194/acp-15-4339-2015, 2015
R. Paugam, M. Wooster, J. Atherton, S. R. Freitas, M. G. Schultz, and J. W. Kaiser
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-9815-2015, https://doi.org/10.5194/acpd-15-9815-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The transport of Biomass Burning emissions in Chemical Transport Model rely on parametrization of plumes injection height. Using fire observation selected to ensure match-up of fire-atmosphere-plume dynamics; a popular plume rise model was improved and optimized. The resulting model shows response to the effect of atmospheric stability consistent with previous findings and is able to predict higher injection height than any other tested parametrizations, giving a closer match with observation.
T. E. L. Smith, C. Paton-Walsh, C. P. Meyer, G. D. Cook, S. W. Maier, J. Russell-Smith, M. J. Wooster, and C. P. Yates
Atmos. Chem. Phys., 14, 11335–11352, https://doi.org/10.5194/acp-14-11335-2014, https://doi.org/10.5194/acp-14-11335-2014, 2014
S. Turquety, L. Menut, B. Bessagnet, A. Anav, N. Viovy, F. Maignan, and M. Wooster
Geosci. Model Dev., 7, 587–612, https://doi.org/10.5194/gmd-7-587-2014, https://doi.org/10.5194/gmd-7-587-2014, 2014
Related subject area
Subject: Biosphere Interactions | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Estimating global ammonia (NH3) emissions based on IASI observations from 2008 to 2018
The 2019 methane budget and uncertainties at 1° resolution and each country through Bayesian integration Of GOSAT total column methane data and a priori inventory estimates
Satellite evidence of substantial rain-induced soil emissions of ammonia across the Sahel
LSA SAF Meteosat FRP products – Part 1: Algorithms, product contents, and analysis
LSA SAF Meteosat FRP products – Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS)
Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009)
Interannual variability in soil nitric oxide emissions over the United States as viewed from space
Estimates of biomass burning emissions in tropical Asia based on satellite-derived data
Zhenqi Luo, Yuzhong Zhang, Wei Chen, Martin Van Damme, Pierre-François Coheur, and Lieven Clarisse
Atmos. Chem. Phys., 22, 10375–10388, https://doi.org/10.5194/acp-22-10375-2022, https://doi.org/10.5194/acp-22-10375-2022, 2022
Short summary
Short summary
We quantify global ammonia (NH3) emissions over the period from 2008 to 2018 using an improved fast top-down method that incorporates Infrared Atmospheric
Sounding Interferometer (IASI) satellite observations and GEOS-Chem atmospheric chemical simulations. The top-down analysis finds a global total NH3 emission that is 30 % higher than the bottom-up estimate, largely reconciling a large discrepancy of more than a factor of 2 found in previous top-down studies using the same satellite data.
John R. Worden, Daniel H. Cusworth, Zhen Qu, Yi Yin, Yuzhong Zhang, A. Anthony Bloom, Shuang Ma, Brendan K. Byrne, Tia Scarpelli, Joannes D. Maasakkers, David Crisp, Riley Duren, and Daniel J. Jacob
Atmos. Chem. Phys., 22, 6811–6841, https://doi.org/10.5194/acp-22-6811-2022, https://doi.org/10.5194/acp-22-6811-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: 1) describe a new algorithm by which remotely sensed measurements of methane or other tracers can be used to not just quantify methane fluxes, but also attribute these fluxes to specific sources and regions and characterize their uncertainties, and 2) use this new algorithm to provide methane emissions by sector and country in support of the global stock take.
Jonathan E. Hickman, Enrico Dammers, Corinne Galy-Lacaux, and Guido R. van der Werf
Atmos. Chem. Phys., 18, 16713–16727, https://doi.org/10.5194/acp-18-16713-2018, https://doi.org/10.5194/acp-18-16713-2018, 2018
Short summary
Short summary
Ammonia gas, which contributes to air pollution, is emitted from soils and combustion. In regions with distinct dry and rainy seasons, the first rainfall events each year trigger biogeochemical activity in soils. We used satellite observations of the atmosphere over the African Sahel savanna ecosystem to show that increases in soil moisture at the onset of the rainy season are responsible for large pulsed emissions of ammonia equal to roughly a fifth of annual ammonia emissions from the region
M. J. Wooster, G. Roberts, P. H. Freeborn, W. Xu, Y. Govaerts, R. Beeby, J. He, A. Lattanzio, D. Fisher, and R. Mullen
Atmos. Chem. Phys., 15, 13217–13239, https://doi.org/10.5194/acp-15-13217-2015, https://doi.org/10.5194/acp-15-13217-2015, 2015
Short summary
Short summary
Landscape fires strongly influence atmospheric chemistry, composition, and climate. Characterizing such fires at very high temporal resolution is best achieved using thermal observations of actively burning fires made from geostationary Earth Observation satellites. Here we detail the Fire Radiative Power (FRP) products generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from data collected by the Meteosat geostationary satellites.
G. Roberts, M. J. Wooster, W. Xu, P. H. Freeborn, J.-J. Morcrette, L. Jones, A. Benedetti, H. Jiangping, D. Fisher, and J. W. Kaiser
Atmos. Chem. Phys., 15, 13241–13267, https://doi.org/10.5194/acp-15-13241-2015, https://doi.org/10.5194/acp-15-13241-2015, 2015
Short summary
Short summary
Characterising the dynamics of wildfires at high temporal resolution is best achieved using observations from geostationary satellite sensors. The SEVIRI Fire Radiative Power (FRP) products have been developed using such imagery at up to 15-minute temporal frequency. These data are used to estimate wildfire fuel consumption and to the characterise smoke emissions from the 2007 Peloponnese "mega fires" within an atmospheric transport model.
G. R. van der Werf, J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen
Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, https://doi.org/10.5194/acp-10-11707-2010, 2010
R. C. Hudman, A. R. Russell, L. C. Valin, and R. C. Cohen
Atmos. Chem. Phys., 10, 9943–9952, https://doi.org/10.5194/acp-10-9943-2010, https://doi.org/10.5194/acp-10-9943-2010, 2010
D. Chang and Y. Song
Atmos. Chem. Phys., 10, 2335–2351, https://doi.org/10.5194/acp-10-2335-2010, https://doi.org/10.5194/acp-10-2335-2010, 2010
Cited articles
Andela, N., Kaiser, J. W., van der Werf, G. R., and Wooster, M. J.: New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations, Atmos. Chem. Phys., 15, 8831–8846, https://doi.org/10.5194/acp-15-8831-2015, 2015.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.
Bond, T. C., Doherty, S. J., Fahey, D., Forster, P., Berntsen, T., DeAngelo,
B., Flanner, M., Ghan, S., Kärcher, B., and Koch, D.: Bounding the role
of black carbon in the climate system: A scientific assessment, J.
Geophys. Res.-Atmos., 118, 5380–5552, 2013.
Cao, G., Zhang, X., and Zheng, F. : Inventory of black carbon and organic
carbon emissions from China, Atmos. Environ., 40, 6516–6527,
2006.
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos.
Environ., 42, 1–42, 2008.
Cheng, Y., Engling, G., He, K.-B., Duan, F.-K., Ma, Y.-L., Du, Z.-Y., Liu, J.-M., Zheng, M., and Weber, R. J.: Biomass burning contribution to Beijing aerosol, Atmos. Chem. Phys., 13, 7765–7781, https://doi.org/10.5194/acp-13-7765-2013, 2013.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G.,
Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover mapping
at 30m resolution: A POK-based operational approach, ISPRS J. Photogramm.
Remote Sens., Global Land Cover Mapping and Monitoring, 103, 7–27,
https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S.,
Hao, J., Zhang, H., He, C., and Guo, H.: A review of biomass burning:
Emissions and impacts on air quality, health and climate in China, Sci.
Total Environ., 579, 1000–1034, https://doi.org/10.1016/j.scitotenv.2016.11.025, 2017.
Du, H., Kong, L., Cheng, T., Chen, J., Du, J., Li, L., Xia, X., Leng, C.,
and Huang, G.: Insights into summertime haze pollution events over Shanghai
based on online water-soluble ionic composition of aerosols, Atmos.
Environ., 45, 5131–5137, 2011.
Ellicott, E., Vermote, E., Giglio, L., and Roberts, G.: Estimating biomass
consumed from fire using MODIS FRE, Geophys. Res. Lett., 36, L13401, https://doi.org/10.1029/2009gl038581,
2009.
Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. A., Nordgren, B. L.,
Baker, S. P., and Ichoku, C.: Relationships between energy release, fuel
mass loss, and trace gas and aerosol emissions during laboratory biomass
fires, J. Geophys. Res.-Atmos., 113, D01301, https://doi.org/10.1029/2007JD008679,
2008.
Fu, J. Y., Jiang, D., and Huang, Y. H.: 1-km grid population dataset of China,
Global Change Research Data
Publishing & Repository, https://doi.org/10.3974/geodb.2014.01.06.V1, 2014a.
Fu, J. Y., Jiang, D., and Huang, Y. H.: 1-km grid GDP dataset of China, Global
Change Research Data Publishing
& Repository, https://doi.org/10.3974/geodb.2014.01.07.V1, 2014b.
Gao, X., Ma, W., Ma, C., Zhang, F., and Wang, Y.: Analysis of the current status
of utilization of crop straw in China, Journal of Huazhong Agricultural
University 21, 242–247, https://doi.org/10.1016/j.jnoncrysol.2008.05.013, 2002 (in Chinese).
Giglio, L., Csiszar, I., and Justice, C: Global distribution and seasonality
of active fires as observed with the Terra and Aqua Moderate Resolution
Imaging Spectroradiometer (MODIS) sensors, J. Geophys. Res., 111, G02016, https://doi.org/10.1029/2005JG000142,
2006.
Giglio, L., Randerson, J. T., and Werf, G. R.: Analysis of daily, monthly, and
annual burned area using the fourth-generation global fire emissions
database (GFED4), J. Geophys. Res.-Biogeo., 118,
317–328, 2013.
Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J.: An enhanced contextual fire detection algorithm for MODIS, Remote Sens. Environ., 87, pp. 273–282, https://doi.org/10.1016/S0034-4257(03)00184-6, 2003.
Giglio, L., Loboda, T., Roy, D. P., Quayle, B., and Justice, C. O.: An active-fire based burned area mapping algorithm for the MODIS sensor, Remote Sens. Environ., 113, pp. 408–420, https://doi.org/10.1016/j.rse.2008.10.006, 2009.
Goldberg, M. D., Kilcoyne, H., Cikanek, H., and Mehta, A.: Joint Polar Satellite
System: The United States next generation civilian polar-orbiting
environmental satellite system, J. Geophys. Res.-Atmos., 118,
13463–13475, https://doi.org/10.1002/2013JD020389, 2013.
He, M., Zheng, J., Yin, S., and Zhang, Y.: Trends, temporal and spatial
characteristics, and uncertainties in biomass burning emissions in the Pearl
River Delta, China, Atmos. Environ., 45, 4051–4059, 2011.
Huang, X., Li, M., Li, J., and Song, Y.: A high-resolution emission
inventory of crop burning in fields in China based on MODIS Thermal
Anomalies/Fire products, Atmos. Environ., 50, 9–15, 2012.
Jiang, D., Zhuang, D., Fu, J., Huang, Y., and Wen, K.: Bioenergy potential
from crop residues in China: Availability and distribution, Renew.
Sust. Energ. Rev., 16, 1377–1382, 2012.
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012.
Li, W. J., Shao, L. Y., and Buseck, P. R.: Haze types in Beijing and the influence of agricultural biomass burning, Atmos. Chem. Phys., 10, 8119–8130, https://doi.org/10.5194/acp-10-8119-2010, 2010.
Li, J. F. and Hu, Y. S.: Analysis on investment and operation of straw-fired
power plants in Jiangsu province, Electric Power Technologic Economics, 5,
p. 005, 2009 (in Chinese).
Li, J., Li, Y., Bo, Y., and Xie, S.: High-resolution historical emission
inventories of crop residue burning in fields in China for the period
1990–2013, Atmos. Environ., 138, 152–161, 2016.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017.
Liu, M., Song, Y., Yao, H., Kang, Y., Li, M., Huang, X., and Hu, M.:
Estimating emissions from agricultural fires in the North China Plain based
on MODIS fire radiative power, Atmos. Environ., 112, 326–334,
2015.
Liu, H., Jiang, G. M., Zhuang, H. Y., and Wang, K. J.: Distribution,
utilization structure and potential of biomass resources in rural China:
With special references of crop residues, Renew. Sust. Energ.
Rev., 12, 1402–1418, 2008.
Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000 – Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution
data set for agricultural and hydrological modeling, Global Biogeochem.
Cy., 24, https://doi.org/10.1029/2008gb003435, 2010.
Qin, Y. and Xie, S. D.: Historical estimation of carbonaceous aerosol
emissions from biomass open burning in China for the period 1990–2005,
Environ. Pollut., 159, 3316–3323, https://doi.org/10.1016/j.envpol.2011.08.042, 2011.
Qiu, X., Duan, L., Chai, F., Wang, S., Yu, Q., and Wang, S.: Deriving high-resolution emission inventory of OBB in China based on satellite observations, Environ. Sci. Technol., 50, 11779, https://doi.org/10.1021/acs.est.6b02705, 2016.
Randerson, J., Chen, Y., Werf, G., Rogers, B., and Morton, D.: Global burned
area and biomass burning emissions from small fires, J. Geophys.
Res.-Biogeo., 117, 2005–2012, 2012.
Roberts, G., Wooster, M. J., and Lagoudakis, E.: Annual and diurnal african biomass burning temporal dynamics, Biogeosciences, 6, 849–866, https://doi.org/10.5194/bg-6-849-2009, 2009.
Roberts, G., Wooster, M. J., Xu, W., Freeborn, P. H., Morcrette, J.-J., Jones, L., Benedetti, A., Jiangping, H., Fisher, D., and Kaiser, J. W.: LSA SAF Meteosat FRP products – Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS), Atmos. Chem. Phys., 15, 13241–13267, https://doi.org/10.5194/acp-15-13241-2015, 2015.
Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A.: The New VIIRS 375 m
active fire detection data product: Algorithm description and initial
assessment, Remote Sens. Environ., 143, 85–96, https://doi.org/10.1016/j.rse.2013.12.008, 2014.
Streets, D. G., Yarber, K. F., Woo, J. H., and Carmichael, G. R.: Biomass burning
in Asia: Annual and seasonal estimates and atmospheric emissions, Global
Biogeochem. Cy., 17, https://doi.org/10.1029/2003GB002040, 2003.
Sun, J., Peng, H., Chen, J., Wang, X., Wei, M., Li, W., Yang, L., Zhang, Q.,
Wang, W., and Mellouki, A.: An estimation of CO2 emission via agricultural
crop residue open field burning in China from 1996 to 2013, J.
Clean. Prod., 112, https://doi.org/10.1016/j.jclepro.2015.09.112, 2016.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen,
Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G.
J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates
during 1997–2016, Earth Syst. Sci. Data, 9, 697–720,
https://doi.org/10.5194/essd-9-697-2017, 2017.
Wang, C. and Zhang, S.: A fine of up to 1000 RMB per incident of crop residue burning in Chengdu, available at: http://news.chengdu.cn/2016/1106/1829718.shtml (last access: 5 August 2020), Chengdu Business Daily, 2016.
Wang, S. and Zhang, C.: Spatial and temporal distribution of air pollutant
emissions from open burning of crop residues in China, Sciencepaper online,
3, 329–333, 2008.
Wolfe, R. E., Lin, G., Nishihama, M., Tewari, K. P., Tilton, J. C., and
Isaacman, A. R.: Suomi NPP VIIRS prelaunch and on-orbit geometric
calibration and characterization, J. Geophys. Res.-Atmos., 118(20), 11–508, 2013.
Wooster, M. J., Roberts, G., Perry, G. L. W., and Kaufman, Y. J.: Retrieval
of biomass combustion rates and totals from fire radiative power
observations: FRP derivation and calibration relationships between biomass
consumption and fire radiative energy release, J. Geophys.
Res.-Atmos., 110, D24311, https://doi.org/10.1029/2005JD006318, 2005.
World Health Organization (WHO): Regional Office for Europe, Air quality guidelines global update 2005: particulate matter, ozone, nitrogen dioxide and sulfur dioxide, Copenhagen: WHO Regional Office for Europe, available at: https://apps.who.int/iris/handle/10665/107823 (last access: 5 August 2020), 2006.
Xu, W., Wooster, M. J., Kaneko, T., He, J., Zhang, T., and Fisher, D.: Major
advances in geostationary fire radiative power (FRP) retrieval over Asia and
Australia stemming from use of Himarawi-8 AHI, Remote Sens.
Environ., 193, 138–149, 2017.
Yamaji, K., Li, J., Uno, I., Kanaya, Y., Irie, H., Takigawa, M., Komazaki, Y., Pochanart, P., Liu, Y., Tanimoto, H., Ohara, T., Yan, X., Wang, Z., and Akimoto, H.: Impact of open crop residual burning on air quality over Central Eastern China during the Mount Tai Experiment 2006 (MTX2006), Atmos. Chem. Phys., 10, 7353–7368, https://doi.org/10.5194/acp-10-7353-2010, 2010.
Yan, X., Ohara, T., and Akimoto, H.: Bottom-up estimate of biomass burning
in mainland China, Atmos. Environ., 40, 5262–5273, 2006.
Yang, S., He, H., Lu, S., Chen, D., and Zhu, J.: Quantification of crop
residue burning in the field and its influence on ambient air quality in
Suqian, China, Atmos. Environ., 42, 1961–1969, 2008.
Za, Y.: Drone footage of huge smoke from crop residue burning in Hebei Province, available at: http://www.chinanews.com/sh/2015/11-04/7606112.shtml (last access: 5 August 2020), Legislative Evening Newspaper, 2015.
Zhang, H., Ye, X., Cheng, T., Chen, J., Yang, X., Wang, L., and Zhang, R.: A
laboratory study of agricultural crop residue combustion in China: Emission
factors and emission inventory, Atmos. Environ., 42,
8432–8441, 2008.
Zhang, L., Liu, Y., and Hao, L.: Contributions of open crop straw burning
emissions to PM2.5 concentrations in China, Environ. Res. Lett.,
11, 014014, https://doi.org/10.1088/1748-9326/11/1/014014, 2016.
Zhang, T., Wooster, M. J., Green, D. C., and Main, B.: New field-based
agricultural biomass burning trace gas, PM2.5, and black carbon emission
ratios and factors measured in situ at crop residue fires in Eastern
China, Atmos. Environ., 121, 22–34, https://doi.org/10.1016/j.atmosenv.2015.05.010, 2015.
Zhang, T., Wooster, M. J., and Xu, W.: Approaches for synergistically
exploiting VIIRS I-and M-Band data in regional active fire detection and FRP
assessment: A demonstration with respect to agricultural residue burning in
Eastern China, Remote Sens. Environ., 198, 407–424, 2017.
Zhang, T., Wooster, M., de Jong, M., and Xu, W.: How Well Does the “Small
Fire Boost” Methodology Used within the GFED4. 1s Fire Emissions Database
Represent the Timing, Location and Magnitude of Agricultural Burning?,
Remote Sens., 10, p. 823, 2018.
Zhang, T., de Jong, M., Wooster, M., and Xu, W.: Gridded Daily Agricultural Burning Emission Inventory of Eastern China, 2012–2015, V0.0, Centre for Environmental Data Analysis, 26 August 2020, https://doi.org/10.5285/1d70803fab8f46ba983b730ede52421f, 2020.
Zhao, H., Tong, D. Q., Gao, C., and Wang, G.: Effect of dramatic land use
change on gaseous pollutant emissions from biomass burning in North Eastern
China, Atmos. Res., 153, 429–436, 2015.
Zhou, L., Divakarla, M., Liu, X., Layns, A., and Goldberg, M.: An Overview of
the Science Performances and Calibration/Validation of Joint Polar Satellite
System Operational Products, Remote Sens. 11, 698,
https://doi.org/10.3390/rs11060698, 2019.
Zuo, S.: The most polluted day in Hefei this year: PM2.5 concentration raised 6 times in 5 hours, available at: http://www.chinanews.com/gn/2015/12-11/7666514.shtml (last access: 5 August 2020), Anhui News, 2015.
Short summary
With strong public concern regarding air pollution problems in eastern China, where megacities like Beijing and Shanghai are located, smoke from agricultural fires burning during the post-harvest season has been blamed as one of the major causes. This research uses advanced satellite remote sensing data and methods to estimate the smoke emissions from agricultural fires in eastern China. Up to a 22 % contribution to PM2.5 was found during extreme cases.
With strong public concern regarding air pollution problems in eastern China, where megacities...
Altmetrics
Final-revised paper
Preprint