Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10193-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-10193-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization and source apportionment of aerosol light scattering in a typical polluted city in the Yangtze River Delta, China
Dong Chen
State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd., Nanjing, Jiangsu 210036, China
Yu Zhao
CORRESPONDING AUTHOR
State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing, Jiangsu 210044, China
Jie Zhang
Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd., Nanjing, Jiangsu 210036, China
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing, Jiangsu 210044, China
Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
Xingna Yu
School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
Related authors
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Xinyu Wang, Nan Chen, Bo Zhu, and Huan Yu
Atmos. Chem. Phys., 25, 9601–9615, https://doi.org/10.5194/acp-25-9601-2025, https://doi.org/10.5194/acp-25-9601-2025, 2025
Short summary
Short summary
Gas–particle partitioning governs the fate of organic molecules and the formation of organic aerosols in the atmosphere. Based on field measurement data, we built machine learning models to predict gas–particle partitioning. We also unveiled previously unrecognized interactions that led to the deviations of partitioning from the equilibrium state under real atmospheric conditions. Our study provided valuable insights for future research in atmospheric chemistry.
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
Atmos. Chem. Phys., 25, 2649–2666, https://doi.org/10.5194/acp-25-2649-2025, https://doi.org/10.5194/acp-25-2649-2025, 2025
Short summary
Short summary
We develop a modeling framework to predict future ozone concentrations (till the 2060s) in China following an IPCC scenario. We evaluate the contributions of climatic, anthropogenic, and biogenic factors by season and region. We find persistent emission controls will alter the nonlinear response of ozone to its precursors and dominate the declining ozone level. The outcomes highlight the importance of human actions, even with a climate penalty on air quality.
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
Atmos. Chem. Phys., 25, 2147–2166, https://doi.org/10.5194/acp-25-2147-2025, https://doi.org/10.5194/acp-25-2147-2025, 2025
Short summary
Short summary
We combined two global climate change pathways and three national emission control scenarios to analyze the future evolution of reactive nitrogen (Nr) deposition till the 2060s in China with air quality modeling. We show China’s clean air and carbon neutrality policies would overcome the adverse effects of climate change and efficiently reduce Nr deposition. The outflow of Nr fluxes from mainland China to the west Pacific would also be clearly reduced from continuous stringent emission controls.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Kaiyue Zhou, Wen Xu, Lin Zhang, Mingrui Ma, Xuejun Liu, and Yu Zhao
Atmos. Chem. Phys., 23, 8531–8551, https://doi.org/10.5194/acp-23-8531-2023, https://doi.org/10.5194/acp-23-8531-2023, 2023
Short summary
Short summary
We developed a dataset of the long-term (2005–2020) variabilities of China’s nitrogen and sulfur deposition, with multiple statistical models that combine available observations and chemistry transport modeling. We demonstrated the strong impact of human activities and national pollution control actions on the spatiotemporal changes in deposition and indicated a relatively small benefit of emission abatement on deposition (and thereby ecological risk) for China compared to Europe and the USA.
Chen Gu, Lei Zhang, Zidie Xu, Sijia Xia, Yutong Wang, Li Li, Zeren Wang, Qiuyue Zhao, Hanying Wang, and Yu Zhao
Atmos. Chem. Phys., 23, 4247–4269, https://doi.org/10.5194/acp-23-4247-2023, https://doi.org/10.5194/acp-23-4247-2023, 2023
Short summary
Short summary
We demonstrated the development of a high-resolution emission inventory and its application to evaluate the effectiveness of emission control actions, by incorporating the improved methodology, the best available data, and air quality modeling. We show that substantial efforts for emission controls indeed played an important role in air quality improvement even with worsened meteorological conditions and that the contributions of individual measures to emission reduction were greatly changing.
Yibei Wan, Xiangpeng Huang, Chong Xing, Qiongqiong Wang, Xinlei Ge, and Huan Yu
Atmos. Chem. Phys., 22, 15413–15423, https://doi.org/10.5194/acp-22-15413-2022, https://doi.org/10.5194/acp-22-15413-2022, 2022
Short summary
Short summary
The organic compounds involved in continental new particle formation have been investigated in depth in the last 2 decades. In contrast, no prior work has studied the exact chemical composition of organic compounds and their role in coastal new particle formation. We present a complementary study to the ongoing laboratory and field research on iodine nucleation in the coastal atmosphere. This study provided a more complete story of coastal I-NPF from low-tide macroalgal emission.
Haoran Zhang, Nan Li, Keqin Tang, Hong Liao, Chong Shi, Cheng Huang, Hongli Wang, Song Guo, Min Hu, Xinlei Ge, Mindong Chen, Zhenxin Liu, Huan Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 5495–5514, https://doi.org/10.5194/acp-22-5495-2022, https://doi.org/10.5194/acp-22-5495-2022, 2022
Short summary
Short summary
We developed a new algorithm with low economic/technique costs to identify primary and secondary components of PM2.5. Our model was shown to be reliable by comparison with different observation datasets. We systematically explored the patterns and changes in the secondary PM2.5 pollution in China at large spatial and time scales. We believe that this method is a promising tool for efficiently estimating primary and secondary PM2.5, and has huge potential for future PM mitigation.
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen
Atmos. Chem. Phys., 21, 6411–6430, https://doi.org/10.5194/acp-21-6411-2021, https://doi.org/10.5194/acp-21-6411-2021, 2021
Short summary
Short summary
We combined air quality and exposure response models to analyze the benefits for air quality and human health of China’s ultra-low emission policy in one of its most developed regions. Atmospheric observations and the air quality model were also used to demonstrate improvement of emission inventories incorporating online emission monitoring data. With implementation of the policy in both power and industrial sectors, the attributable deaths due to PM2.5 exposure are estimated to decrease 5.5 %.
Yang Yang, Yu Zhao, Lei Zhang, Jie Zhang, Xin Huang, Xuefen Zhao, Yan Zhang, Mengxiao Xi, and Yi Lu
Atmos. Chem. Phys., 21, 1191–1209, https://doi.org/10.5194/acp-21-1191-2021, https://doi.org/10.5194/acp-21-1191-2021, 2021
Short summary
Short summary
We conducted new NOx emission estimation based on the satellite-derived NO2 column constraint and found reduced emissions compared to previous estimates for a developed region in east China. The subsequent improvement in air quality modeling was demonstrated based on available ground observations. With multiple emission reduction cases for various pollutants, we explored the effective control approaches for ozone and inorganic aerosol pollution.
Cited articles
Alexander, D. T. L., Crozier, P. A., and Anderson, J. R.: Brown carbon spheres
in East Asian outflow and their optical properties, Science, 321, 833–836,
https://doi.org/10.1126/science.1155296, 2008.
Andreae, M. O., Schmid, O., Yang, H., Chand, D., Yu, J. Z., Zeng, L. M.,
and Zhang, Y. H.: Optical properties and chemical composition of the atmospheric
aerosol in urban Guangzhou, China, Atmos. Environ., 42, 6335–6350,
https://doi.org/10.1016/j.atmosenv.2008.01.030, 2008.
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small
particles [R], New York: Wiley, Inc., 1998.
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous Particles:
An Investigative Review, Aerosol Sci. Technol., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006.
Cao, J. J., Lee, S. C., Chow, J. C., Watson, J. G., Ho, K. F., Zhang, R. J.,
Jin, Z. D., Shen, Z. X., Chen, G. C., Kang, Y. M., Zou, S. C., Zhang, L. Z.,
Qi, S. H., Dai, M. H., Cheng, Y., and Hu, K.: Spatial and seasonal distributions
of carbonaceous aerosols over China, J. Geophys. Res., 112, D22S11,
https://doi.org/10.1029/2006JD008205, 2007.
Cao, J. J., Wang, Q. Y., Chow, J. C., Watson, J. G., Tie, X. X., Shen, Z.
X., Wang, P., and An, Z. S.: Impacts of aerosol compositions on visibility
impairment in Xi'an, China, Atmos. Environ., 59, 559–566,
https://doi.org/10.1016/j.atmosenv.2012.05.036, 2012.
Chen, D., Cui, H., Zhao, Y., Yin, L., Lu, Y., and Wang, Q.: A two-year study of
carbonaceous aerosols in ambient PM2.5 at a regional background site
for western Yangtze River Delta, China, Atmos. Res., 183, 351–361,
https://doi.org/10.1016/j.atmosres.2016.09.004, 2017.
Chen, D., Zhao, Y., Lyu, R., Wu, R., Dai, L., Zhao, Y., Chen, F., Zhang, J.,
Yu, H., and Guan, M.: Seasonal and spatial variations of optical properties of
light absorbing carbon and its influencing factors in a typical polluted
city in Yangtze River Delta, China, Atmos. Environ., 199, 45–54,
https://doi.org/10.1016/j.atmosenv.2018.11.022, 2019.
Cheng, M. C., You, C. F., Cao, J., and Jin, Z.: Spatial and seasonal variability
of water soluble ions in PM2.5 aerosols in 14 major cities in China, Atmos.
Environ., 60, 182–192, https://doi.org/10.1016/j.atmosenv.2012.06.037, 2012.
Cheng, S. H., Yang, L. X., Zhou, X. H., Xue, L. K., Gao, X. M., Zhou, Y.,
and Wang, W. X.: Size-fractionated water-soluble ions, situ pH and water
content in aerosol on hazy days and the influences on visibility impairment
in Jinan, China, Atmos. Environ., 45, 4631–4640,
https://doi.org/10.1016/j.atmosenv.2011.05.057, 2011.
Cheng, Y., He, K. B., Du, Z. Y., Engling, G., Liu, J. M., Ma, Y. L., Zheng, M., and
Weber, R. J.: The characteristics of brown carbon aerosol during winter in
Beijing, Atmos. Environ., 127, 355–364, https://doi.org/10.1016/j.atmosenv.2015.12.035,
2016.
Cheng, Y., He, K. B., Engling, G., Weber, R., Liu, J. M., Du, Z. Y., and Dong,
S. P.: Brown and black carbon in Beijing aerosol: Implications for the
effects of brown coating on light absorption by black carbon, Sci. Total
Environ., 599–600, 1047–1055, https://doi.org/10.1016/j.scitotenv.2017.05.061, 2017.
Cheng, Z., Jiang, J., Chen, C., Gao, J., Wang, S., Watson, J. G., Wang, H.,
Deng, J., Wang, B., and Zhou, M.: Estimation of aerosol mass scattering
efficiencies under high mass loading: case study for the megacity of
Shanghai, China, Environ. Sci. Technol., 49, 831–838, https://doi.org/10.1021/es504567q,
2015.
Cui, X., Wang, X., Yang, L., Chen, B., Chen, J., Andersson, A., and Gustafsson,
Ö.: Radiative absorption enhancement from coatings on black carbon
aerosols, Sci. Total Environ., 551–552, 51–56,
https://doi.org/10.1016/j.scitotenv.2016.02.026, 2016.
Ding, J., Han, S., Zhang, Y., Feng, Y., Wu, J., Shi, G., and Wang, J.: Chemical
characteristics of particles and light extinction effects in winter in
Tianjin, Res. Environ. Sci., 28, 1353–1361,
https://doi.org/10.13198/j.issn.1001-6929.2015.09.03, 2015.
Feng, J. L., Sun, P., Hu, X. L., Zhao, W., Wu, M. H., and Fu, J. M.: The
chemical composition and sources of PM2.5 during the 2009 Chinese New Year's
holiday in Shanghai, Atmos. Res., 118, 435–444,
https://doi.org/10.1016/j.atmosres.2012.08.012, 2012.
Huang, R. J., Yang, L., Cao, J., Chen, Y., Chen, Q., Li, Y., Duan, J., Zhu,
C., Dai, W., and Wang, K.: Brown Carbon Aerosol in Urban Xi'an, Northwest China:
The Composition and Light Absorption Properties, Environ. Sci. Technol., 52,
6825–6833, https://doi.org/10.1021/acs.est.8b02386, 2018.
Huang, Y. W.: Effects of changes in emission and meteorological conditions on
fine particulate levels in the city scale, Master thesis, Nanjing
University, Nanjing, China, 2018.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., and
Vonmont, H.: Chemical characterisation of PM2.5, PM10 and coarse particles
at urban, near-city and rural sites in Switzerland, Atmos. Environ., 39,
637–651, https://doi.org/10.1016/j.atmosenv.2004.10.027, 2005.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black
carbon in atmospheric aerosols, Nature, 409, 695–697, https://doi.org/10.1038/35055518,
2001.
Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M., Tahir, N. M., and Chung, J. X.: Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment, Atmos. Chem. Phys., 16, 597–617, https://doi.org/10.5194/acp-16-597-2016, 2016.
Kim, E. and Hopke, P. K.: Improving source identification of fine particles in a
rural northeastern US area utilizing temperature-resolved carbon fractions,
J. Geophys. Res.-Atmos., 109, D09204, https://doi.org/10.1029/2003jd004199, 2004.
Lai, S. C., Zhao, Y., Ding, A. J., Zhang, Y. Y., Song, T. L., Zheng, J. Y., Ho, K. F., Lee, S. C., and Zhong, L. J.: Characterization of PM2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China, Atmos. Res., 167, 208–215, https://doi.org/10.1016/j.atmosres.2015.08.007, 2016.
Lan, Z. J., Huang, X. F., Yu, K. Y., Sun, T. L., Zeng, L. W., and Hu, M.: Light
absorption of black carbon aerosol and its enhancement by mixing state in an
urban atmosphere in South China, Atmos. Environ., 69, 118–123,
https://doi.org/10.1016/j.atmosenv.2012.12.009, 2013.
Lang, J. L., Cheng, S. Y., Wen, W., Liu, C., and Wang, G.: Development and
application of a new PM2.5 source apportionment approach, Aerosol Air
Qual. Res., 17, 340–350, https://doi.org/10.4209/aaqr.2015.10.0588, 2017.
Lei, Y., Shen, Z., Wang, Q., Zhang, T., Cao, J., Sun, J., Zhang, Q., Wang,
L., Xu, H., and Tian, J.: Optical characteristics and source apportionment
of brown carbon in winter PM2.5 over Yulin in Northern China, Atmos. Res.,
213, 27–33, https://doi.org/10.1016/j.atmosres.2018.05.018, 2018.
Li, B., Zhang, J., Zhao, Y., Yuan, S., Zhao, Q., Shen, G., and Wu, H.: Seasonal
variation of urban carbonaceous aerosols in a typical city Nanjing in
Yangtze River Delta, China, Atmos. Environ., 106, 223–231,
https://doi.org/10.1016/j.atmosenv.2015.01.064, 2015.
Liu, D., Whitehead, J., Alfarra, M. R., Reyesvillegas, E., Spracklen, D. V.,
Reddington, C. L., Kong, S., Williams, P. I., Ting, Y. C., and Haslett, S.:
Black-carbon absorption enhancement in the atmosphere determined by particle
mixing state, Nature Geosci., 10, 184–188, https://doi.org/10.1038/ngeo2901, 2017.
Liu, H. J., Zhao, C. S., Nekat, B., Ma, N., Wiedensohler, A., van Pinxteren, D., Spindler, G., Müller, K., and Herrmann, H.: Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain, Atmos. Chem. Phys., 14, 2525–2539, https://doi.org/10.5194/acp-14-2525-2014, 2014.
Liu, X., Cheng, Y., Zhang, Y., Jung, J., Sugimoto, N., Chang, S. Y., Kim, Y.
J., Fan, S., and Zeng, L.: Influences of relative humidity and particle chemical
composition on aerosol scattering properties during the 2006 PRD campaign,
Atmos. Environ., 42, 1525–1536, https://doi.org/10.1016/j.atmosenv.2007.10.077, 2008.
Lowenthal, D. H. and Naresh, K.: PM2.5 mass and light extinction reconstruction
in IMPROVE, J. Air Waste Manag. Assoc., 53, 1109–1120,
https://doi.org/10.1080/10473289.2003.10466264, 2003.
Ma, N., Zhao, C. S., Müller, T., Cheng, Y. F., Liu, P. F., Deng, Z. Z., Xu, W. Y., Ran, L., Nekat, B., van Pinxteren, D., Gnauk, T., Müller, K., Herrmann, H., Yan, P., Zhou, X. J., and Wiedensohler, A.: A new method to determine the mixing state of light absorbing carbonaceous using the measured aerosol optical properties and number size distributions, Atmos. Chem. Phys., 12, 2381–2397, https://doi.org/10.5194/acp-12-2381-2012, 2012.
Malm, W. C. and Hand, J. L.: An examination of the physical and optical
properties of aerosols collected in the IMPROVE program, Atmos. Environ.,
41, 3407–3427, https://doi.org/10.1016/j.atmosenv.2006.12.012, 2007.
Massabò, D., Caponi, L., Bove, M. C., and Prati, P.: Brown carbon and
thermal-optical analysis: A correction based on optical multi-wavelength
apportionment of atmospheric aerosols, Atmos. Environ., 125, 119–125,
https://doi.org/10.1016/j.atmosenv.2015.11.011, 2016.
Meier, J., Wehner, B., Massling, A., Birmili, W., Nowak, A., Gnauk, T., Brüggemann, E., Herrmann, H., Min, H., and Wiedensohler, A.: Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: a comparison of three experimental methods, Atmos. Chem. Phys., 9, 6865–6880, https://doi.org/10.5194/acp-9-6865-2009, 2009.
Ministry of Environmental Protection of China (MEP): Technical regulation on
ambient air quality index, China Environ. Sci. Press, Beijing, China, HJ633-2012, 2012.
Moon, K. J., Han, J. S., Ghim, Y. S., and Kim, Y. J.: Source apportionment of
fine carbonaceous particles by positive matrix factorization at Gosan
background site in East Asia, Environ. Int., 34, 654–664,
https://doi.org/10.1016/j.envint.2007.12.021, 2008.
Onasch, T. B., Massoli, P., Kebabian, P. L., Hills, F. B., Bacon, F. W.,
and Freedman, A.: Single Scattering Albedo Monitor for Airborne Particulates,
Aerosol Sci. Technol., 49, 267–279, https://doi.org/10.1080/02786826.2015.1022248, 2015.
Pakkanen, T. A., Kerminen, V. M., Hillamo, R. E., Makinen, M., Makela, T.,
and Virkkula, A.: Distribution of nitrate over seasalt and soil derived
particles implications from a field study, J. Atmos. Chem., 24, 189–205,
1996.
Petzold, A., Onasch, T., Kebabian, P., and Freedman, A.: Intercomparison of a Cavity Attenuated Phase Shift-based extinction monitor (CAPS PMex) with an integrating nephelometer and a filter-based absorption monitor, Atmos. Meas. Tech., 6, 1141–1151, https://doi.org/10.5194/amt-6-1141-2013, 2013.
Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., and Hand, J.:
Revised algorithm for estimating light extinction from IMPROVE particle
speciation data, J. Air Waste Manag. Assoc., 57, 1326–1336,
https://doi.org/10.3155/1047-3289.57.11.1326, 2007.
Ramanathan, V., Li, F., Ramana, M. V., Praveen, P. S., Kim, D., Corrigan, C.
E., Nguyen, H., Stone, E. A., Schauer, J. J., Carmichael, G. R., Adhikary,
B., and Yoon, S. C.: Atmospheric brown clouds: Hemispherical and regional
variations in long-range transport, absorption, and radiative forcing, J.
Geophys. Res.-Atmos., 112, D22S21, https://doi.org/10.1029/2006JD008124, 2007.
Schwartz, S.: The Whitehouse Effect–Shortwave radiative forcing of climate
by anthropogenic aerosols: An overview, J. Aerosol Sci., 27, 359–382,
https://doi.org/10.1016/0021-8502(95)00533-1, 1996.
Seinfield, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edn., John Wiley & Sons Inc., Hoboken, 2006.
Shao, P., An, J., Xin, J., Wu, F., Wang, J., Ji, D., and Wang, Y.: Source
apportionment of VOCs and the contribution to photochemical ozone formation
during summer in the typical industrial area in the Yangtze River Delta,
China, Atmos. Res., 176–177, 64-74, https://doi.org/10.1016/j.atmosres.2016.02.015,
2016.
Shi, Y., Chen, J., Hu, D., Wang, L., Yang, X., and Wang, X.: Airborne submicron
particulate (PM1) pollution in Shanghai, China: chemical variability,
formation/dissociation of associated semi-volatile components and the
impacts on visibility, Sci. Total Environ., 473, 199–206,
https://doi.org/10.1016/j.scitotenv.2013.12.024, 2014.
Swietlicki, E., Hansson, H. C., Hämeri, K., Svenningsson, B., Massling,
A., McFiggans, G., McMurry, P. H., Petäjä, T., Tunved, P., Gysel,
M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J.,
Wiedensohler, A., and Kulmala, M.: Hygroscopic properties of submicrometer
atmospheric aerosol particles measured with H-TDMA instruments in various
environments – a review, Tellus B, 60, 432–469,
https://doi.org/10.1111/j.1600-0889.2008.00350.x, 2008.
Tang, I. N.: Chemical and size effects of hygroscopic aerosols on light
scattering coefficients, J. Geophys. Res.-Atmos., 101, 19245–19250,
https://doi.org/10.1029/96jd03003, 1996.
Tao, J., Cheng, T., and Zhang R.: Chemical composition of PM2.5 at an urban site
of Chengdu in southwestern China, Adv. Atmos. Sci., 30, 1070–1084,
https://doi.org/10.1007/s00376-012-2168-7, 2013.
Tao, J., Zhang, L., Cao, J., Hsu, S. C., Xia, X., Zhang, Z., Lin, Z., Cheng,
T., and Zhang, R.: Characterization and source apportionment of aerosol light
extinction in Chengdu, southwest China, Atmos. Environ., 95, 552–562,
https://doi.org/10.1016/j.atmosenv.2014.07.017, 2014a.
Tao, J., Zhang, L., Kinfai, H. O., Zhang, R., Lin, Z., Zhang, Z., Lin, M.,
Cao, J., Liu, S., and Wang, G.: Impact of PM2.5 chemical compositions on
aerosol light scattering in Guangzhou – the largest megacity in South China,
Atmos. Res., 135–136, 48–58, https://doi.org/10.1016/j.atmosres.2013.08.015, 2014b.
Tao, J., Zhang, L., Gao, J., Wang, H., Chai, F., and Wang, S: Aerosol chemical
composition and light scattering during a winter season in Beijing, Atmos.
Environ., 110, 36–44, https://doi.org/10.1016/j.atmosenv.2015.03.037, 2015.
Tao, J. C., Zhao, C. S., Ma, N., and Liu, P. F.: The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO2 photolysis rate coefficient, Atmos. Chem. Phys., 14, 12055–12067, https://doi.org/10.5194/acp-14-12055-2014, 2014.
Tian, S. L., Pan, Y. P., Liu, Z., Wen, T., and Wang, Y. S.: Size-resolved
aerosol chemical analysis of extreme haze pollution events during early 2013
in urban Beijing, China, J. Hazard. Mater., 279, 452–460,
https://doi.org/10.1016/j.jhazmat.2014.07.023, 2014.
Tian, S. L., Pan, Y. P., and Wang, Y. S.: Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes, Atmos. Chem. Phys., 16, 1–19, https://doi.org/10.5194/acp-16-1-2016, 2016.
Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H.,
Granados-Muñoz, M. J., Olmo, F. J., and Alados-Arboledas, L.: Effect of
hygroscopic growth on the aerosol light-scattering coefficient: A review of
measurements, techniques and error sources, Atmos. Environ., 141, 494–507,
https://doi.org/10.1016/j.atmosenv.2016.07.021, 2016.
Wang, H., An, J., Cheng, M., Shen, L., Zhu, B., Li, Y., Wang, Y., Duan, Q.,
Sullivan, A., and Xia, L.: One year online measurements of water-soluble ions at
the industrially polluted town of Nanjing, China: Sources, seasonal and
diurnal variations, Chemosphere, 148, 526–536,
https://doi.org/10.1016/j.chemosphere.2016.01.066, 2016a.
Wang, J., Zhang, Y., Feng, Y., Zheng, X., Li, J., Hong, S., Shen, J., Tan,
Z., Jing, D., and Qi, Z.: Characterization and source apportionment of aerosol
light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze
River Delta of China, Atmos. Res., 178–179, 570–579,
https://doi.org/10.1016/j.atmosres.2016.05.009, 2016b.
Wang, S. R., Yu, Y. Y., Wang, Q. G., Lu, Y., Yin, L. N., Zhang, Y. Y., and Lu,
X. B.: Source apportionment of PM2.5 in Nanjing by PMF, China
Environ. Sci., 35, 3535–3542, 2015.
Watson, J. G.: Visibility: Science and regulation, J. Air Waste Manage.
Assoc., 52, 628–713, 2002.
Watson, J. G., Chow, J. C., Lowenthal, D. H., Chen, L.-W. A., Shaw, S., Edgerton, E. S., and Blanchard, C. L.: PM2.5 source apportionment with
organic markers in the Southeastern Aerosol Research and Characterization
(SEARCH) study, J. Air Waste Manage. Assoc., 65, 1104–1118,
https://doi.org/10.1080/10962247.2015.1063551, 2015.
Xu, J., Bergin, M. H., Yu, X., Liu, G., Zhao, J., Carrico, C. M., and Baumann,
K.: Measurement of aerosol chemical, physical and radiative properties in
the Yangtze delta region of China, Atmos. Environ., 36, 161–173,
https://doi.org/10.1016/s1352-2310(01)00455-1, 2002.
Xu, J., Tao, J., Zhang, R., Cheng, T., Leng, C., Chen, J., Huang, G., Li,
X., and Zhu, Z.: Measurements of surface aerosol optical properties in winter of
Shanghai, Atmos. Res., 109–110, 25–35, https://doi.org/10.1016/j.atmosres.2012.02.008,
2012.
Xue, L., Ding, A., Gao, J., Wang, T., Wang, W., Wang, X., Lei, H., Jin, D.,
and Qi, Y.: Aircraft measurements of the vertical distribution of sulfur dioxide
and aerosol scattering coefficient in China, Atmos. Environ., 44, 278–282,
https://doi.org/10.1016/j.atmosenv.2009.10.026, 2010.
Yan, C. Q., Zheng, M., and Zhang, Y. H.: Research progress and direction of
atmospheric brown carbon, Environ. Sci., 35, 4404–4414,
https://doi.org/10.13227/j.hjkx.2014.11.050, 2014.
Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G., and Zhao, Q.: Characteristics of PM2.5 speciation in representative megacities and across China, Atmos. Chem. Phys., 11, 5207–5219, https://doi.org/10.5194/acp-11-5207-2011, 2011.
Zhang, L., Sun, J. Y., Shen, X. J., Zhang, Y. M., Che, H., Ma, Q. L., Zhang, Y. W., Zhang, X. Y., and Ogren, J. A.: Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China, Atmos. Chem. Phys., 15, 8439–8454, https://doi.org/10.5194/acp-15-8439-2015, 2015.
Zhang, Y., Forrister, H., Liu, J., Dibb, J., Anderson, B., Schwarz, J. P.,
Perring, A. E., Jimenez, J. L., Campuzanojost, P., and Wang, Y.:
Top-of-atmosphere radiative forcing affected by brown carbon in the upper
troposphere, Nature Geosci., 10, 486–489, https://doi.org/10.1038/ngeo2960, 2017.
Zhao, P. S., Dong, F., He, D., Zhao, X. J., Zhang, X. L., Zhang, W. Z., Yao, Q., and Liu, H. Y.: Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China, Atmos. Chem. Phys., 13, 4631–4644, https://doi.org/10.5194/acp-13-4631-2013, 2013.
Zhao, Y., Qiu, L. P., Xu, R. Y., Xie, F. J., Zhang, Q., Yu, Y. Y., Nielsen, C. P., Qin, H. X., Wang, H. K., Wu, X. C., Li, W. Q., and Zhang, J.: Advantages of a city-scale emission inventory for urban air quality research and policy: the case of Nanjing, a typical industrial city in the Yangtze River Delta, China, Atmos. Chem. Phys., 15, 12623–12644, https://doi.org/10.5194/acp-15-12623-2015, 2015.
Short summary
We studied the characteristics and sources of aerosol scattering for Nanjing. The method of aerosol scattering estimation was optimized based on field measurements, and the impacts of aerosol size and composition were quantified. To explore the reasons for the reduced visibility, source apportionment of aerosol scattering was conducted by pollution level. This work stressed the linkage between aerosols and visibility and improved the understanding of emissions and their role in air quality.
We studied the characteristics and sources of aerosol scattering for Nanjing. The method of...
Altmetrics
Final-revised paper
Preprint