Articles | Volume 19, issue 13
https://doi.org/10.5194/acp-19-8619-2019
https://doi.org/10.5194/acp-19-8619-2019
Research article
 | 
08 Jul 2019
Research article |  | 08 Jul 2019

The 2015 and 2016 wintertime air pollution in China: SO2 emission changes derived from a WRF-Chem/EnKF coupled data assimilation system

Dan Chen, Zhiquan Liu, Junmei Ban, and Min Chen

Related authors

Investigating the importance of sub-grid particle formation in point source plumes over eastern China using IAP-AACM v1.0 with a sub-grid parameterization
Ying Wei, Xueshun Chen, Huansheng Chen, Yele Sun, Wenyi Yang, Huiyun Du, Qizhong Wu, Dan Chen, Xiujuan Zhao, Jie Li, and Zifa Wang
Geosci. Model Dev., 14, 4411–4428, https://doi.org/10.5194/gmd-14-4411-2021,https://doi.org/10.5194/gmd-14-4411-2021, 2021
Short summary
Impacts of aerosol–radiation interaction on meteorological forecasts over northern China by offline coupling of the WRF-Chem-simulated aerosol optical depth into WRF: a case study during a heavy pollution event
Yang Yang, Min Chen, Xiujuan Zhao, Dan Chen, Shuiyong Fan, Jianping Guo, and Shaukat Ali
Atmos. Chem. Phys., 20, 12527–12547, https://doi.org/10.5194/acp-20-12527-2020,https://doi.org/10.5194/acp-20-12527-2020, 2020
Short summary
Development and application of the WRFDA-Chem three-dimensional variational (3DVAR) system: aiming to improve air quality forecasting and diagnose model deficiencies
Wei Sun, Zhiquan Liu, Dan Chen, Pusheng Zhao, and Min Chen
Atmos. Chem. Phys., 20, 9311–9329, https://doi.org/10.5194/acp-20-9311-2020,https://doi.org/10.5194/acp-20-9311-2020, 2020
Short summary
Retrospective analysis of 2015–2017 wintertime PM2.5 in China: response to emission regulations and the role of meteorology
Dan Chen, Zhiquan Liu, Junmei Ban, Pusheng Zhao, and Min Chen
Atmos. Chem. Phys., 19, 7409–7427, https://doi.org/10.5194/acp-19-7409-2019,https://doi.org/10.5194/acp-19-7409-2019, 2019
Short summary
The impact of multi-species surface chemical observation assimilation on air quality forecasts in China
Zhen Peng, Lili Lei, Zhiquan Liu, Jianning Sun, Aijun Ding, Junmei Ban, Dan Chen, Xingxia Kou, and Kekuan Chu
Atmos. Chem. Phys., 18, 17387–17404, https://doi.org/10.5194/acp-18-17387-2018,https://doi.org/10.5194/acp-18-17387-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Sensitivity of climate effects of hydrogen to leakage size, location, and chemical background
Ragnhild Bieltvedt Skeie, Marit Sandstad, Srinath Krishnan, Gunnar Myhre, and Maria Sand
Atmos. Chem. Phys., 25, 4929–4942, https://doi.org/10.5194/acp-25-4929-2025,https://doi.org/10.5194/acp-25-4929-2025, 2025
Short summary
Evaluating tropospheric nitrogen dioxide in UKCA using OMI satellite retrievals over south and east Asia
Alok K. Pandey, David S. Stevenson, Alcide Zhao, Richard J. Pope, Ryan Hossaini, Krishan Kumar, and Martyn P. Chipperfield
Atmos. Chem. Phys., 25, 4785–4802, https://doi.org/10.5194/acp-25-4785-2025,https://doi.org/10.5194/acp-25-4785-2025, 2025
Short summary
Technical note: A comparative study of chemistry schemes for volcanic sulfur dioxide in Lagrangian transport simulations – a case study of the 2019 Raikoke eruption
Mingzhao Liu, Lars Hoffmann, Jens-Uwe Grooß, Zhongyin Cai, Sabine Grießbach, and Yi Heng
Atmos. Chem. Phys., 25, 4403–4418, https://doi.org/10.5194/acp-25-4403-2025,https://doi.org/10.5194/acp-25-4403-2025, 2025
Short summary
Revisiting the high tropospheric ozone over southern Africa: role of biomass burning and anthropogenic emissions
Yufen Wang, Ke Li, Xi Chen, Zhenjiang Yang, Minglong Tang, Pascoal M. D. Campos, Yang Yang, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 25, 4455–4475, https://doi.org/10.5194/acp-25-4455-2025,https://doi.org/10.5194/acp-25-4455-2025, 2025
Short summary
Monoterpene oxidation pathways initiated by acyl peroxy radical addition
Dominika Pasik, Thomas Golin Almeida, Emelda Ahongshangbam, Siddharth Iyer, and Nanna Myllys
Atmos. Chem. Phys., 25, 4313–4331, https://doi.org/10.5194/acp-25-4313-2025,https://doi.org/10.5194/acp-25-4313-2025, 2025
Short summary

Cited articles

The Central Government of the People's Republic of China: The development of the western region in China: the twelfth five-year plan, Beijing, National Development and Reform Commission, 2012. 
The Central Government of the People's Republic of China: Strategic action Plan for Energy development (2014–2020), Beijing, State Council of the People's Republic of China, 2014. 
Chen, D., Liu, Z., Fast, J., and Ban, J.: Simulations of sulfate–nitrate–ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014, Atmos. Chem. Phys., 16, 10707–10724, https://doi.org/10.5194/acp-16-10707-2016, 2016. 
Chen, D., Liu, Z., Ban, J., Zhao, P., and Chen, M.: Retrospective analysis of 2015–2017 wintertime PM2.5 in China: response to emission regulations and the role of meteorology, Atmos. Chem. Phys., 19, 7409–7427, https://doi.org/10.5194/acp-19-7409-2019, 2019. 
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001. 
Download
Short summary
We updated the WRF/Chem-EnKF DA system to quantitatively estimate SO2 emissions using hourly surface observations as constraints. The 2010 MEIC prior emissions were used to generate January 2015 and 2016 analyzed emissions, which revealed inhomogeneous SO2 emission changes for northern, western, and southern China. These changes were related to facts in reality, indicating that the updated DA system was capable of detecting emission deficiencies and optimizing emissions.
Share
Altmetrics
Final-revised paper
Preprint