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Abstract. Ambient pollutants and emissions in China have
changed significantly in recent years due to strict control
strategies implemented by the government. It is of great
interest to evaluate the reduction of emissions and the air
quality response using a data assimilation (DA) approach.
In this study, we updated the WRF-Chem/EnKF (Weather
Research and Forecasting – WRF, model coupled with the
chemistry/ensemble Kalman filter – Chem/EnKF) system to
directly analyze SO2 emissions instead of using emission
scaling factors, as in our previous study. Our purpose is
to investigate whether the WRF-Chem/EnKF system is ca-
pable of detecting the emission deficiencies in the bottom-
up emission inventory (2010-MEIC, Multi-resolution Emis-
sion Inventory for China), dynamically updating the spatial–
temporal emission changes (2010 to 2015/2016) and, most
importantly, locating the “new” (emerging) emission sources
that are not considered in the a priori emission inventory. The
2010 January MEIC emission inventory was used as the a pri-
ori inventory (to generate background emission fields). The
2015 and 2016 January emissions were obtained by assimi-
lating the hourly surface SO2 concentration observations for
January 2015 and 2016. The SO2 emission changes for north-
ern, western, and southern China from 2010 to 2015 and from
2015 to 2016 (for the month of January) from the EnSRF (en-
semble square root filter) approach were investigated, and the
emission control strategies during the corresponding period
were discussed. The January 2010–2015 differences showed
inhomogeneous change patterns in different regions, includ-
ing (1) significant emission reductions in southern China;
(2) significant emission reductions in larger cities with a
wide increase in the surrounding suburban and rural regions

in northern China, which may indicate missing raw coal
combustion for winter heating that was not taken into ac-
count in the a priori emission inventory; and (3) significantly
large emission increases in western China due to the en-
ergy expansion strategy. The January 2015–2016 differences
showed wide emission reductions from 2015 to 2016, indi-
cating stricter control strategies having been fully executed
nationwide. These derived emission changes coincided with
the period of the energy development national strategy in
northwestern China and the regulations for the reduction of
SO2 emissions, indicating that the updated DA system was
possibly capable of detecting emission deficiencies, dynam-
ically updating the spatial–temporal emission changes (2010
to 2015/2016), and locating newly added sources.

Forecast experiments using the a priori and updated emis-
sions were conducted. Comparisons showed improvements
from using updated emissions. The improvements in south-
ern China were much larger than those in northern and west-
ern China. For the Sichuan Basin, central China, the Yangtze
River Delta, and the Pearl River Delta, the BIAS (bias, equal
to the difference between the modeled value and the obser-
vational value, representing the overall model tendency) de-
creased by 61.8 %–78.2 % (for different regions), the RMSE
decreased by 27.9 %–52.2 %, and CORR values (correla-
tion coefficient, equal to the linear relationship between the
modeled values and the observational values) increased by
12.5 %–47.1 %. The limitation of the study is that the ana-
lyzed emissions are still model-dependent, as the ensembles
are conducted using the WRF-Chem model; therefore, the
performances of the ensembles are model-dependent. Our
study indicated that the WRF-Chem/EnSRF system is not
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only capable of improving the emissions and forecasts in the
model but can also evaluate realistic emission changes. Thus,
it is possible to apply the system for the evaluation of emis-
sion changes in the future.

1 Introduction

China is one of the fastest growing countries in the world and
produces a significant amount of air pollutant emissions. To
control pollution, a series of strict control strategies has been
implemented by the government since 2010, including both
long-term pollution control strategies and temporary emer-
gency measures activated under different air pollution alerts,
which has led to large spatial–temporal changes in emis-
sions (factory mitigation from urban to rural regions, indus-
tries staggering peak production, and so on.). These spatial–
temporal emission changes are difficult to reflect in a timely
manner in both “bottom-up” emission inventories and air
quality models, which creates large uncertainties. A lot of re-
gional air quality modeling work has been conducted to eval-
uate the emission reduction and air quality response by com-
paring the simulations of a baseline scenario and an emis-
sion reduction scenario. However, there are large uncertain-
ties in those simulations due to the deficiencies of the models,
including the meteorological/chemical initial/boundary con-
ditions, the chemistry process parameterization, and, most
importantly, the uncertainties of emission inputs from the
bottom-up emission inventories. On the one hand, these three
aspects lead to error accumulation and large biases compared
with those from observations in the baseline scenario simu-
lations. On the other hand, for emission reduction scenarios
during special control events, the common approach is to as-
sume that the control policies are executed to different ex-
tents, and several emission reduction ratios are calculated and
simulated. The ratio producing results best matching the ob-
servations is assumed to be the real emission reduction ratio.
This methodology is useful for forward simulations to project
the effects of emission reduction but is not straightforward
for evaluating whether the control policies are strictly imple-
mented and whether reductions are actually achieved. The
forward approach using these models can neither accurately
evaluate the spatial–temporal emission changes nor locate
newly added sources that are missing from the bottom-up
emission inventory.

Various data assimilation (DA) and inversion approaches
(e.g., Evensen, 1994; Houtekamer et al., 2005; Hunt et al.,
2007; Lee et al., 2011; Pagowski and Grell, 2012; Miyakazi
et al., 2012, 2013; Dai et al., 2014; McLinden et al., 2016)
have been conducted to improve forecast skill and optimize
source emissions. The variational data assimilation approach
can greatly improve the initial condition by integrating the
observational data into the model forecast; however, the ben-
efits quickly disappear due to the inaccurate emissions in the

model. The inversion approach (also called the “top-down”
approach) has been of great interest, as the observations can
be directly used to constrain and optimize emissions. There
are various methods by which to implement the top-down
emission constraints, including the adjoint approach (e.g.,
Guerretta and Henze, 2017), the inverse approach combin-
ing satellite/surface observational data with regional/global
models, and/or the ensemble Kalman filter (EnKF). Because
the adjoint method involves a huge amount of 4D-Var code
development, its application is rather limited. The inverse
approach using regional/global models and/or the ensemble
Kalman filter method are much more flexible; thus, they are
commonly used (Miyazaki et al., 2012; Tang et al., 2011,
2013, 2016). For the inverse approach using satellite data,
due to satellite data availability, monthly data are usually
used in studies, which can only provide information on the
historical trends of the total emission amount at the regional
and national levels. Compared with satellite data, the use
of intensive hourly surface observations as constraints can
provide more spatial–temporal characteristics of emissions;
thus, they can be used to evaluate the spatial–temporal emis-
sion changes and to locate newly added sources that are miss-
ing from the bottom-up emission inventory.

In our previous study, Peng et al. (2017, 2018) extended
the ensemble square root filter algorithm to simultaneously
optimize the chemical initial conditions and the emission in-
put, aiming to improve the forecasting of atmospheric PM2.5,
SO2, NO2, O3, CO, and PM10 using the WRF-Chem/EnSRF
(Weather Research and Forecasting, WRF, model coupled
with the chemistry/ensemble square root filter, EnSRF) sys-
tem. The surface observational data are used as constraints to
update the initial conditions and relevant emissions (through
emission scaling factors) by minimizing the error variances.
The WRF-Chem is used to propagate the initial ensemble
forward in time, and the EnSRF is used to assimilate the
observations and update the initial chemical conditions and
emissions. In air quality models, deficiencies of concentra-
tion simulations come from various aspects, including the
initial conditions, emissions, meteorology, chemistry, trans-
port, among others. Especially for PM2.5 and PM10 simula-
tions in China, the significant differences between the mod-
els and observations possibly stem from the deficiency of
the chemistry representation in the model, including miss-
ing paths of secondary organic aerosols (e.g., Chen et al.,
2016) and heterogeneous reactions (e.g., Zheng et al., 2015),
in addition to emissions. However, to reduce the error vari-
ance, emission adjustments may compensate for the model
error, which leads to unrealistic/excessive emission adjust-
ment. Because the purpose was to improve the forecasting of
chemical species, evaluations of emission changes were not
conducted in the previous two studies.

In this study, we introduce two different DA techniques to
investigate SO2 emission changes. First, we updated the En-
SRF system to evaluate SO2 emission changes, for which the
chemistry is better understood and represented in the model.
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The 2010 January MEIC (Multi-resolution Emission Inven-
tory for China) emission inventory (Zhang et al., 2009; Lei
et al., 2011; He, 2012; Li et al., 2014) was used as the a pri-
ori inventory (to generate emission background fields), and
the 2015 and 2016 January emissions were generated by as-
similating hourly surface SO2 concentration observations for
January 2015 and 2016. Our purpose is to investigate whether
the EnKF algorithm is capable of detecting emission defi-
ciencies in the bottom-up emission inventory (2010-MEIC),
dynamically updating the spatial–temporal emission changes
(2010 to 2015/2016), and, most importantly, locating newly
added sources. Our goal is not only to improve the emis-
sions and forecasting in the model but also to understand
the extent to which the DA system can accurately evaluate
realistic emission changes, thus allowing it to be applied in
emission change evaluations in the future. To better detect
new emission sources, we updated the system to directly an-
alyze SO2 emissions instead of emission scaling factors, as in
Peng et al. (2017, 2018). In addition to the EnSRF DA algo-
rithm, we also applied the Gridpoint Statistical Interpolation
(GSI) variational DA (3D-Var) system to generate the SO2
reanalysis fields, which is helpful in diagnosing the a pri-
ori emission deficiency and year-to-year emission changes in
the model. Finally, to fully utilize the DA system, we investi-
gated the combined effects of improved initial conditions (by
3D-Var) and dynamically updated emissions (by EnSRF) in
the forecast experiments. It has always been challenging to
verify optimized top-down emissions from the inverse ap-
proach due to the uncertainty of the bottom-up emission in-
ventory and the lack of sufficient independent observational
data (not used in the DA process). Herein, we designed three
groups of comparisons to address this issue, and the details
will be discussed in Sect. 2.6.

The paper is organized as follows. In Sect. 2, the DA sys-
tem, a priori emissions, observational data, and experimental
design are described. The reanalysis SO2 fields obtained us-
ing the GSI 3D-Var DA system are analyzed in Sect. 3, focus-
ing on the possible indications of a priori emission deficiency
and year-to-year (2015–2016) changes. Section 4 describes
the results from the emission assimilation experiment using
the updated WRF-Chem/EnKF system. This section starts
with the evaluation of the ensemble performance to verify the
DA system capability. Then, the derived emission changes
(2010 to 2015 and 2015 to 2016) obtained by the EnSRF ap-
proach are given spatially throughout the whole domain and
in eight different regions with inhomogeneous spatial pat-
terns. The temporal factors derived from the assimilation ex-
periment are also given in Sect. 4. To evaluate the accuracy
of the analyzed 2015 and 2016 emissions, two sets of fore-
cast experiments with the respective a priori emissions and
the analyzed emissions were conducted and discussed. The
details are given in Sect. 5, and the conclusions follow in
Sect. 6.

Figure 1. Flow chart of the data assimilation system that simulta-
neously optimizes the initial chemical conditions and emissions.

2 Model description, observations, and methodology

We applied two different DA techniques. In the first ap-
proach, we extended the GSI 3D-Var DA system originally
developed by Liu et al. (2011) and recently updated by Chen
et al. (2019) to assimilate SO2 observations, aiming to gener-
ate SO2 reanalysis fields. In the second approach, we updated
the EnKF DA system (that used in Peng et al., 2017) to op-
timize SO2 emission changes using surface observations as
constraints. The WRF-Chem configurations are the same as
those in Chen et al. (2019), and the update of the GSI 3D-Var
DA system is also built upon Chen et al. (2019); thus, only
simple descriptions are given in this section. A further de-
scription of the WRF-Chem/EnKF DA system is given, and
the a priori emissions, observations, and experimental design
are introduced in detail.

2.1 WRF-Chem configuration

WRF-Chem model version 3.6.1 was used in this study (Grell
et al., 2005; Fast et al., 2006). The parameterizations were
identical to those of Chen et al. (2016), and they are listed
in Table 1. The model horizontal resolution is 40 km, and the
domain covers most of China and the surrounding regions
(Fig. 2). There are 57 vertical levels extending from the sur-
face to 10 hPa. It should be noted that uncertainties might be
produced in the analysis due to neglecting the rapid urban-
ization/land use changes from 2010 to 2015/2016.

2.2 A priori emissions

The Multi-resolution Emission Inventory for China (MEIC)
(Zhang et al., 2009; Lei et al., 2011; He, 2012; Li et al.,
2014) for January 2010 is used as the a priori emission in-
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Figure 2. Spatial distribution of the a priori SO2 emissions used in this study. Regions defined in the red rectangles are (a) NCP (the North
China Plain), (b) NEC (northeastern China), (c) EGT (the Energy Golden Triangle), (d) XJ (Xinjiang), (e) SB (the Sichuan Basin), (f) CC
(central China), (g) YRD (the Yangtze River Delta), and (h) PRD (the Pearl River Delta). The color coding of the regional plots relates to the
color bar of the national plot. (Units are in mol km−2 h−1.)
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Table 1. WRF-Chem model configuration.

Aerosol scheme MOSAIC (four bins) (Zaveri et al., 2008)
Photolysis scheme Fast-J (Wild et al., 2000)
Gas-phase chemistry CBM-Z (Zaveri and Peters, 1999)
Cumulus parameterization Grell 3-D scheme
Shortwave radiation Goddard Space Flight Center shortwave radiation scheme (Chou and Suarez,

1994)
Long-wave radiation RRTM (Mlawer et al., 1997)
Microphysics Single-moment 6-class scheme (Grell and Devenyi, 2002)
Land surface model NOAH LSM (Chen and Dudhia, 2001)
Land use type USGS 2 min (kept the same for 2010–2015/2016)
Boundary layer scheme YSU (Hong et al., 2006)
Meteorology initial and boundary conditions GFS (global forecast system) analysis and forecast data at a 6 h frequency for

the control experiment, and interpolated at a 1 h frequency for the hourly assim-
ilation experiments and forecast experiments

Initial condition for chemical species 11 d spin-up
Boundary conditions for chemical species averages of midlatitude aircraft profiles (McKeen et al., 2002)
Dust and sea salt emissions GOCART (Chin et al., 2000, 2002)

put. Unlike in other countries, the national emission inven-
tories in China (e.g., NEI05-08-11-14-17) are provided in a
timely manner and updated for the public. It has previously
been stated that “there are no official data about how much
air pollutants are emitted by China every year. The inven-
tories developed by researchers often lag several years be-
hind the present” (Zheng et al., 2018). MEIC is the only
publicly available emission inventory dataset released by the
Tsinghua University research community. In the MEIC, the
total amount of sectoral emissions at the national and provin-
cial levels has generally been estimated based on the bottom-
up approach, which relied on available statistical information
concerning activities (energy, industrial production, vehicles,
and so on.), emission factors, and end-of-pipe control lev-
els. Due to the large burden of work and the availability of
statistical data, the MEIC emission inventory is not updated
annually (e.g., the public versions are MEIC-2010-2012);
thus, there are always a few years of time lag when apply-
ing the MEIC EI (emissions inventory) for research studies.
In addition, to drive the regional air quality models, the an-
nual/monthly total amounts of emissions at the national and
provincial level are allocated spatially and temporally to gen-
erate an hourly gridded emission input for the model. Con-
cerning temporal allocation, as many emission sources have
large diurnal and weekly variability that is not fully repre-
sented, arbitrary hourly/weekly factors were used in prepar-
ing the hourly gridded emissions for the air quality models.
Thus, both the uncertainties of the statistical information and
the spatial–temporal allocation could cause inaccurate repre-
sentation of the hourly gridded emission input and affect the
performance of the model application.

The preprocessing method used to convert the original
emission inventory (in 0.25×0.25◦) to match the model grid
spacing (40 km) is the same as that used in Chen et al. (2019).
The spatial distribution of a priori SO2 emissions in the sim-

ulation domain is shown in Fig. 2. A number of studies have
revealed the uncertainties of the bottom-up emission invento-
ries, including the energy statistics at the national and provin-
cial levels (e.g., Hong et al., 2017) and emission factors from
different industry sectors (e.g., Zhao et al., 2011, 2017). Our
purpose is to investigate not only the uncertainty of the a pri-
ori MEIC emissions but also the capability of the DA sys-
tem to dynamically update the SO2 emissions using surface
observations as constraints. For this purpose, the changes of
SO2 emissions from the a priori emission year (2010) to our
focus years (2015 and 2016) are emphasized.

There are several different driving factors in different re-
gions that may lead to inhomogeneous changing trends dur-
ing the years examined (especially from 2010 to 2015). As
the Chinese government has implemented desulfurization
legislation (since 2005–2006 but with stricter control of the
actual use of installations since 2008–2009) and strict con-
trol strategies to ensure the air quality during winter sea-
sons since 2013, significant SO2 emission reductions are
expected to have occurred since 2010. However, there are
converse results for certain regions. For example, Cheng et
al. (2017) and Zhi et al. (2017) conducted a village energy
survey for the rural areas in Hebei Province and revealed a
huge amount of missing rural raw coal for winter heating.
For Beijing and Baoding, rural emissions from raw coal in
winter were higher than those from the industrial and ur-
ban household sectors in the two cities in 2013. Consider-
ing the living habits of residents in northern China, this may
imply an extreme underestimation of rural household coal
consumptions by the China Energy Statistical Yearbooks.
Additionally, multi-satellite data (Ozone Monitoring Instru-
ment – OMI, the SCanning Imaging Absorption spectroMe-
ter for Atmospheric CartograpHY – SCIAMACHY) revealed
increasing SO2 emissions due to energy industry expansion
in northwestern China (The central government of the Peo-
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ple’s Republic of China, 2012, 2014), especially new power
plant installations in Xinjiang and Shaanxi, e.g., in Shen et
al. (2016) and Koukouli et al. (2016). Eight different re-
gions are illustrated to address this issue. Northern China
is divided into two regions, the North China Plain (NCP)
and northeastern China (NEC), as the North China Plain is
more emission-intensive and may experience stricter con-
trol strategies than those in northeastern China during win-
ter haze periods. Northwestern China is also divided into
two regions, including the EGT (the Energy Golden Trian-
gle) and XJ (Xinjiang). Southern China is divided into four
regions according to its geographic characteristics, includ-
ing the SB (Sichuan Basin), CC (central China), YRD (the
Yangtze River Delta), and PRD (the Pearl River Delta). The
spatial distributions of the SO2 emissions in the eight regions
are also illustrated in Fig. 2.

In terms of the temporal allocation, we applied predefined
functions for the diurnal variations of the a priori SO2 emis-
sions, but the hourly factors are the same for all of the sectors
and all of the grids, which is not optimal. Actually, different
sectors/regions may have different hourly emission factors.
For example, the transportation sector may produce peak
emissions during rush hours, and the industry sector may
produce emissions during the production period. Thus, it is
not optimal to use the same hourly emission factors for all
sectors. For regions in different time zones, different hourly
emission factors are also expected. The diurnal variability is
not publicly released and is highly uncertain, which intro-
duces large uncertainty into the simulations. We also want to
investigate whether the DA system can capture the diurnal
variations of SO2 emissions using the hourly surface SO2
concentrations as constraints.

2.3 GSI 3D-Var DA system

Building upon the GSI 3D-Var DA system used in Chen et
al. (2019), we extended the system capability of assimilat-
ing surface SO2 observations. The algorithm and methodol-
ogy for the aerosol DA are described in Chen et al. (2019).
Here, only the differences implemented for the SO2 DA are
addressed.

The SO2 observation operator is rather simple, and is
written as

∏
m= ρcMSO2 . The unit of the model-simulated

MSO2 is parts per million (ppm); thus, multiplication by the
unit conversion ρc was required to convert the units to micro
grams per cubic meter (µgm−3) for consistency with the ob-
servations. The observation errors are calculated similarly to
the process in Chen et al. (2019). In the data quality control
process, SO2 observational values larger than 650 µgm−3 or
observations leading to innovations/deviations (observations
minus the model-simulated observations determined from
the first-guess fields) exceeding 100 µgm−3 were not used.
The BECs (background error covariance) values were com-
puted using the “National Meteorological Center (NMC)”
method (Parrish and Derber, 1992) by taking the differences

of the 24 and 12 h WRF-Chem forecasts valid at the same
time for 60 pairs of data valid at either 00:00 or 12:00 UTC
over January 2015. The standard deviations over the whole
domain are shown in Fig. S1 in the Supplement.

2.4 WRF-Chem/EnKF DA system

The WRF-Chem/EnKF assimilation system framework
(Fig. 1) was used. Similar to other ensemble DA configura-
tions in WRF-Chem, such as WRF-Chem/Dart (Mizzi et al.,
2016), WRF-Chem is used to propagate the initial ensemble
forward in time. The EnSRF is used to assimilate the ob-
servations and update the meteorological conditions, chemi-
cal initial conditions, and/or emissions. The differences rel-
ative to WRF-Chem/Dart are mainly in the assimilation en-
gine (the ensemble adjustment Kalman filter is used in WRF-
Chem/Dart, whereas the ensemble square root filter is used
in our study), the structure of the state variables (meteo-
rological and chemical initial/conditions are used in WRF-
Chem/Dart, whereas chemical initial condition/emissions are
used in our study), the cycling procedures, and so on. The
WRF-Chem/EnKF assimilation system framework (Fig. 1)
is very similar to that of Peng et al. (2017). Peng et al. (2017)
focused on the joint analysis of both the initial conditions
and emissions of PM2.5 and addressed the forecasting skill
improvement from using the EnKF system. Here, we focus
on the estimation of SO2 emissions, aiming to investigate the
system capability of reflecting the spatial–temporal emission
changes using observational data as constraints. In addition,
instead of setting the emission scaling factors as control vari-
ables and adjusting the emissions by timing the scaling fac-
tors, we attempted to set emissions directly as control vari-
ables, which allowed for adjustments to be made by adding
absolute emission values. Using this method, the detection
of new emission sources would become more flexible. As in
the previous approach, the emission scaling factors were ex-
tremely large when a new emission source (e.g., a new power
plant) occurred in an originally “clean” model grid (a pri-
ori emissions close to zero), with the scaling factor being
so large that it might be treated as “unrealistic” and be fil-
tered out in the system. The direct analysis of emissions is
expected to be more appropriate for this case.

The ensemble square root filter (EnSRF, Whitaker and
Hamill, 2002) algorithm is very similar to that in Peng et
al. (2017), except for some differences, such as the state
variables (changed from aerosols to SO2 concentrations and
emissions) and the inflation factor. In addition, the forecast
model for emissions is also different from that in Peng et
al. (2017). More details on the differences from Peng et
al. (2017) are described below.

2.4.1 State variables

A similar ensemble square root filter is used in this study
to update a 50-member ensemble to that used in Peng et
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al. (2017). We also applied the state augmentation method
(e.g., Miyazaki et al., 2012). The only difference is that the
model parameter (SO2 emissions) is directly estimated by in-
cluding it as part of the state vector along with the model
forecast variable (SO2 concentration). The background en-
semble is defined as follows:

xb
i =

[
Cb
i

Eb
i

]
, (1)

where xb
i is the ith member’s background vector, consist-

ing of model-simulated SO2 concentrations Cb
i and the SO2

emissions Eb
i . For a grid with zero emissions in the a priori

emissions, the absolute emission values would be added into
the DA analysis to reflect the new emission sources. Negative
emission estimates were not permitted in the system due to
mandatory setting of the minimum values (a small positive
value close to zero).

In Miyazaki et al. (2012), the state augmentation method
was used to estimate NOx emissions using satellite ob-
servations (Ozone Monitoring Instrument, OMI, retrieved
NO2 column) as constraints with a local ensemble trans-
form Kalman filter (LETKF). The employment of combined
state vectors (both NO2 concentrations and NOx emissions)
allowed indirect relationships between NO2 concentrations
and NOx emissions, causing complex chemical and trans-
port processes to be considered through the use of the back-
ground error covariance, which was produced by the ensem-
ble chemical transport model (CTM) forecast. Building upon
Miyazaki et al. (2012), we used a similar approach to ad-
dress the indirect relationships between SO2 concentrations
and SO2 emissions caused by chemical and transport pro-
cesses. The chemical processes include several paths of SO2
oxidation, such as gas-phase reactions with the hydroxyl rad-
ical (OH), aqueous-phase reactions with O3 or hydrogen per-
oxide (H2O2), and heterogeneous reactions in high-relative-
humidity environments (e.g., Li et al., 2011; Wang et al.,
2012).

To reduce spurious correlations due to sampling errors,
covariance localization was applied following Schwartz et
al. (2014) and Peng et al. (2017). EnSRF analysis increments
were forced to zero 1280 km from an observation in the hor-
izontal direction and to one scale height (in log pressure co-
ordinates) in the vertical direction using a Gaspari and Cohn
(2006) polynomial piecewise function.

2.4.2 Inflation factor in the EnSRF

During the analysis process, the analyzed emissions of differ-
ent members converge gradually, and the background emis-
sions (calculated according to Eq. 4) of different members in
the DA cycling become similar, leading to a small ensemble
spread (variance). To maintain the spread level, an artificial
inflation process (the original perturbations times the infla-
tion factor larger than one) was added to increase the pertur-
bations. Further, multiplicative inflation was applied to poste-

rior (after assimilation) perturbations concerning the ensem-
ble mean analyses, following the “relaxing-to-prior spread”
approach by Whitaker and Hamill (2012) with an inflation
parameter α:

δxia← δxia

(
α
σb− σa

σa
+ 1

)
. (2)

In this equation, δxia is the ith member’s analyzed perturba-
tion concerning the mean analysis (xia− x̄), α is the infla-
tion factor, and σb and σa are the prior (before assimilation)
and posterior standard deviations at each model grid point,
respectively. Using the definition of the standard deviation,
Eq. (2) can be expressed as

σa← ασb+ (1−α)σa. (3)

Assimilating observations reduces the ensemble spread; thus,
without inflation, σa < σb. From Eq. (3), if α > 1, the in-
flated posterior spread is forced to be larger than the prior
spread (σb). Conversely, for α < 1, the inflated posterior
spread must be less than σb. As no prior or additive inflation
was employed, α > 1 was necessary to maintain the ensem-
ble spread, and we used the inflation factor of α = 1.12.

2.4.3 Forecast models for emissions

The forecast model is important, as it propagates observation
information, inflates the analysis spread, and determines the
quality of the first guess. In Peng et al. (2017), a smoothing
operator served as the forecast model for the emission scal-
ing factors. In this study, direct emissions instead of scaling
factors were treated as part of the state variables, thus pro-
ducing a similar method for the forecasting approach to that
used in Miyazaki et al. (2012). A linearized forecast model
(M) provides a first guess of the state vector for data assim-
ilation based on the background error covariance from the
previous analysis time tn to the new analysis time tn+1,

P b
(tn+1)

= 0.75 ×MP a(tn)M
T
+ 0.25×P b

(t0)
, (4)

in which a persistent forecast model (M = I ) is used for SO2
emissions, and the estimated emissions are used in the next
step of ensemble forecasting. To prevent parameter covari-
ance magnitude reduction, we added the initial prior ensem-
ble as random noise. The forecast model for direct emissions
is weighted 75 % toward the results from the previous anal-
ysis time and 25 % toward the static initial prior ensemble.
The initial prior ensemble of SO2 emissions for the first En-
SRF analysis was constructed from the a priori emissions by
taking Gaussian random draws from a standard Gaussian dis-
tribution and varied for each ensemble member as in Peng et
al. (2017). This approach incorporates the useful information
from the previous time step and the a priori emissions, which
propagates the observation information from one step to the
next while still keeping some of the characteristics of the a
priori features.
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2.4.4 The initialization and DA cycling procedure

The WRF-Chem/EnKF assimilation system framework is
shown in Fig. 1, and the workflow is briefly introduced
here. The initialization and spin-up procedures of the 50-
member ensemble were conducted using 72 h ensemble fore-
casts ahead of the focus period via the same method used
in Peng et al. (2017, 2018). For the 50 members, the lat-
eral boundary conditions and initial condition of meteorol-
ogy from GFS were perturbed by adding Gaussian random
noise with a zero mean and statistical background error co-
variances to the meteorological parameters. The emissions of
the 50 members were generated by adding random noise to
the a priori emissions, similar to the method in Schwartz et
al. (2014) and Peng et al. (2017). After the 72 h forecasts,
50-member ensemble SO2 forecasts were generated, which
were used as part of the background (Cb

i in Eq. 1) in the first
EMIS_DA cycle. The other part of the background (Eb

i in
Eq. 1) was the perturbed emissions of the last time step. In
the EnSRF assimilation step, the state variables, including
both the emissions for the last hour and the concentrations
at the current hour, were updated. In the new 1 h cycle, the
background field of emissions is forecast through Eq. (4),
and the background concentration is from the WRF-Chem
1 h forecast using the updated chemical fields of the previous
assimilation cycle as the ICs (initial conditions). With hourly
cycling, the hourly analyzed emissions were obtained.

2.5 Observations

Hourly surface SO2 concentrations for January 2015 and
2016 were obtained from the China National Environmen-
tal Monitoring Center (CNEMC). There are approximately
1600+ sites in our modeling domain (black dots in Fig. 2).
As the 1600+ monitoring sites fall into 531 model grids, ob-
servations within the same grid are averaged (by latitude and
longitude) for the purpose of statistical analysis and verifica-
tion. The observation sites mostly span northern, central, and
eastern China and are relatively sparse in western China. To
ensure data quality before use in the DA, SO2 observational
values larger than 650 µgm−3 were deemed unrealistic and
were not assimilated in the GSI 3D-Var or the EnKF DA sys-
tem.

2.6 Experimental design

To qualitatively evaluate the deficiencies of the a priori SO2
emissions, generate updated emissions for 2015 and 2016,
and evaluate the improvements from the DA approach, five
sets of experiments were conducted. The corresponding com-
parisons and purposes are listed in Table 2. The simulated
periods were January of 2015 and 2016. The meteorologi-
cal initial condition (IC) and boundary condition (BC) were
updated from GFS analysis data every 6 h (for NO_DA) or
1 h (for CONC_DA and EMIS_DA) to prevent the meteo-

rology simulation drifting. The same WRF-Chem configura-
tions (Table 1) were used in all the experiments.

In the NO_DA experiment, a new WRF-Chem forecast
was initialized every 6 h starting at 00:00 UTC on 20 De-
cember of the previous year to spin up the chemistry fields
and was run through until 23:00 UTC on 31 January. The
chemistry fields were simply carried over from cycle to cycle.
The 2010-MEIC a priori emissions were used, assuming the
same emissions as in 2010. For CONC_DA, the hourly sur-
face observations were assimilated by GSI 3D-Var, and the
SO2 concentrations were updated every hour starting from
00:00 UTC on 1 January. The background of the first time
step is from the NO_DA simulation, and those of the later
time steps are all from the 1 h WRF-Chem forecast using
the updated chemical fields of the previous assimilation cy-
cle as the ICs. As the concentrations from CONC_DA are
very close to the observations, the concentration differences
between CONC_DA and NO_DA possibly indicated a model
deficiency in reproducing the reality, which was mainly from
the emission changes from 2010 to 2015/2016. The assump-
tion is that the GFS 6 h analysis data provide good meteoro-
logical IC/BC values and that the model accurately simulated
the meteorological conditions; thus, the emissions were the
major deficiency in the model.

The EMIS_DA experiment with continuous hourly cy-
cling of the WRF-Chem/EnKF was performed for January
of 2015 and 2016. The initialization and spin-up proce-
dures of the 50-member ensemble were conducted start-
ing from 00:00 UTC on 29 December of the previous year
to 00:00 UTC on 1 January of the next year. Then, the
EMIS_DA cycle started at 00:00 UTC on 1 January. Follow-
ing the procedure in Fig. 1, the EMIS_DA experiment started
with conducting EnSRF analysis and generated both the up-
dated SO2 concentration fields for the current time step and
the updated analyzed SO2 emissions for the previous time
step. In this hourly cycling approach, 1 h WRF-Chem/EnKF
cycling was conducted for January of 2015 and 2016, and
hourly analyzed SO2 emissions were then obtained. We com-
pared the 2015 emissions from EMIS_DA to the 2010 a pri-
ori emissions, as the emission differences between the 2015
analyzed emissions and the 2010 a priori emissions not only
reflected the changes from 2010 to 2015 but also included the
deficiencies in the 2010 a priori emission. We also compared
the updated emissions between 2015 and 2016, as the dif-
ferences between the 2016 analyzed emissions and the 2015
analyzed emissions reflected the pure emission changes from
2015 to 2016, as the deficiencies of the 2010 a priori emis-
sions were offset in the subtraction. The emission control
policies are discussed to investigate whether the emission
changes are reasonable.

To investigate the impact of using analyzed emissions
from the EnKF DA system, two forecast experiments
(NO_DA_forecast and EMIS_DA_forecast) were conducted
for the same period. Twenty-four-hour forecasts were per-
formed at 00:00 UTC of each day from 1 to 31 Jan-
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uary for 2015 and 2016. The original a priori emissions
and the updated analyzed emissions were used in the
NO_DA_forecast and EMIS_DA_forecast experiments, re-
spectively. The chemistry initial conditions for each forecast
in the two forecast experiments were from the 1 h cycling
GSI 3D-Var (COND_DA) experiment. The meteorological
IC and BC were all from GFS analysis and forecast data.
The concentration differences between the two sets of 24 h
forecasts reflect the effects of the updated emissions.

3 Changes in ambient concentrations

This section presents the simulated SO2 concentration re-
sults of NO_DA and CONC_DA. As shown in Chen et
al. (2019), 1 h cycling of the GSI 3D-Var DA system pro-
duces reliable PM2.5 reanalysis fields. As the methodology
and procedure are the same for SO2, we can expect that the
improvement of SO2 assimilation will be as good as that
of PM2.5, as evidenced by the basic statistics including the
mean bias (MEAN/BIAS), standard deviation (SD), and root
mean square errors (RMSEs) between NO_DA/CONC_DA
and observations, shown in Supplement Fig. S2. Therefore,
the purpose of this section is not to verify the performance
of the GSI 3D-Var assimilation experiment but to investi-
gate the differences between NO_DA and CONC_DA. As
NO_DA is the simulation with the 2010 emission inventory,
whereas the results of CONC_DA can serve as gridded re-
analysis data from real observations, the differences between
the two runs actually reflect the possible deficiencies in the
model. As the meteorology data are from the 6 h GFS reanal-
ysis data, we assume that most of the deficiencies come from
using the 2010 a priori emissions for the years 2015 and 2016
in the model, and the comparisons also provide an idea of the
changing trends of the emissions.

3.1 Spatial distribution

Figure 3 shows the observed and modeled monthly average
surface SO2 concentrations for January in 2015 and 2016.
The observations show great differences between northern
and southern China, reflecting the dominant role of heating-
related emissions in northern China during the winter season.
The high values in northern China also show localized char-
acteristics (no smooth transitions from the high-value region
to the surroundings) that reveal the localization of SO2 emis-
sions and transport. The NO_ DA experiment significantly
overestimates the surface SO2 in the Sichuan Basin and cen-
tral China but underestimates it at several locations in north-
ern China and Xinjiang. After GSI 3D-Var hourly cycling
of the DA, the CONC_DA experiment results are very close
to observations because they corrected most of the biases in
NO_DA except for the very high values at some of the “hot
spots” in northern China. The fact that the improvements at
those locations are not significant may be due to the data fil-

tering process, in which SO2 data with either observed values
larger than 650 µgm−3 or innovations/deviations (observa-
tions minus the model-simulated values determined from the
first-guess fields) exceeding 100 µgm−3 were rejected. The
differences between CONC_DA and NO_DA more clearly
revealed the inhomogeneous emission changes in different
regions. For 2015, a great SO2 decrease from NO_DA to
CONC_DA in most of the eastern and southern regions was
found, but increases were observed in northeastern China,
the Energy Golden Triangle, and Xinjiang, indicating that the
2010 January a priori emissions should be adjusted accord-
ingly (following decreasing/increasing trends, respectively)
to reflect the 2015 January status. The negative discrepancies
in the eastern and southern regions are even larger for 2016,
indicating continuous emission decreases in these areas.

To further investigate the deficiencies of the a priori emis-
sions, the spatial distributions of the statistics (MEAN BIAS,
RMSE, and CORR) at each observational site (which had
more than two-thirds valid data in the month) in January
of 2015 and 2016 for the two experiments are shown in
Fig. 4. We start from the 2015 statistics and then address
the differences relative to 2016. In NO_DA, consistent with
Fig. 3, the surface SO2 in southern China (the Sichuan
Basin, central China, the Pearl River Delta, and the Yangtze
River Delta) is generally overestimated by 20–50 µgm−3, but
it is underestimated in northeastern China and the Energy
Golden Triangle. The BIAS also showed localized character-
istics with positive biases in megacities (e.g., Beijing), along
with negative biases in the surroundings, indicating overesti-
mated/underestimated emissions, respectively. There are also
high RMSEs in northeastern China, the North China Plain,
and the Energy Golden Triangle, indicating a wide spread
of differences between observational data and NO_DA sim-
ulations, which may also indicate a model deficiency in re-
producing strong temporal fluctuations (with the same daily
emissions and fixed hourly factors as in the a priori emis-
sions); the poor correlations (less than 0.5) at most of the sites
also support this assumption. From year to year, the biases in
2016 are even more prominent. With GSI 3D-Var hourly cy-
cling, the BIAS, RMSE, and CORR are greatly improved,
as expected, while the improvements in northern China are
smaller than those in southern China.

3.2 Changes from 2015 to 2016

The differences between the January values of the 2 years
(2015–2016) are shown in Fig. 5. Observations (Fig. 5a)
mostly show decreases from 2015 to 2016 for most sites,
especially in the North China Plain and southern China. In
the NO_DA experiment (with the same emissions and differ-
ent meteorology), some decreases are shown that reflect the
meteorology condition differences between the 2 years, but
the observed significant decreases in the North China Plain
and southern China are not captured. CONC_DA (Fig. 5b)
did reproduce the large decreases in the North China Plain

Atmos. Chem. Phys., 19, 8619–8650, 2019 www.atmos-chem-phys.net/19/8619/2019/
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Figure 3. Observed and modeled monthly average SO2 concentrations for January in 2015 (left column) and 2016 (right column). (a) Ob-
servations, where the ranges of the different colors are the same as those of the color bars of (b) and (c); (b) NO_DA; (c) CONC_DA; and
(d) CONC_DA − NO_DA. (Units: µgm−3.)
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Figure 4.

and southern China from 2015 to 2016. From the difference
between Fig. 5b and c, it can be assumed that factors other
than meteorology (e.g., emissions control measures) play im-
portant roles in causing the decreases. CONC_DA failed to
reproduce the large positive changes at three locations in the
Energy Golden Triangle region, as CONC_DA failed to re-
produce the high SO2 concentrations in both years due to the
data filtering processes.

4 Changes in emissions

Before the emission trend analysis, the ensemble perfor-
mance was evaluated. For comparison with a priori emis-
sions, the analyzed hourly emissions were averaged monthly.
Analysis of the total amounts and spatial changes were con-
ducted for the aforementioned eight regions. We focus on the

emission trends for two periods: 2010–2015 and 2015–2016.
Additionally, the hourly factors (diurnal cycle) of the opti-
mized emissions were given to reflect the values of the hourly
DA.

4.1 Ensemble performance

In a well-calibrated system, when compared to the obser-
vations, the prior ensemble mean root mean square error
(RMSE) would equal the prior “total spread”, defined as
the square root of the sum of the observation error vari-
ance and the ensemble variance of the simulated observa-
tions (Houtekamer et al., 2005). The time series of the hourly
prior ensemble mean RMSE and the total spread of surface
SO2 in the eight regions are shown in Fig. 6. The time se-
ries of the two months (January 2015 and January 2016) are
given separately. Typically, the statistics at a single site for

Atmos. Chem. Phys., 19, 8619–8650, 2019 www.atmos-chem-phys.net/19/8619/2019/
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Figure 4. The spatial distribution of the statistics between the model simulations and the observations for (a) January 2015 and (b) Jan-
uary 2016. The top row shows NO_DA vs. observations, whereas the bottom row shows CONC_DA vs. observations. (Units: µgm−3 for
BIAS and RMSE.)

a certain period reflect the model biases and variances of er-
rors at that site for the whole period. However, herein, the
statistics for the eight regions were determined for all sites
within the region at a 1 h frequency, which means that the
statistics actually reflect the biases and error variances of the
model simulations for those sites at every hour. As the emis-
sions and meteorological conditions could be very different
at sites in the same region, the RMSE for that region could
be large. Due to the spatial–temporal inhomogeneity of emis-
sions and meteorological conditions in different regions, the
model shows different performances in terms of the differ-
ences in the RMSE. The “total spread” reflects the ensemble
variances of the model-simulated values.

The magnitudes of the total spread and the RMSE are in-
fluenced by the diurnal cycle and the pollution events (driven
by meteorological patterns and emissions). As expected, all
of the total spreads in the eight regions are smaller than the
RMSE for almost the whole period, except those for the
first few days in 2015. Because the lateral boundary and ini-
tial conditions of meteorology were also perturbed in addi-
tion to emission perturbation in the spin-up procedure, larger
spreads were obtained in the first DA cycle, which may have
remained for a short period. For all other periods without
meteorological perturbations, insufficient spreads of SO2 en-
semble forecasts were shown, with the effects in the northern
and western regions (North China Plain, northeastern China,
the Energy Golden Triangle, and Xinjiang) being worse than

www.atmos-chem-phys.net/19/8619/2019/ Atmos. Chem. Phys., 19, 8619–8650, 2019
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Figure 5. Observed and modeled SO2 ambient concentration changes (January 2016–January 2015). (a) Observations, where the ranges of
different colors are the same as those in the color bars of (b) and (c); (b) NO_DA; and (c) CONC_DA. (Units: µgm−3.)

those in southern regions (the Sichuan Basin, central China,
the Yangtze River Delta, and the Pearl River Delta), as the
prior ensemble mean RMSE values in the northern regions
were much larger, but the total spreads were fairly constant.
For the northern regions, the total spread (Fig. 6) was rel-
atively small compared to the RMSE. This might indicate
that the analyzed emissions converged gradually and that the
background emissions (calculated according to Eq. 4) of dif-
ferent members in the DA cycling were similar, thus lead-
ing to the small spread. As the spread is small, some ob-
servations might be rejected in the DA outlier check, which
may impact the DA performance. The distinction of the com-
parisons among different regions (the North China Plain
vs. the Yangtze River Delta/Pearl River Delta) indicated the
deficiencies of the perturbation procedure in the DA sys-
tem when applied to northern regions. Further investigations
should be conducted to generate larger spreads for northern
regions in future studies.

4.2 Analyzed 2015 and 2016 emissions

The optimized SO2 emissions obtained from the assimila-
tions for January 2015 and 2016 are shown in Fig. 7. To ad-
dress the changes from 2010 to 2015 and those from 2015
to 2016, the differences and ratios between the two groups
(2010 vs. 2015 and 2015 vs. 2016) are given. For the com-
parison of 2015 analyzed emissions with 2010 a priori emis-
sions, as real observations were used to constrain the 2015
emissions, the differences between the two sets of emissions
actually reflect the adjustments based on the 2010 a priori
emissions, which are needed to better capture observations;
thus, the comparison not only reflects the changing trends
from 2010 to 2015 but may also indicate the deficiencies
of the 2010 a priori emissions. It should be noted that the
two aspects are mixed when interpreting the results. While

the comparison of 2015 analyzed emissions with 2016 ana-
lyzed emissions is more straightforward, as they are both pro-
duced using observation constraints, the differences between
the two reflect the annual changes between the 2 years, and
the impacts from a priori emission deficiencies are removed
in the subtraction.

Compared to the 2010 a priori emissions, the analyzed
emissions for 2015 show different spatial changes (north-
ern, western, and southern China). Large emission decreases
in southern China (the Sichuan Basin, central China, the
Yangtze River Delta, and the Pearl River Delta) are shown,
but there are also some small emission increases in scattered
regions. These increases are relatively small in absolute value
(shown using light yellow in Fig. 7c), but the 2015/2010 ra-
tios can reach large numbers (shown using orange to red in
Fig. 7d), as the a priori emissions in those regions are very
small (Fig. 2); thus, minor changes lead to large ratios. For
northern China (North China Plain and northeastern China),
the change pattern is somewhat opposite. Emission increases
are shown for most of the regions, with decreases only oc-
curring at scattered points. Large 2015/2010 increasing ra-
tios are also shown in western China (Xinjiang and The En-
ergy Golden Triangle), while the a priori emissions are very
sparse in those two region; thus, the emission increases are
more significant, which may indicate new emission sources.
For the changes from 2015 to 2016, the pattern is rather ho-
mogenous across the whole domain, with decreases in almost
all regions.

4.3 Changes in different regions

To further illustrate the changes in different regions, the de-
tails of eight regions are given in Fig. 8 (2015 vs. 2010)
and Fig. 9 (2016 vs. 2015). Similar to Fig. 7, the emission
changes in terms of absolute values (left panels) and ratios
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Figure 6. Regional averaged RMSE and the total spread for (a) January 2015 and (b) January 2016 in eight regions. Time starts from
00:00 UTC. (Units: µgm−3.)
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Figure 7. Analyzed emissions for (a) January 2015 and (b) January 2016. (c) The differences of the 2015–2010 a priori inventory and (d)
ratios of the 2015/2010 a priori inventory. (e) The differences of 2016 − 2015 and (f) ratios of 2016/2015. (Units are mol km−2 h−1 for (a),
(b), (c), and (e)).
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Figure 8. The differences between the analyzed 2015 January emissions and the 2010 a priori emissions in eight regions. Left/top panels are
emission differences of 2015 − 2010 (units: mol km−2 h−1), and right/bottom panels are the ratios of 2015/2010 in each region.
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(right panels) are given for each region. To better understand
the geographic changes, the center locations of some large
cities (capital cities of provinces and municipal centers at the
city level) in those regions are labeled. According to Fig. 7,
the change patterns are different in northern, western, and
southern China for 2015; thus, discussions are given based
on this classification. We start from the comparison of the
2015 analyzed emissions with the 2010 a priori emissions, as
there is a 5-year time lag between the two sets of emissions,
along with large uncertainties; therefore, large changes are
expected.

It is interesting to see that for northern China (North China
Plain and northeastern China), the most significant decreases
occur in or around large cities (city center locations are la-
beled as black dots). The phenomenon is very prominent
in the North China Plain, as we can see some “cold” spots
(grids with cold colors) in Fig. 8a, which are either over-
lapped by city center locations (Beijing, Tianjin, Xingtai, and
Handan in the Beijing–Tianjin–Hebei region, and Dongying,
Jinan, Zibo, and Jining in Shandong Province) or adjacent
to the center locations (Shijiazhuang, Linyi, Zaozhuang). As
the center locations are represented as latitudes and longi-
tudes that do not cover entire city areas, there might be
some shifting produced from interpreting the results when
the city areas are too large (e.g., Shijiazhuang, Changchun,
and Shenyang) and have been split into two or more grids
in the model. While the results still indicate that the emis-
sions in these larger cities decreased due to the strict con-
trol strategies from 2010 to 2015 (factory migration from
urban regions to remote regions, desulfurized equipment in
factories/vehicles, low-sulfur energy, etc.), there are some
emission increases in the suburban and rural regions sur-
rounding these larger cities, either due to emission migra-
tion from urban regions or new emission sources added due
to urbanization development. The results might also indicate
that the control strategies were executed at different levels
in urban (more strict) and suburban–rural regions during the
period from 2010 to 2015. In northeastern China, significant
“cold spots” also occur in the three larger cities, including
Ha’erbing, Changchun, and Shenyang, but increases mostly
occur in other areas, indicating a similar trend to that in the
North China Plain, in which large emission decreases oc-
curred in bigger cities and mild emission increases occurred
in suburban–rural regions from 2010 to 2015. In addition
to the possible aforementioned reasons accounting for the
different changes of urban and suburban–rural regions from
2010 to 2015, it should be noted that the month of January
is during the heating season for the North China Plain and
northeastern China, and the large areas of emission increase
might also indicate some heating emissions (from energy that
has not been statistically well recorded, e.g., crop combustion
and residential coal combustion) that are missing from the a
priori emissions.

In western China, where the emission intensities are not
as high and the emission sources are relatively sparse, the

changing emission trends from 2010 to 2015 are more obvi-
ous and are more meaningful for distinguishing new emis-
sion sources/regions. As some studies have revealed in-
creasing SO2 emissions due to energy industry expansion
and relocation in northwestern China from OMI measure-
ments (Ling et al., 2017), our 2015 analyzed emissions also
show large emission increases in the whole area of the
Energy Golden Triangle and Xinjiang, except for in very
few larger cities (Yinchuan, Wuhai, Lanzhou, and Kara-
may, which is also known as Kelamayi). The emissions
in other areas of the Energy Golden Triangle and Xin-
jiang almost all show increases from 2010 to 2015. Espe-
cially for Xinjiang, the increases in emissions are all at-
tributed to the rapidly developing cities/counties, including
Urumqi, Aksu (A’kesu), Korla (Ku’erle), Yecheng, Manas
(Manasi), Tacheng, Huocheng, Bachu, Atushi, Shanshan and
Shacheng. Koukouli et al. (2016) and Ling et al. (2017) used
multi-satellite data to investigate the SO2 load changes from
2004–2014 and 2005–2015, respectively, and identified lo-
cations with increases (including U’rumqi in Xinjiang and
cities in northwestern China). They reported that “These be-
long to provinces with emerging economies which are in
haste to install power plants and are possibly viewed le-
niently by the authorities, in favor of growth.” Our findings
are also consistent with those of these two studies.

In southern China, decreasing changes are shown for large
areas, especially in the Yangtze River Delta and the Pearl
River Delta, in which decreasing trends in larger cities are
clearly shown, e.g., in Shanghai, Nanjing, and Hangzhou in
the Yangtze River Delta and in Guangzhou, Shenzhen, and
Foshan in the Pearl River Delta, with relatively larger de-
creasing ratios in more well-developed cities. In the Sichuan
Basin and central China, the decreases in larger cities are
also significant, and different extents are achieved in cities of
different levels. For Chengdu, Chongqing, Zunyi, Guiyang,
and Yunyang in the Sichuan Basin and Wuhan and Changsha
in Central China, approximately 40 %–50 % reductions are
shown from 2010 to 2015. For other larger cities (municipal
centers of cities), 20 %–30 % reductions are shown.

As previously mentioned, the comparisons between the
2015 and 2016 analyzed emissions (Fig. 9) are more straight-
forward and reflect the necessary emission changes from
2015 to 2016, as the uncertainties in the a priori emissions
are subtracted. As expected, decreasing trends are shown for
almost all of the labeled cities, indicating the continuing strict
execution of control strategies. However, there are still some
grids with emission increases (approximately 10 %–30 %)
in surrounding regions, especially in the North China Plain,
which might reflect the emission increase from January 2015
to January 2016. As shown in Fig. 10 of Chen et al. (2019),
the temperature in January 2016 was much colder than that
in 2015, and the emission increases at those points may indi-
cate heating-related emissions. Compared with Fig. 8 (2015
vs. 2010), the changes from 2015 to 2016 (both increases and
decreases) are much milder in Fig. 9.
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Figure 9. Same as Fig. 8, but for the differences between the analyzed 2016 January emissions and the 2015 January emissions in eight
regions. Left/top panels are emission differences of 2016− 2015 (units: mol km−2 h−1), and right/bottom panels are the ratios of 2016/2015
in each region.
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Figure 10. Hourly factors in the a priori emission inventory and those derived from the EMIS_DA experiment in eight regions.

The regional averages of the 2015 and 2016 January emis-
sions are summarized in Table 3. In northern China (North
China Plain and northeastern China) and western China (the
Energy Golden Triangle and Xinjiang), the 2015 analyzed
emissions are all larger than the 2010 prior emissions. The
increase percentages are 12.7 %, 49.4 %, 25.6 %, and 72 %
for the North China Plain, northeastern China, the Energy
Golden Triangle, and Xinjiang, respectively, indicating an
increasing trend from 2010 January to 2015 January, either
due to emission increases in reality (possibly in the En-
ergy Golden Triangle and Xinjiang) or uncertainties in the
2010 a priori emissions (possibly in the North China Plain
and northeastern China). The largest increase occurred in
Xinjiang, reaching 72 %, which is consistent with the pre-
vious findings of newly added emission sources in that re-
gion. In southern China, the 2015 analyzed emissions are
all smaller, and the decreasing ratios are −10.5 %, −9.9 %,
−13.8 %, and −22.9 % for the Sichuan Basin, central China,
the Yangtze River Delta, and the Pearl River Delta, re-
spectively. For the changes from 2015 to 2016, decreasing
trends are shown for all regions, with the ratios ranging from
−5.3 % to −16.1 %.

In the recent study by Zheng et al. (2018), the 2010–2017
trends of anthropogenic emissions in China were investi-
gated. According to the bottom-up approach, the annual to-
tal amounts of SO2 emissions were calculated to be 27.8,
16.9, and 13.4 Tg for the years 2010, 2015, and 2016, re-
spectively. The 2010 to 2015/2016 decreases were mostly at-
tributed to the power and industry sectors due to the strict
pollution control measures implemented for these two sec-

tors. The sectoral distribution of emissions have changed sig-
nificantly over recent years, and emissions other than those
from power and industry have occupied larger portions, espe-
cially for the residential sector, as the current control policies
have limited effects on reducing emissions from the residen-
tial sector. According to Zheng et al. (2018), the national to-
tal SO2 emissions decreased by 20.8 % from 2015 to 2016.
Our derived changes ratios for the month of January in most
of the regions (NEC, XJ, SB, CC, and the PRD) are compa-
rable (13.9 %, 16.1 %, 12.4 %, 15.5 %, and 12.6 %, respec-
tively, see Table 3), but the change ratios for NCP, ETR,
and YRD are (relatively) smaller. As discussed in Zheng et
al. (2018), bottom-up emission estimates are uncertain due
to incomplete knowledge of the underlying data, and uncer-
tainties are larger when emissions are contributed by scat-
tered emission sources. Especially for the residential sector,
the effectiveness of the measures (e.g., phasing out of small
high-emission stoves and the banning of coal heating) is dif-
ficult to validate due to the lack of inspections; thus, higher
uncertainties may arise for regions in which residential emis-
sions are relatively important.

4.4 Hourly factors

As hourly observations were used to constrain the emissions,
analyzed emissions at an hourly frequency were obtained,
which provided us an opportunity to investigate the hourly
emission factors from observations. To retrieve the hourly
factors, the emissions during each hour (24 h) are averaged
based on the EMIS_DA experiment for the whole period (2–
31 January ). The retrieved hourly factors for 2015 and 2016
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Table 3. A priori and analyzed January emissions and the changing ratios for 8 regions (units: 106 kg d−1).

2010 a priori 2015 posterior 2016 posterior (2015–2010)/2010 (2016–2015)/2015

NCP 16.23 18.29 17.33 12.7 % −5.3 %
NEC 4.12 6.16 5.30 49.4 % −13.9 %
ETR 11.01 13.82 13.01 25.6 % −5.9 %
XJ 1.62 2.79 2.34 72.0 % −16.1 %
SB 17.12 15.33 13.43 −10.5 % −12.4 %
CC 9.95 8.96 7.57 −9.9 % −15.5 %
YRD 5.80 5.00 4.65 −13.8 % −7.0 %
PRD 1.82 1.40 1.23 −22.9 % −12.6 %

and the 2010 a priori emissions are shown in Fig. 10. The a
priori hourly factors are given arbitrarily, with two peaks dur-
ing the day at 01:00 UTC (09:00 BJ time – Beijing time) and
09:00 UTC (17:00 BJ time) to reflect the emissions during
rush hours. The retrieved hourly factors in northern and west-
ern China showed two peaks at approximately 02:00 UTC
(10:00 BJ time) and 12:00 UTC (20:00 BJ time), but the sec-
ond peak is obscure in southern regions. In addition, the sec-
ond peak of the hourly factors in the northern and western re-
gions is much lower than the first, which was different from
the predefined curve. In Xinjiang, the peaks occurred later
than in the other regions, indicating that the time zone differ-
ences caused a different energy consumption/emission pat-
tern. It should be noted that the hourly factors were derived
from the analyzed emissions constrained from ambient con-
centration observations; thus, the response times from emis-
sions to ambient concentrations were simplified in the assim-
ilation system. Although the background emissions contain
the information from the previous cycles, and may, therefore,
help to pass the response information, there might still be
some time lag in the retrieved hourly factors, which should
be further verified.

5 Forecast improvements

As there are large uncertainties in the bottom-up 2010 a pri-
ori emission inventory and in the assimilation process itself,
it is difficult to verify the accuracy of the 2015 and 2016 Jan-
uary analyzed emissions. The bottom-up emission inventory
for the 2 years is not yet available for comparison. Thus, two
sets of forecast experiments using the a priori emissions and
the analyzed emissions were conducted (NO_DA_ forecast
vs. EMIS_DA_forecast, see details in Sect. 2.5). The fore-
cast differences between the two experiments can reflect, to
some extent, the performance/improvement of the analyzed
emissions. To show the differences spatially, the statistics at
single observational sites in the two forecast experiments are
given and compared. In addition, the improvement from the
hourly forecast is more meaningful in showing the system
capability of hourly emission optimization. Thus, the time

series of the regional means in eight regions are also given to
show the performance temporally.

5.1 Changes of spatial statistics

Figures 11 and 12 show the performances of the
NO_DA_forecast and EMIS_DA_forecast experiments for
January 2015 and 2016, respectively. Statistics, including the
BIAS (bias, equal to the difference between the modeled
value and the observational value, representing the overall
model tendency), RMSE (the root mean square error/root
mean square deviation, equal to the square root of the sec-
ond moment of the differences between the model values
and the observational values, reflecting both model biases
and error variances), and CORR (the correlation coefficient,
equal to the linear relationship between the modeled values
and the observational values), were chosen to evaluate the
two forecast experiments with a priori emissions and an-
alyzed emissions, respectively. For a single site, the three
statistics (BIAS, RMSE, and CORR) may change in two
directions – for example, the BIAS (the bias of the abso-
lute emission amount) may get worse, but the RMSE (er-
ror variance) and CORR (in terms of the diurnal or day-to-
day emission changes) may get better. To fairly evaluate and
show the overall changes, the 531 lumped sites were clas-
sified into five different groups to reflect the differences in
the statistics. The classification and performance are listed
in Table 4. The spatial distributions of the NO_DA_forecast
statistics for each site are given in Figs. 11a and 12a. To bet-
ter illustrate the changes of the statistics after applying the
analyzed emissions, the differences (EMIS_DA_forecast −
NO_DA_forecast), instead of the absolute values, are shown
for the five defined groups in Figs. 11b–f and 12b–f. Specif-
ically, the absolute values of the BIAS were used in the dif-
ference calculation.

Concerning single statistics, the BIAS, RMSE, and CORR
are improved at 383, 444, and 426 sites, respectively, for the
year 2015 (Table 4), while there are 524 total valid sites over
the whole domain. That is to say that the ratios of sites im-
proved are 73 %, 85 %, and 81 %, respectively, as determined
using BIAS, RMSE, and CORR as the single criterion. When
considering the overall performance using the three statis-
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Figure 11.
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Figure 11. The spatial distribution of the error statistics between the model simulations and the observations for January 2015. (a) Statistics
between NO_DA_FCST and the observations, with BIAS and RMSE in micrograms per cubic meter; (b–f) the statistics improvements from
NO_DA_FCST to EMIS_DA_FCST for different groups of sites (classification in Table 4), with the BIAS and RMSE improvements shown
as percentages. The color bars are the same for (b)–(f) and are only shown in (c) and (f) to save space.
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Figure 12.
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Figure 12. Same as Fig. 11, but for January 2016.

www.atmos-chem-phys.net/19/8619/2019/ Atmos. Chem. Phys., 19, 8619–8650, 2019



8644 D. Chen et al.: The 2015 and 2016 wintertime air pollution in China

Table 4. Overall statistical changes of the EMIS_DA_FCST experiment compared with the NO_DA_FCST experiment.

Types BIAS RMSE CORR

2015

Better 383 444 426
Worse 141 80 97

2016

Better 375 444 456
Worse 148 79 67

Groups BIAS RMSE CORR 2015 2016
Overall improvement Decrease Decrease Increase 300 321
Partially improved (BIAS, RMSE) Decrease Decrease Decrease 61 43
Partially improved (RMSE, CORR) Increase Decrease Increase 77 71
Not justified 70 77
Overall deterioration Increase Increase Decrease 16 11

tics, 300 sites (57 %) are fully improved (BIAS/RMSE de-
crease and CORR increase), 138 sites (26 %) are partially im-
proved (either the BIAS and RMSE improved or the RMSE
and CORR improved), only 16 sites (3 %) show an over-
all deterioration of performance, and the remaining approxi-
mately 13 % of sites could not be justified. The performance
in 2016 is even better than that in 2015, with the fully im-
proved (overall worse sites) being more (less) compared with
the 2015 case.

Figure 11b shows that overall improvements are achieved
over the whole domain, with the largest BIAS corrections
occurring at sites in the Sichuan Basin, central China, the
Yangtze River Delta, and the Pearl River Delta (reaching
60 %–70 % reductions) and the largest CORR improvement
occurring in Xinjiang (reaching 0.35). The sites that are par-
tially improved (Fig. 11c, d) and unclassified (Fig. 11e) are
not in specific regions but are scattered through the whole
domain. The sites that showed an overall deterioration of per-
formance (Fig. 11f) are very few, and the variances are rel-
atively small. Consistent with Table 4, the performance in
2016 (Fig. 12) is even better than that in 2015 (Fig. 11), with
the BIAS corrections being more significant, especially in the
Sichuan Basin, central China, the Yangtze River Delta, and
the Pearl River Delta, and the CORR improvements are even
larger in Xinjiang.

5.2 Time series of the regional mean

Figure 13 shows the time series of the regional mean fore-
casts (NO_DA_forecast and EMIS_DA_forecast) and the ob-
served SO2 concentrations in eight regions for 2015 and
2016. From the aspect of the regional mean, forecasts with
a priori emissions are severely overestimated in southern
China (the Sichuan Basin, central China, the Yangtze River
Delta, and the Pearl River Delta), and the overestimations
are largely corrected in the forecasts with analyzed emis-

sions. For northeastern China, the Energy Golden Triangle,
and Xinjiang, forecasts with a priori emissions are under-
estimated, and forecasts with analyzed emissions helped to
correct the biases. It is surprising to see that the regional av-
erages in the North China Plain match well with the obser-
vations, although the site-to-site comparisons (Figs. 11, 12)
show large biases at single sites. As the sites in one region are
averaged, the positive/negative biases among different sites
might be offset in the averaged time series. For this reason,
the RMSE and CORR of all the hourly data in one region are
also calculated for verification.

The statistics of the BIAS, RMSE, and CORR in the
eight regions are given in Table 5. From the aspect of
the regional mean, the improvements obtained after apply-
ing the analyzed emissions are more significant in southern
China than in northern China, with the RMSE decreased by
27.9 %–39.3 %, the BIAS decreased by 63.3 %–78.2 %, and
the CORR increased by 16.7 %–45.0 % for the year 2015.
For northern China, although the improvements are not as
large, the BIAS still decreased (except in the North China
Plain), and the decreasing ratio ranged from 6.3 % to 22.9 %,
while the RMSE decreased by 4.2 %–8.8 % and the CORR
increased by 7.7 % to 366.7 %. The largest CORR increase
occurred in Xinjiang, changing from 0.06 to 0.28, indicating
that the newly added emission sources in the analyzed emis-
sions are necessary. Compared with 2015, the improvements
in 2016 are also larger, which is consistent with previous dis-
cussions.

6 Conclusions

Based upon our previous study (Peng et al., 2017), we further
updated the WRF-Chem/EnKF DA system to quantitatively
estimate gridded hourly SO2 emissions using hourly surface
observations as constraints. In contrast to Peng et al. (2017),
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Figure 13.

direct emissions were used as the analysis variables instead
of emission scaling factors, which allows for the detection of
new emission sources.

The 2010 January MEIC a priori emissions were used
to generate 2015 and 2016 January analyzed emissions, ap-
plying the hourly surface SO2 observations as constraints.
Compared with the 2010 a priori emissions, the analyzed
emissions in January 2015 showed inhomogeneous change
patterns in different regions. (1) Significant emission reduc-
tions were found in southern China, including in the Sichuan
Basin, central China, the Yangtze River Delta, and the Pearl
River Delta; however, there were still some grids with slight

emission increases surrounding larger cities, indicating the
emission transition due to urbanization development. The re-
duction ratios of the total January emissions for the afore-
mentioned four regions were −10.5 %, −9.9 %, −13.8 %,
and−22.9 %, respectively. (2) For northern China (the North
China Plain and northeastern China), the situation is more
complicated during the winter heating season. Comparisons
show large emission reductions in larger cities but wide in-
creases in surrounding suburban and rural regions, which
may indicate missing raw coal combustion that was not taken
into account in the a priori emission inventory. The increase
ratios of the total January emissions for the North China Plain
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Figure 13. Time series of the regional mean SO2 concentrations from the observations and from model simulations with the a priori and
analyzed (posterior) emissions for (a) January 2015 and (b) January 2016 in eight regions. Time starts from 00:00 UTC. (Units: µgm−3.)

and northeastern China were 12.7 % and 49.4 %, respec-
tively. (3) Significantly large emission increases were found
in western China (the Energy Golden Triangle and Xinjiang)
due to the energy expansion strategy, which is consistent with
satellite observations (e.g., Ling et al., 2017). The increase
ratio of the total January emissions for the Energy Golden
Triangle and Xinjiang were 25.6 %, and 72.0 %, respectively.
It should be noted that the comparisons between the 2010 a
priori emissions and the 2015 analyzed emissions not only
reflect the changes during the 5 years but also include the
uncertainties in the a priori emissions (either due to uncer-
tainties in the total annual/monthly emissions or to the allo-
cation process from the provincial emissions to the gridded

data). Comparisons of the 2015 and 2016 analyzed emissions
show wide emission reductions from 2015 to 2016, which is
consistent with a recent study on emission changing trends
using the bottom-up approach (Zheng et al., 2018), indicat-
ing that stricter control strategies have been fully executed
nationwide. These changes coincided with the period of the
energy development national strategy in northwestern China
and regulations for the reduction of SO2 emissions, indicat-
ing that the updated DA system was possibly capable of de-
tecting the emission deficiencies, dynamically updating the
spatial–temporal emission changes (2010 to 2015/2016), and
locating the newly added sources. The detection of emission
changes by the DA system can be localized to the city level,
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Table 5. Statistics of the EMIS_DA_FCST and NO_DA_FCST experiments in eight regions (units: µgm−3 for BIAS and RMSE).

BIAS RMSE CORR

N sites N data NO_DA EMIS_DA Changes (%) NO_DA EMIS_DA Changes (%) NO_DA EMIS_DA Changes (%)

2015

NCP 67 46 699 −9.6 −10.1 5.2 % 53.7 49.0 −8.8 % 0.52 0.62 19.2 %
NEC 30 20 910 −29.3 −22.6 −22.9 % 61.8 57.1 −7.6 % 0.52 0.56 7.7 %
EGT 45 31 365 −41.2 −38.6 −6.3 % 84.8 81.2 −4.2 % 0.53 0.58 9.4 %
XJ 19 13 243 −12.6 −10.3 −18.3 % 36.8 33.7 −8.4 % 0.06 0.28 366.7 %
SB 48 33 456 9.7 2.7 −72.2 % 45.1 32.5 −27.9 % 0.20 0.29 45.0 %
CC 53 36 941 6.1 −1.4 −77.0 % 49.7 34.6 −30.4 % 0.32 0.39 21.9 %
YRD 34 23 698 10.9 4.0 −63.3 % 37.0 24.9 −32.7 % 0.47 0.55 17.0 %
PRD 20 13 940 8.7 1.9 −78.2 % 24.7 15.0 −39.3 % 0.42 0.49 16.7 %

2016

NCP 67 46 699 2.1 −0.3 −85.7 % 41.5 36.2 −12.8 % 0.58 0.69 19.0 %
NEC 30 20 910 −16.8 −14.7 −12.5 % 41.2 36.9 −10.4 % 0.50 0.58 16.0 %
EGT 45 31 365 −27.7 −26.6 −4.0 % 64.5 61.2 −5.1 % 0.56 0.63 12.5 %
XJ 19 13 243 −5.8 −6.0 3.4 % 30.5 26.9 −11.8 % 0.23 0.47 104.3 %
SB 48 33 456 14.5 5.2 −64.1 % 38.9 23.1 −40.6 % 0.17 0.25 47.1 %
CC 53 36 941 11.2 2.6 −76.8 % 38.0 22.2 −41.6 % 0.28 0.37 32.1 %
YRD 34 23 698 12.3 4.7 −61.8 % 33.7 20.1 −40.4 % 0.48 0.54 12.5 %
PRD 20 13 940 9.8 2.4 −75.5 % 20.9 10.0 −52.2 % 0.30 0.39 30.0 %

benefitting from the intensive observations and the model
grid resolution.

It is difficult to verify the accuracy of the analyzed emis-
sions, as the bottom-up emission inventories for 2015 and
2016 are not yet available for comparison. Two sets of fore-
cast experiments using the a priori emissions and the ana-
lyzed emissions were conducted to show the differences and
improvements. Among the 531 lumped sites, 300 sites were
fully improved (BIAS and RMSE reduced and CORR in-
creased), and only 16 sites were entirely worse for the year
2015. The other 138 sites were partially improved (two statis-
tical measures became better). The improvements were much
larger in southern China than in northern and western China.
Upon using the analyzed emissions, the BIAS and RMSE
were reduced by 61.8 %–78.2 % and 27.9 %–52.2 %, respec-
tively, and the correlation coefficient increased by 12.5 %–
47.1 % for southern Chinese regions (the Sichuan Basin,
central China, the Yangtze River Delta, and the Pearl River
Delta). However, for northern and western China, where the
original BIAS and RMSE values were larger, the decreases
were (relatively) smaller. Nevertheless, the correlations were
indeed improved, especially for Xinjiang, as new emissions
were captured in the analyzed emissions. The distinction of
the comparisons among different regions (northern/western
regions vs. southern regions) indicated the deficiencies in the
perturbation procedure in the DA system when applied to
the northern/western regions. Further investigations should
be conducted to generate larger spreads for those regions in
future studies.

Our study serves as an example indicating that the ensem-
ble Kalman filter algorithm combined with the WRF-Chem
regional model can be used to optimize model-ready gridded

hourly emissions inputs using hourly surface observations as
constraints. This approach is useful for assessing emission
control strategies and can also improve forecasting skills.
The limitation of this study is that the analyzed emissions
are still model-dependent, as the ensembles are conducted
through the WRF-Chem model, and, thus, the performance
of the ensembles is model-dependent. Changes in the model
configuration (e.g., the spatial resolution or chemistry op-
tions) can cause differences in the DA system. In our study,
the model resolution is 40 km, which might be too coarse for
SO2, as it is a species with a relatively short lifetime, and the
localized characteristics might not be captured by the sys-
tem. In addition, the reactions of SO2 are only reflected in
the WRF-Chem system and not in the EnKF process. Con-
sidering the reaction time of SO2 in the ambient atmosphere,
there might be some time lag in the hourly emission factors.
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