Articles | Volume 19, issue 1
https://doi.org/10.5194/acp-19-77-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-77-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermal structure of the mesopause region during the WADIS-2 rocket campaign
Boris Strelnikov
Leibniz-Institute of Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany
Timo P. Viehl
Leibniz-Institute of Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany
Josef Höffner
Leibniz-Institute of Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany
Pierre-Dominique Pautet
Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah, USA
Michael J. Taylor
Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah, USA
Yucheng Zhao
Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah, USA
Franz-Josef Lübken
Leibniz-Institute of Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany
Related authors
No articles found.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344, https://doi.org/10.5194/egusphere-2024-3344, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A new algorithm for medium-scale gravity waves analysis was developed for studies of gravity waves observed by airglow imaging. With this procedure, observation datasets can be analyzed to extract the gravity waves parameters for climatological purposes. The procedure showed reliable performance and are ready to be used in other observation sites.
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Carsten Baumann, Frank Arnold, and Boris Strelnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1631, https://doi.org/10.5194/egusphere-2024-1631, 2024
Short summary
Short summary
We used a mass spectrometer on a rocket to analyze natural ions at altitudes between 60 and 120 km. Our instrument was launched in 2018 and 2021 from Norway. The heaviest particles were detected around 80 km, while medium particles could be found even above 100 km. Our measurements show that different particles are formed and not just one predominating compound. The most likely compounds that form meteor smoke particles in our measurements are made up from oxides of iron, magnesium and silicon.
Thorben H. Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
Atmos. Meas. Tech., 17, 1665–1677, https://doi.org/10.5194/amt-17-1665-2024, https://doi.org/10.5194/amt-17-1665-2024, 2024
Short summary
Short summary
A novel lidar system with five beams measured horizontal and vertical winds together, reaching altitudes up to 25 km. Developed in Germany, it revealed accurate horizontal wind data compared to forecasts, but vertical wind estimates differed. The lidar's capability to detect small-scale wind patterns was highlighted, advancing atmospheric research.
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 24, 1543–1558, https://doi.org/10.5194/acp-24-1543-2024, https://doi.org/10.5194/acp-24-1543-2024, 2024
Short summary
Short summary
We use satellite, lidar, and ECMWF data to study storm-related waves that propagate above Kühlungsborn, Germany, during summer. Although these events occur in roughly half of the years of the satellite data we analyzed, we focus our study on two case study years (2014 and 2015). These events could contribute significantly to middle atmospheric circulation and are not accounted for in weather and climate models.
Ashique Vellalassery, Gerd Baumgarten, Mykhaylo Grygalashvyly, and Franz-Josef Lübken
Ann. Geophys., 41, 289–300, https://doi.org/10.5194/angeo-41-289-2023, https://doi.org/10.5194/angeo-41-289-2023, 2023
Short summary
Short summary
The solar cycle affects the H2O concentration in the upper mesosphere mainly in two ways: directly through photolysis and, at the time and place of NLC formation, indirectly through temperature changes. The H2O–Lyman-α response is modified by NLC formation, resulting in a positive response at the ice formation region (due to the temperature change effect on the ice formation rate) and a negative response at the sublimation zone (due to the photolysis effect).
Franz-Josef Lübken and Josef Höffner
Atmos. Meas. Tech., 14, 3815–3836, https://doi.org/10.5194/amt-14-3815-2021, https://doi.org/10.5194/amt-14-3815-2021, 2021
Short summary
Short summary
We present a new concept for a cluster of lidars that allows us to measure time-resolved profiles of temperatures, winds, and aerosols in the entire middle atmosphere for the first time, also covering regional horizontal scales (
four-dimensional coverage). Measurements are performed during day and night. The essential component is a newly developed laser with unprecedented performance. We present the first measurements. New observational capabilities in atmospheric physics are established.
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Frank Arnold, and Boris Strelnikov
Atmos. Meas. Tech., 14, 983–993, https://doi.org/10.5194/amt-14-983-2021, https://doi.org/10.5194/amt-14-983-2021, 2021
Short summary
Short summary
In this paper we describe the instrument ROMARA and show data from the first flight on a research rocket.
On the way through the atmosphere, the instrument detects positive and negative, natural occurring ions before returning back to ground.
ROMARA was successfully launched together with other instruments into a special radar echo.
We detected typical, light ions of positive and negative charge and heavy negative ions, but no heavy positive ions.
Ronald Eixmann, Vivien Matthias, Josef Höffner, Gerd Baumgarten, and Michael Gerding
Ann. Geophys., 38, 373–383, https://doi.org/10.5194/angeo-38-373-2020, https://doi.org/10.5194/angeo-38-373-2020, 2020
Short summary
Short summary
The aim of this study is to bring local variabilities into a global context. To qualitatively study the impact of global waves on local measurements in winter, we combine local lidar measurements with global MERRA-2 reanalysis data. Our results show that about 98 % of the local day-to-day variability can be explained by the variability of waves with zonal wave numbers 1, 2 and 3. Thus locally measured effects which are not based on global wave variability can be investigated much better.
Irina Strelnikova, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Meas. Tech., 13, 479–499, https://doi.org/10.5194/amt-13-479-2020, https://doi.org/10.5194/amt-13-479-2020, 2020
Short summary
Short summary
One of the major problems of climate and weather modeling is atmospheric gravity waves. All measured meteorological parameters such as winds and temperature reveal superposition of large-scale background field and small-scale features created by waves. We developed an analysis technique that decomposes the measured winds and temperature into single waves, which allows for a detailed description of wave parameters. Application of this technique will improve understanding of atmospheric dynamics.
Robert Reichert, Bernd Kaifler, Natalie Kaifler, Markus Rapp, Pierre-Dominique Pautet, Michael J. Taylor, Alexander Kozlovsky, Mark Lester, and Rigel Kivi
Atmos. Meas. Tech., 12, 5997–6015, https://doi.org/10.5194/amt-12-5997-2019, https://doi.org/10.5194/amt-12-5997-2019, 2019
Short summary
Short summary
To determine gravity wave properties like wavelengths, periods and propagation directions at mesospheric altitudes (∼ 86 km) we combine lidar and airglow temperature and meteor radar wind data. By means of wavelet transformation we investigate the wave field and determine intrinsic wave properties as functions of time and period. We are able to identify several gravity wave packets by their distinct propagation and discover a superposition with possible wave–wave and wave–mean-flow interaction.
Ralph Latteck, Toralf Renkwitz, and Boris Strelnikov
Adv. Radio Sci., 17, 225–237, https://doi.org/10.5194/ars-17-225-2019, https://doi.org/10.5194/ars-17-225-2019, 2019
Short summary
Short summary
In April 2018 the PMWE1 sounding rocket campaign was conducted at the Andøya Space Center involving coordinated measurements with rockets and ground instruments to measure parameters relevant for testing of the existing theories of PMWE formation. The Middle Atmosphere Alomar Radar System (MAARSY) was operated to detect PMWE with multiple beam directions. The Saura MF radar was operated with a multiple beam experiment to derive horizontal winds and electron density profiles.
Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, and Pierre-Dominique Pautet
Atmos. Chem. Phys., 19, 11443–11460, https://doi.org/10.5194/acp-19-11443-2019, https://doi.org/10.5194/acp-19-11443-2019, 2019
Short summary
Short summary
Sounding rockets are the only means of measuring small-scale structures (i.e., spatial scales of kilometers to centimeters) in the Earth's middle atmosphere (50–120 km). We present and analyze brand-new high-resolution measurements of atomic oxygen (O) concentration together with high-resolution measurements of ionospheric plasma and neutral air parameters. We found a new behavior of the O inside turbulent layers, which might be essential to adequately model weather and climate.
Jens Faber, Michael Gerding, Andreas Schneider, Andreas Dörnbrack, Henrike Wilms, Johannes Wagner, and Franz-Josef Lübken
Atmos. Meas. Tech., 12, 4191–4210, https://doi.org/10.5194/amt-12-4191-2019, https://doi.org/10.5194/amt-12-4191-2019, 2019
Short summary
Short summary
Atmospheric measurements on rising balloons can be compromised by the balloon's wake. The aim of this study is to provide a tool for assessing the likelihood of encountering the balloon's wake at the position of the gondola. This includes an uncertainty analysis of the calculation and a retrieval of vertical winds. We find an average wake encounter probability of 28 % for a standard radiosonde. Additionally, we evaluate the influence of wake from smaller objects on turbulence measurements.
Jacob Zalach, Christian von Savigny, Arvid Langenbach, Gerd Baumgarten, Franz-Josef Lübken, and Adam Bourassa
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-267, https://doi.org/10.5194/amt-2019-267, 2019
Revised manuscript not accepted
Arvid Langenbach, Gerd Baumgarten, Jens Fiedler, Franz-Josef Lübken, Christian von Savigny, and Jacob Zalach
Atmos. Meas. Tech., 12, 4065–4076, https://doi.org/10.5194/amt-12-4065-2019, https://doi.org/10.5194/amt-12-4065-2019, 2019
Short summary
Short summary
Stratospheric aerosol backscatter ratios in the Arctic using Rayleigh, Mie and Raman backscattered signals were calculated. A backscatter ratio calculation during daytime was performed for the first time. Sharp aerosol layers thinner than 1 km over several days were observed. The seasonal cycle of stratospheric background aerosol in high latitudes including the summer months was calculated for the first time. Top altitude of the aerosol layer was found to reach up to 34 km, especially in summer.
Martin Eberhart, Stefan Löhle, Boris Strelnikov, Jonas Hedin, Mikhail Khaplanov, Stefanos Fasoulas, Jörg Gumbel, Franz-Josef Lübken, and Markus Rapp
Atmos. Meas. Tech., 12, 2445–2461, https://doi.org/10.5194/amt-12-2445-2019, https://doi.org/10.5194/amt-12-2445-2019, 2019
Short summary
Short summary
This paper describes the measurement of atomic oxygen in the upper atmosphere onboard sounding rockets using solid electrolyte sensors. Calibration of the sensors in the laboratory is explained in detail. Results from the WADIS-2 rocket campaign show profiles of atomic oxygen density with a high spatial resolution.
Uwe Berger, Gerd Baumgarten, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 19, 4685–4702, https://doi.org/10.5194/acp-19-4685-2019, https://doi.org/10.5194/acp-19-4685-2019, 2019
Short summary
Short summary
In this paper we present a new description of statistical probability density functions (pdfs) of polar mesospheric clouds (PMC). We derive a new class of pdfs that describes successfully the probability statistic of ALOMAR lidar observations of different ice parameters. As a main advantage the new method allows us to connect different observational PMC distributions of lidar and satellite data, and also to compare with distributions from ice model studies.
Mykhaylo Grygalashvyly, Martin Eberhart, Jonas Hedin, Boris Strelnikov, Franz-Josef Lübken, Markus Rapp, Stefan Löhle, Stefanos Fasoulas, Mikhail Khaplanov, Jörg Gumbel, and Ekaterina Vorobeva
Atmos. Chem. Phys., 19, 1207–1220, https://doi.org/10.5194/acp-19-1207-2019, https://doi.org/10.5194/acp-19-1207-2019, 2019
Short summary
Short summary
Based on rocket-borne true common volume observations of atomic oxygen, atmospheric band emission (762 nm), and background atmosphere density and temperature, one-step, two-step, and combined mechanisms of
O2(b1Σg+) formation were analyzed. We found new coefficients for the fit function based on self-consistent temperature, atomic oxygen, and volume emission observations. This can be used for atmospheric band volume emission modeling or the estimation of atomic oxygen by known volume emission.
Michael Gerding, Jochen Zöllner, Marius Zecha, Kathrin Baumgarten, Josef Höffner, Gunter Stober, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 15569–15580, https://doi.org/10.5194/acp-18-15569-2018, https://doi.org/10.5194/acp-18-15569-2018, 2018
Short summary
Short summary
We describe the first comparative study of noctilucent clouds (NLCs) and mesospheric summer echoes at midlatitudes. Therefore, this study compares fresh clouds (small particles) with fully evolved clouds in the mesosphere, hinting at their evolution. It is shown that, in contrast to higher latitudes, here only a thin layer of fresh particles exist above the NLCs. This gives evidence that NLCs are not formed locally but are typically advected. This needs to be acknowledged in trend studies.
Gabriel Giono, Boris Strelnikov, Heiner Asmus, Tristan Staszak, Nickolay Ivchenko, and Franz-Josef Lübken
Atmos. Meas. Tech., 11, 5299–5314, https://doi.org/10.5194/amt-11-5299-2018, https://doi.org/10.5194/amt-11-5299-2018, 2018
Short summary
Short summary
Energetic photons, such as ultraviolet light, are able to eject electrons from a material surface, thus creating an electrical current, also called a photocurrent. A proper estimation of this photocurrent can be crucial for space- or rocket-borne particle detectors, as it can dominate over the currents that are of scientific interest (induced by charged particles, for example). This article outlines the design for photocurrent modelling and for experimental confirmation in a laboratory.
Gerald A. Lehmacher, Miguel F. Larsen, Richard L. Collins, Aroh Barjatya, and Boris Strelnikov
Ann. Geophys., 36, 1099–1116, https://doi.org/10.5194/angeo-36-1099-2018, https://doi.org/10.5194/angeo-36-1099-2018, 2018
Short summary
Short summary
We used sounding rockets to obtain four high-resolution temperature profiles in the mesosphere over a limited area. We found consistent deep isothermal and adiabatic layers, but variable and finely structured turbulence preferentially in the lower stable mesosphere. Accompanying tracer releases showed horizontal winds in the lower thermosphere with extreme shears and 200 m s−1 winds under moderately disturbed geomagnetic conditions, and convection-like structures just below the mesopause.
Francie Schmidt, Gerd Baumgarten, Uwe Berger, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 8893–8908, https://doi.org/10.5194/acp-18-8893-2018, https://doi.org/10.5194/acp-18-8893-2018, 2018
Short summary
Short summary
Local time variations of polar mesospheric clouds (PMCs) in the Northern Hemisphere are studied using a combination of a global circulation model and a microphysical model. We investigate the brightness, altitude, and occurrence of the clouds and find a good agreement between model and observations. The variations are caused by tidal structures in background parameters. The temperature varies by about 2 K and water vapor by about 3 ppmv at the altitude of ice particle sublimation near 81.5 km.
Rolf Rüfenacht, Gerd Baumgarten, Jens Hildebrand, Franziska Schranz, Vivien Matthias, Gunter Stober, Franz-Josef Lübken, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 1971–1987, https://doi.org/10.5194/amt-11-1971-2018, https://doi.org/10.5194/amt-11-1971-2018, 2018
Short summary
Short summary
Wind information throughout the middle-atmosphere is crucial for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing and modelling approaches. We present the first thorough assessment of the quality of the wind estimates by comparing co-located observations from lidar and microwave radiometry and opposing them to the major atmospheric models. Moreover we evaluated a new approach for measuring mesopause region wind by radiometry.
Kathrin Baumgarten, Michael Gerding, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 371–384, https://doi.org/10.5194/acp-18-371-2018, https://doi.org/10.5194/acp-18-371-2018, 2018
Short summary
Short summary
Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The temporal variation of these waves is studied using a record long 10-day continuous Rayleigh–Mie–Raman lidar sounding at midlatitudes. This data set shows a large variability of these waves on timescales of a few days and therefore provides new insights into wave intermittency phenomena, which can help to improve model simulations.
Jens Hildebrand, Gerd Baumgarten, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 17, 13345–13359, https://doi.org/10.5194/acp-17-13345-2017, https://doi.org/10.5194/acp-17-13345-2017, 2017
Short summary
Short summary
We present altitude profiles of winds and temperatures in the Arctic strato- and mesosphere obtained during three Januaries. The data show large year-to-year variations. We compare the observations to model data. For monthly mean profiles we find good agreement below 55 km altitude but also differences of up to 20 K and 20 m s-1 above. The fluctuations during single nights indicate gravity waves. The kinetic energy of such waves is typically 5 to 10 times larger than their potential energy.
Heiner Asmus, Tristan Staszak, Boris Strelnikov, Franz-Josef Lübken, Martin Friedrich, and Markus Rapp
Ann. Geophys., 35, 979–998, https://doi.org/10.5194/angeo-35-979-2017, https://doi.org/10.5194/angeo-35-979-2017, 2017
Short summary
Short summary
This work sheds new light on the size distribution of dust grains of meteoric origin in the mesosphere and lower thermosphere region using rocket-borne instrumentation. We found that a large number of very small (~ 0.5 nm) particles are charged and therefore have a significant influence on the charge balance of the lower ionosphere.
Andreas Schneider, Johannes Wagner, Jens Faber, Michael Gerding, and Franz-Josef Lübken
Atmos. Chem. Phys., 17, 7941–7954, https://doi.org/10.5194/acp-17-7941-2017, https://doi.org/10.5194/acp-17-7941-2017, 2017
Short summary
Short summary
Wave breaking is studied with a combination of high-resolution turbulence observations with the balloon-borne instrument LITOS and mesoscale simulations with the WRF model. A relation between observed turbulent energy dissipation rates and the occurrence of wave patterns in modelled vertical winds is found, which is interpreted as the effect of wave saturation. The change of stability plays less of a role for mean dissipation for the flights examined.
Gunter Stober, Vivien Matthias, Christoph Jacobi, Sven Wilhelm, Josef Höffner, and Jorge L. Chau
Ann. Geophys., 35, 711–720, https://doi.org/10.5194/angeo-35-711-2017, https://doi.org/10.5194/angeo-35-711-2017, 2017
Boris Strelnikov, Artur Szewczyk, Irina Strelnikova, Ralph Latteck, Gerd Baumgarten, Franz-Josef Lübken, Markus Rapp, Stefanos Fasoulas, Stefan Löhle, Martin Eberhart, Ulf-Peter Hoppe, Tim Dunker, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Jörg Gumbel, and Aroh Barjatya
Ann. Geophys., 35, 547–565, https://doi.org/10.5194/angeo-35-547-2017, https://doi.org/10.5194/angeo-35-547-2017, 2017
Short summary
Short summary
The WADIS sounding rocket mission utilized multi-point turbulence measurements in the mesosphere by different techniques, i.e., with ionization gauges carried by rockets and ground-based MAARSY and EISCAT radars. Results show that turbulence energy dissipation rates oscillate in space and time with amplitude of up to 2 orders of magnitude. Spatial oscillations show the same wavelengths as atmospheric gravity waves. Temporal variability reveals periods of atmospheric tides and gravity waves.
Franz-Josef Lübken, Gerd Baumgarten, Jens Hildebrand, and Francis J. Schmidlin
Atmos. Meas. Tech., 9, 3911–3919, https://doi.org/10.5194/amt-9-3911-2016, https://doi.org/10.5194/amt-9-3911-2016, 2016
Short summary
Short summary
Wind measurements in the middle atmosphere (MA) are crucial to our understanding of atmospheric processes. We have recently developed a new laser-based method to measure winds called DoRIS (Doppler Rayleigh Iodine Spectrometer) which is the only technique to monitor winds in the middle atmosphere quasi-continuously. We
compare our measurements with rocket-borne measurements and find excellent
agreement above 30 km. DoRIS can now be considered as a validated method to measure winds in the MA.
Michael Gerding, Maren Kopp, Josef Höffner, Kathrin Baumgarten, and Franz-Josef Lübken
Atmos. Meas. Tech., 9, 3707–3715, https://doi.org/10.5194/amt-9-3707-2016, https://doi.org/10.5194/amt-9-3707-2016, 2016
Short summary
Short summary
Temperature soundings by lidar are an important tool for the understanding of the middle atmosphere, including gravity waves and tides. Though, mesospheric lidar soundings at daytime are rare. We describe a daylight-capable RMR lidar with optical bandwidths in the range of the Doppler broadened laser backscatter. We account for the systematic temperature error induced by the optical filter, and present examples of daylight-independent temperature sounding as well as tidal analysis.
A. F. Medeiros, I. Paulino, M. J. Taylor, J. Fechine, H. Takahashi, R. A. Buriti, L. M. Lima, and C. M. Wrasse
Ann. Geophys., 34, 91–96, https://doi.org/10.5194/angeo-34-91-2016, https://doi.org/10.5194/angeo-34-91-2016, 2016
Short summary
Short summary
This paper reports two consecutive mesospheric bores observed in the airglow emissions (OH and OI5577). Both bores propagated to the east and showed similar spectral characteristics. However, the first one exhibited a dark leading front with several trailing waves behind and progressed into a brighter airglow region. However, the second bore, observed in the OH layer, was comprised of several bright waves propagating into a darker airglow region.
J. Kiliani, G. Baumgarten, F.-J. Lübken, and U. Berger
Atmos. Chem. Phys., 15, 12897–12907, https://doi.org/10.5194/acp-15-12897-2015, https://doi.org/10.5194/acp-15-12897-2015, 2015
Short summary
Short summary
For the first time the shape of noctilucent cloud particles is analyzed with a 3-D Lagrangian model. Three-color lidar measurements are compared directly to optical modeling of NLC simulations with non-spherical shapes: a mix of elongated and flattened cylindrical ice particles consistent with measurements. Comparison is best if flattened particles form a majority, with mean axis ratio around 2.8. NLCs from cylindrical particles are slightly brighter and consist of fewer but larger ice particle.
A. Schneider, M. Gerding, and F.-J. Lübken
Atmos. Chem. Phys., 15, 2159–2166, https://doi.org/10.5194/acp-15-2159-2015, https://doi.org/10.5194/acp-15-2159-2015, 2015
Short summary
Short summary
Stratospheric turbulence is essential for the atmospheric energy budget. We compare in situ observations with our LITOS method based on spectral analysis of mm-scale wind fluctuations with the Thorpe method applied to standard radiosondes. Energy dissipations rates from both methods differ by up to 3 orders of magnitude. Nevertheless, mean values are in good agreement. We present case studies on both methods and examine the applicability of the Thorpe method for calculation of dissipation rates.
N. Kaifler, G. Baumgarten, J. Fiedler, and F.-J. Lübken
Atmos. Chem. Phys., 13, 11757–11768, https://doi.org/10.5194/acp-13-11757-2013, https://doi.org/10.5194/acp-13-11757-2013, 2013
A. Szewczyk, B. Strelnikov, M. Rapp, I. Strelnikova, G. Baumgarten, N. Kaifler, T. Dunker, and U.-P. Hoppe
Ann. Geophys., 31, 775–785, https://doi.org/10.5194/angeo-31-775-2013, https://doi.org/10.5194/angeo-31-775-2013, 2013
M. Rapp, J. M. C. Plane, B. Strelnikov, G. Stober, S. Ernst, J. Hedin, M. Friedrich, and U.-P. Hoppe
Ann. Geophys., 30, 1661–1673, https://doi.org/10.5194/angeo-30-1661-2012, https://doi.org/10.5194/angeo-30-1661-2012, 2012
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Variations in global zonal wind from 18 to 100 km due to solar activity and the quasi-biennial oscillation and El Niño–Southern Oscillation during 2002–2019
Radar observations of winds, waves and tides in the mesosphere and lower thermosphere over South Georgia island (54° S, 36° W) and comparison with WACCM simulations
Simultaneous in situ measurements of small-scale structures in neutral, plasma, and atomic oxygen densities during the WADIS sounding rocket project
Mesospheric anomalous diffusion during noctilucent cloud scenarios
On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016
Influence of geomagnetic activity on mesopause temperature over Yakutia
Quasi-12 h inertia–gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S)
Change in turbopause altitude at 52 and 70° N
High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon
Characteristics and sources of gravity waves observed in noctilucent cloud over Norway
Observation of a mesospheric front in a thermal-doppler duct over King George Island, Antarctica
The role of the QBO in the inter-hemispheric coupling of summer mesospheric temperatures
Xiao Liu, Jiyao Xu, Jia Yue, and Vania F. Andrioli
Atmos. Chem. Phys., 23, 6145–6167, https://doi.org/10.5194/acp-23-6145-2023, https://doi.org/10.5194/acp-23-6145-2023, 2023
Short summary
Short summary
Winds are important in characterizing atmospheric dynamics and coupling. However, it is difficult to directly measure the global winds from the stratosphere to the lower thermosphere. We developed a global zonal wind dataset according to the gradient wind theory and SABER and meteor radar observations. Using the dataset, we studied the intra-annual, inter-annual, and long-term variations. This is helpful to understand the variations and coupling of the stratosphere to the lower thermosphere.
Neil P. Hindley, Nicholas J. Mitchell, Neil Cobbett, Anne K. Smith, Dave C. Fritts, Diego Janches, Corwin J. Wright, and Tracy Moffat-Griffin
Atmos. Chem. Phys., 22, 9435–9459, https://doi.org/10.5194/acp-22-9435-2022, https://doi.org/10.5194/acp-22-9435-2022, 2022
Short summary
Short summary
We present observations of winds in the mesosphere and lower thermosphere (MLT) from a recently installed meteor radar on the remote island of South Georgia (54° S, 36° W). We characterise mean winds, tides, planetary waves, and gravity waves in the MLT at this location and compare our measured winds with a leading climate model. We find that the observed wintertime winds are unexpectedly reversed from model predictions, probably because of missing impacts of secondary gravity waves in the model.
Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, and Pierre-Dominique Pautet
Atmos. Chem. Phys., 19, 11443–11460, https://doi.org/10.5194/acp-19-11443-2019, https://doi.org/10.5194/acp-19-11443-2019, 2019
Short summary
Short summary
Sounding rockets are the only means of measuring small-scale structures (i.e., spatial scales of kilometers to centimeters) in the Earth's middle atmosphere (50–120 km). We present and analyze brand-new high-resolution measurements of atomic oxygen (O) concentration together with high-resolution measurements of ionospheric plasma and neutral air parameters. We found a new behavior of the O inside turbulent layers, which might be essential to adequately model weather and climate.
Fazlul I. Laskar, Gunter Stober, Jens Fiedler, Meers M. Oppenheim, Jorge L. Chau, Duggirala Pallamraju, Nicholas M. Pedatella, Masaki Tsutsumi, and Toralf Renkwitz
Atmos. Chem. Phys., 19, 5259–5267, https://doi.org/10.5194/acp-19-5259-2019, https://doi.org/10.5194/acp-19-5259-2019, 2019
Short summary
Short summary
Meteor radars are used to track and estimate the fading time of meteor trails. In this investigation, it is observed that the diffusion time estimated from such trail fading time is anomalously higher during noctilucent clouds (NLC) than that in its absence. We propose that NLC particles absorb background electrons and thus modify the background electrodynamics, leading to such an anomaly.
Vivien Matthias and Manfred Ern
Atmos. Chem. Phys., 18, 4803–4815, https://doi.org/10.5194/acp-18-4803-2018, https://doi.org/10.5194/acp-18-4803-2018, 2018
Short summary
Short summary
The aim of this study is to find the origin of mesospheric stationary planetary wave (SPW) in the subtropics and in mid and polar latitudes in mid winter 2015/2016. Our results based on observations show that upward propagating SPW and in situ generated SPWs by longitudinally variable gravity wave drag and by instabilities can be responsible for the occurrence of mesospheric SPWs and that they can act at the same time, which confirms earlier model studies.
Galina Gavrilyeva and Petr Ammosov
Atmos. Chem. Phys., 18, 3363–3367, https://doi.org/10.5194/acp-18-3363-2018, https://doi.org/10.5194/acp-18-3363-2018, 2018
Short summary
Short summary
The study of the response of the upper atmosphere to changes in solar and geomagnetic activity is an important contribution to the study of the Earth's climate. Measurements showed that the change in the atmospheric temperature at an altitude of 87 km above Yakutia lags behind the maximum solar radiation by 2 years and correlates with a change in geomagnetic activity. The winter temperature is higher in the years of the geomagnetic activity maximum than in the years of the minimum.
Ryosuke Shibuya, Kaoru Sato, Masaki Tsutsumi, Toru Sato, Yoshihiro Tomikawa, Koji Nishimura, and Masashi Kohma
Atmos. Chem. Phys., 17, 6455–6476, https://doi.org/10.5194/acp-17-6455-2017, https://doi.org/10.5194/acp-17-6455-2017, 2017
Short summary
Short summary
The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS radar) installed at Syowa Station were successfully performed from 16 to 24 March 2015. Over this period, quasi-12 h period disturbances in the mesosphere at heights of 70 to 80 km were observed. Combining the observational data and numerical simulation outputs, we found that quasi-12 h disturbances are due to large-scale inertia–gravity waves, not to semi-diurnal migrating tides.
Chris M. Hall, Silje E. Holmen, Chris E. Meek, Alan H. Manson, and Satonori Nozawa
Atmos. Chem. Phys., 16, 2299–2308, https://doi.org/10.5194/acp-16-2299-2016, https://doi.org/10.5194/acp-16-2299-2016, 2016
Short summary
Short summary
Turbulent energy dissipation rates are calculated using MF-radar signals from 70 and 52° N for the period 2001–2014 inclusive, and they are used to estimate turbopause altitudes. A positive trend in turbopause altitude is identified for 70° N in summer, but not in winter and not at 52° N. The turbopause altitude change between 2001 and 2014 can be used to hypothesize a corresponding change in atomic oxygen concentration.
B. W. Butler, N. S. Wagenbrenner, J. M. Forthofer, B. K. Lamb, K. S. Shannon, D. Finn, R. M. Eckman, K. Clawson, L. Bradshaw, P. Sopko, S. Beard, D. Jimenez, C. Wold, and M. Vosburgh
Atmos. Chem. Phys., 15, 3785–3801, https://doi.org/10.5194/acp-15-3785-2015, https://doi.org/10.5194/acp-15-3785-2015, 2015
Short summary
Short summary
Interest in numerical wind models continues to increase, especially for models that can simulate winds at relatively high spatial resolution (~100m). However, limited observational data exist for evaluation of model predictive performance. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The data are available to the public at http://www.firemodels.org/index.php/windninja-introduction/windninja-publications.
T. D. Demissie, P. J. Espy, N. H. Kleinknecht, M. Hatlen, N. Kaifler, and G. Baumgarten
Atmos. Chem. Phys., 14, 12133–12142, https://doi.org/10.5194/acp-14-12133-2014, https://doi.org/10.5194/acp-14-12133-2014, 2014
Short summary
Short summary
Summertime gravity waves detected in noctilucent clouds (NLCs) between 64◦ and 74◦N are found to have a similar climatology to those observed between 60◦ and 64◦N, and their direction of propagation is to the north and northeast as observed south of 64◦N. However, a unique population of fast, short wavelength waves propagating towards the SW is observed in the NLC. The sources of the prominent wave structures observed in the NLC are likely to be from waves propagating from near the tropopause.
J. V. Bageston, C. M. Wrasse, P. P. Batista, R. E. Hibbins, D. C Fritts, D. Gobbi, and V. F. Andrioli
Atmos. Chem. Phys., 11, 12137–12147, https://doi.org/10.5194/acp-11-12137-2011, https://doi.org/10.5194/acp-11-12137-2011, 2011
P. J. Espy, S. Ochoa Fernández, P. Forkman, D. Murtagh, and J. Stegman
Atmos. Chem. Phys., 11, 495–502, https://doi.org/10.5194/acp-11-495-2011, https://doi.org/10.5194/acp-11-495-2011, 2011
Cited articles
Akmaev, R. A.: Seasonal variations of the terdiurnal tide in the mesosphere and
lower thermosphere: A model study, Geophys. Res. Lett., 28, 3817–3820,
https://doi.org/10.1029/2001GL013002, 2001. a
Baker, D. J. and Stair, A. T.: Rocket measurements of the altitude
distributions of the hydroxyl airglow, Phys. Scr., 37, 611, 1988. a
Batista, P. P., Clemesha, B. R., Tokumoto, A. S., and Lima, L. M.: Structure of
the mean winds and tides in the meteor region over Cachoeira Paulista, Brazil
(22.7∘ S, 45∘ W) and its comparison with models, J. Atmos. Sol.-Terr.
Phy., 66, 623–636, https://doi.org/10.1016/j.jastp.2004.01.014, 2004. a
Baumgarten, K., Gerding, M., Baumgarten, G., and Lübken, F.-J.: Temporal variability of
tidal and gravity waves during a record long 10-day continuous lidar
sounding, Atmos. Chem. Phys., 18, 371–384, https://doi.org/10.5194/acp-18-371-2018, 2018. a
Beldon, C. L., Muller, H. G., and Mitchell, N. J.: The 8-hour tide in the
mesosphere and lower thermosphere over the UK, 1988–2004, J. Atmos.
Sol.-Terr. Phy., 68, 655–668,
https://doi.org/10.1016/j.jastp.2005.10.004, 2006. a
Bossert, K., Fritts, D., Pautet, P., Taylor, M. J., Williams, B., and
Pendelton, W. R.: Investigation of a mesospheric gravity wave ducting event
using coordinated sodium lidar and Mesospheric Temperature Mapper
measurements at ALOMAR, Norway (69∘ N), J. Geophys. Res.-Atmos., 119, 16, https://doi.org/10.1002/2014JD021460, 2014. a, b, c
Chapman, S. and Lindzen, R. S.: Atmospheric Tides: Thermal and Gravitational,
Gordon and Breach New York, 1970. a
Dalin, P., Kirkwood, S., Pertsev, N., and Perminov, V.: Influence of Solar and
Lunar Tides on the Mesopause Region as Observed in Polar Mesosphere Summer
Echoes Characteristics, J. Geophys. Res.-Atmos., 122, 10369–10383,
https://doi.org/10.1002/2017JD026509, 2017. a
Dunker, T.: The airglow layer emission altitude cannot be determined unambiguously
from temperature comparison with lidars, Atmos. Chem. Phys., 18, 6691–6697, https://doi.org/10.5194/acp-18-6691-2018, 2018. a
Eckermann, S. D. and Marks, C. J.: An idealized ray model of gravity
wave–tidal interactions, J. Geophys. Res.-Atmos., 101, 21195–21212,
https://doi.org/10.1029/96JD01660, 1996. a
Forbes, J. M.: Atmospheric tides: 1. Model description and results for the
solar diurnal component, J. Geophys. Res.-Space Phys., 87, 5222–5240,
https://doi.org/10.1029/JA087iA07p05222, 1982a. a, b, c, d
Forbes, J. M.: Atmospheric tide: 2. The solar and lunar semidiurnal components,
J. Geophys. Res.-Space Phys., 87, 5241–5252, https://doi.org/10.1029/JA087iA07p05241, 1982b. a, b, c, d
Forbes, J. M.: Middle atmosphere tides, J. Atmos. Terr. Phys., 46, 1049–1067, https://doi.org/10.1016/0021-9169(84)90008-4, 1984. a
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1, https://doi.org/10.1029/2001RG000106, 2003. a
Gerding, M., Höffner, J., Lautenbach, J., Rauthe, M., and Lübken, F.-J.:
Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54∘ N
observed by lidar, Atmos. Chem. Phys., 8, 7465–7482, https://doi.org/10.5194/acp-8-7465-2008, 2008. a
Grygalashvyly, M., Sonnemann, G. R., Lübken, F.-J., Hartogh, P., and
Berger, U.: Hydroxyl layer: mean state and trends at mid latitudes, J.
Geophys. Res.-Atmos., 119, 12391–12419, https://doi.org/10.1002/2014JD022094,
2014. a
Hagan, M. E. and Forbes, J. M.: Migrating and nonmigrating diurnal tides in the
middle and upper atmosphere excited by tropospheric latent heat release, J.
Geophys. Res.-Atmos., 107, ACL 6-1–ACL 6-15, https://doi.org/10.1029/2001JD001236, 2002. a
Hauchecorne, A. and Maillard, A.: The mechanism of formation of inversion
layers in the mesosphere, Adv. Space Res., 12, 219–223, 1992. a
Hauchecorne, A., Chanin, M. L., and Wilson, R.: Mesospheric temperature
inversion and gravity wave breaking, Geophys. Res. Lett., 14, 933–936,
https://doi.org/10.1029/GL014i009p00933, 1987. a
Höffner, J. and Fricke-Begemann, C.: Accurate lidar temperatures with
narrowband filters, Opt. Lett., 30, 890–892, https://doi.org/10.1364/OL.30.000890, 2005. a
Höffner, J. and Lautenbach, J.: Daylight measurements of mesopause
temperature and vertical wind with the mobile scanning iron Lidar, Opt.
Lett., 34, 1351–1353, 2009. a
Jacobi, Ch. and Fytterer, T.: The 8-h tide in the mesosphere and lower thermosphere
over Collm (51.3∘ N; 13.0∘ E), 2004–2011, Adv. Radio Sci., 10, 265–270, https://doi.org/10.5194/ars-10-265-2012, 2012. a
Lautenbach, J. and Höffner, J.: Scanning iron temperature lidar for
mesopause temperature observation, Appl. Optics, 43, 4559–4563,
https://doi.org/10.1364/AO.43.004559, 2004. a, b
Lilienthal, F., Jacobi, C., and Geißler, C.: Forcing mechanisms of the
terdiurnal tide, Atmos. Chem. Phys., 18, 15725–15742, https://doi.org/10.5194/acp-18-15725-2018,
2018. a
Liu, G. and Shepherd, G. G.: An empirical model for the altitude of the OH
nightglow emission, Geophys. Res. Lett., 33, 9, https://doi.org/10.1029/2005GL025297, 2006. a
Melo, S. M. L., Lowe, R. P., and Russell, J. P.: Double-peaked hydroxyl airglow
profiles observed from WINDII/UARS, J. Geophys. Res.-Atmos., 105,
12397–12403, https://doi.org/10.1029/1999JD901169, 2000. a
Meriwether, J. and Gerrard, A. J.: Mesosphere inversion layers and stratosphere
temperature enhancements, Rev. Geophys., 42, 3, https://doi.org/10.1029/2003RG000133, 2004. a
Meriwether, J. W. and Gardner, C. S.: A review of the mesosphere inversion
layer phenomenon, J. Geophys. Res., 105, 12405–12416,
https://doi.org/10.1029/2000JD900163, 2000. a
Murphy, D. J., Forbes, J. M., Walterscheid, R. L., Hagan, M. E., Avery, S. K.,
Aso, T., Fraser, G. J., Fritts, D. C., Jarvis, M. J., McDonald, A. J.,
Riggin, D. M., Tsutsumi, M., and Vincent, R. A.: A climatology of tides in
the Antarctic mesosphere and lower thermosphere, J. Geophys. Res.-Atmos.,
111, D23, https://doi.org/10.1029/2005JD006803, 2006. a
Perminov, V., Lowe, R., and Pertsev, N.: Longitudinal variations in the
hydroxyl nightglow, Adv. Space Res., 24, 1609–1612,
https://doi.org/10.1016/S0273-1177(99)00887-X, 1999. a
Rapp, M., Gumbel, J., and Lübken, F.-J.: Absolute density measurements in the
middle atmosphere, Ann. Geophys., 19, 571–580, https://doi.org/10.5194/angeo-19-571-2001, 2001. a
Senf, F. and Achatz, U.: On the impact of middle-atmosphere thermal tides on
the propagation and dissipation of gravity waves, J. Geophys. Res.-Atmos.,
116, D24, https://doi.org/10.1029/2011JD015794, 2011. a
Smith, A. K.: Global Dynamics of the MLT, Surv. Geophys., 33, 1177–1230,
https://doi.org/10.1007/s10712-012-9196-9, 2012. a
Smith, A. K., Pancheva, D., and Mitchell, N.: Observations and modeling of the
6-hour tide in the upper mesosphere, J. Geophys. Res., 109, D10,
https://doi.org/10.1029/2003JD004421, 2004. a, b, c
States, R. J. and Gardner, C. S.: Thermal structure of the mesopause region
(80–105 km) at 40∘ N latitude. Part I: Seasonal
variations, J. Atmos. Sci., 57, 66–77,
https://doi.org/10.1175/1520-0469(2000)057<0066:TSOTMR>2.0.CO;2, 2000. a
Strelnikov, B., Rapp, M., and Lübken, F.-J.: In-situ density measurements in
the mesosphere/lower thermosphere region with the TOTAL and CONE
instruments, in: An Introduction to Space Instrumentation, edited by: Oyama,
K., Terra Publishers, Tokyo, https://doi.org/10.5047/aisi.001, 2013. a, b, c, d
Strelnikov, B., Szewczyk, A., Strelnikova, I., Latteck, R., Baumgarten, G., Lübken, F.-J.,
Rapp, M., Fasoulas, S., Löhle, S., Eberhart, M., Hoppe, U.-P., Dunker, T.,
Friedrich, M., Hedin, J., Khaplanov, M., Gumbel, J., and Barjatya, A.: Spatial and
temporal variability in MLT turbulence inferred from in situ and
ground-based observations during the WADIS-1 sounding rocket campaign, Ann. Geophys., 35, 547–565, https://doi.org/10.5194/angeo-35-547-2017, 2017. a, b
Taylor, M. J., Pendleton, W. R., Gardner, C. S., and States, R. J.: Comparison
of terdiurnal tidal oscillations in mesospheric OH rotational temperature and
Na lidar temperature measurements at mid-latitudes for fall/spring
conditions, Earth Planet. Space, 51, 877–885, https://doi.org/10.1186/BF03353246, 1999. a, b
Thayaparan, T.: The terdiurnal tide in the mesosphere and lower thermosphere
over London, Canada (43∘ N, 81∘ W), J. Geophys. Res.-Atmos., 102,
21695–21708, https://doi.org/10.1029/97JD01839, 1997.
a, b
Viehl, T. P., Plane, J. M. C., Feng, W., and Höffner, J.: The photolysis of
FeOH and its effect on the bottomside of the mesospheric Fe layer, Geophys.
Res. Lett., 43, 1373–1381, https://doi.org/10.1002/2015GL067241, 2016. a, b
von Zahn, U., Fricke, K. H., Gerndt, R., and Blix, T.: Mesospheric temperatures
and the OH layer height as derived from ground-based lidar and OH*
spectrometry, J. Atmos. Sol.-Terr. Phy., 49, 863–869,
https://doi.org/10.1016/0021-9169(87)90025-0, 1987. a
Wu, Q., Mitchell, N. J., Killeen, T. L., Solomon, S. C., and Younger, P. T.: A
high-latitude 8-hour wave in the mesosphere and lower thermosphere, J.
Geophys. Res.-Space Phys., 110, A9, https://doi.org/10.1029/2005JA011024, 2005. a, b, c
Younger, P. T., Pancheva, D., Middleton, H. R., and Mitchell, N. J.: The
8-hour tide in the Arctic mesosphere and lower thermosphere, J. Geophys.
Res., 107, 1420, https://doi.org/10.1029/2001JA005086, 2002. a, b, c
Zhao, Y., Taylor, M. J., and Chu, X.: Comparison of simultaneous Na lidar and
mesospheric nightglow temperature measurements and the effects of tides on
the emission layer heights, J. Geophys. Res.-Atmos., 110, d09S07,
https://doi.org/10.1029/2004JD005115, 2005. a, b
Short summary
Simultaneous temperature measurements during the WADIS-2 rocket campaign are used to investigate the thermal structure of the mesopause region. Vertically and horizontally resolved in situ and remote measurements are in good agreement and show dominating long-term and large-scale waves with periods of 24 h and higher tidal harmonics. Only a few gravity waves with periods shorter than 6 h and small amplitudes are there.
Simultaneous temperature measurements during the WADIS-2 rocket campaign are used to investigate...
Altmetrics
Final-revised paper
Preprint