Articles | Volume 19, issue 9
Atmos. Chem. Phys., 19, 6205–6215, 2019
https://doi.org/10.5194/acp-19-6205-2019
Atmos. Chem. Phys., 19, 6205–6215, 2019
https://doi.org/10.5194/acp-19-6205-2019

Research article 10 May 2019

Research article | 10 May 2019

UV spectroscopic determination of the chlorine monoxide (ClO) ∕ chlorine peroxide (ClOOCl) thermal equilibrium constant

J. Eric Klobas and David M. Wilmouth

Related authors

Reformulating the bromine alpha factor and equivalent effective stratospheric chlorine (EESC): evolution of ozone destruction rates of bromine and chlorine in future climate scenarios
J. Eric Klobas, Debra K. Weisenstein, Ross J. Salawitch, and David M. Wilmouth
Atmos. Chem. Phys., 20, 9459–9471, https://doi.org/10.5194/acp-20-9459-2020,https://doi.org/10.5194/acp-20-9459-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Global warming potential estimates for the C1–C3 hydrochlorofluorocarbons (HCFCs) included in the Kigali Amendment to the Montreal Protocol
Dimitrios K. Papanastasiou, Allison Beltrone, Paul Marshall, and James B. Burkholder
Atmos. Chem. Phys., 18, 6317–6330, https://doi.org/10.5194/acp-18-6317-2018,https://doi.org/10.5194/acp-18-6317-2018, 2018
Short summary
Heterogeneous reaction of ClONO2 with TiO2 and SiO2 aerosol particles: implications for stratospheric particle injection for climate engineering
Mingjin Tang, James Keeble, Paul J. Telford, Francis D. Pope, Peter Braesicke, Paul T. Griffiths, N. Luke Abraham, James McGregor, I. Matt Watson, R. Anthony Cox, John A. Pyle, and Markus Kalberer
Atmos. Chem. Phys., 16, 15397–15412, https://doi.org/10.5194/acp-16-15397-2016,https://doi.org/10.5194/acp-16-15397-2016, 2016
Short summary
UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112), CCl3CClF2 (CFC-112a), CCl3CF3 (CFC-113a), and CCl2FCF3 (CFC-114a)
Maxine E. Davis, François Bernard, Max R. McGillen, Eric L. Fleming, and James B. Burkholder
Atmos. Chem. Phys., 16, 8043–8052, https://doi.org/10.5194/acp-16-8043-2016,https://doi.org/10.5194/acp-16-8043-2016, 2016
Short summary
Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for stratospheric particle injection
M. J. Tang, P. J. Telford, F. D. Pope, L. Rkiouak, N. L. Abraham, A. T. Archibald, P. Braesicke, J. A. Pyle, J. McGregor, I. M. Watson, R. A. Cox, and M. Kalberer
Atmos. Chem. Phys., 14, 6035–6048, https://doi.org/10.5194/acp-14-6035-2014,https://doi.org/10.5194/acp-14-6035-2014, 2014
Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF5CF3, CHF3, C2F6, c-C4F8, n-C5F12, and n-C6F14
M. Baasandorj, B. D. Hall, and J. B. Burkholder
Atmos. Chem. Phys., 12, 11753–11764, https://doi.org/10.5194/acp-12-11753-2012,https://doi.org/10.5194/acp-12-11753-2012, 2012

Cited articles

Avallone, L. M. and Toohey, D. W.: Tests of halogen photochemistry using in situ measurements of ClO and BrO in the lower polar stratosphere, J. Geophys. Res.-Atmos., 106, 10411–10421, https://doi.org/10.1029/2000JD900831, 2001. a, b
Boakes, G., Hindy Mok, W. H., and Rowley, D. M.: Kinetic studies of the ClO + ClO association reaction as a function of temperature and pressure, Phys. Chem. Chem. Phys., 7, 4102–4113, https://doi.org/10.1039/B510308H, 2005. a
Bröske, R. and Zabel, F.: Thermal decomposition of ClOOCl, J. Phys. Chem. A, 110, 3280–3288, https://doi.org/10.1021/jp0550053, 2006. a, b, c
Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical kinetics and photochemical data for use in atmospheric studies, evaluation no. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, USA, 2015. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Canty, T. P., Salawitch, R. J., and Wilmouth, D. M.: The kinetics of the ClOOCl catalytic cycle, J. Geophys. Res.-Atmos., 121, 13768–13783, https://doi.org/10.1002/2016JD025710, 2016. a
Download
Short summary
The thermal equilibrium constant governing the partitioning of the chlorine monoxide radical (ClO) and its dimer, chlorine peroxide (ClOOCl), was measured by broadband UV spectroscopy in the temperature range of 228–301 K. Uncertainty in the value of this equilibrium constant produces significant uncertainty in model determinations of expected polar ozone loss extent. The key results of this study indicate that the currently recommended uncertainty for this reaction may be reduced.
Altmetrics
Final-revised paper
Preprint