Articles | Volume 19, issue 6
https://doi.org/10.5194/acp-19-4005-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.Rethinking Craig and Gordon's approach to modeling isotopic compositions of marine boundary layer vapor
Related authors
Related subject area
Subject: Isotopes | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine
Using ship-borne observations of methane isotopic ratio in the Arctic Ocean to understand methane sources in the Arctic
Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations
Photochemical box modelling of volcanic SO2 oxidation: isotopic constraints
Uncertainties of fluxes and 13C ∕ 12C ratios of atmospheric reactive-gas emissions
Atmos. Chem. Phys., 20, 8405–8419,
2020Atmos. Chem. Phys., 20, 3987–3998,
2020Atmos. Chem. Phys., 20, 3859–3877,
2020Atmos. Chem. Phys., 18, 17909–17931,
2018Atmos. Chem. Phys., 17, 8525–8552,
2017Cited articles
Andersen, K. K., Azuma, N., Barnola, J. M., Bigler, M., Biscaye, P., Caillon,
N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Fluckiger,
J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Gronvold, K., Gundestrup, N. S.,
Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel,
J., Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte,
V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S. O., Raynaud,
D., Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H.,
Siggard-Andersen, M. L., Steffensen, J. P., Stocker, T., Sveinbjornsdottir, A.
E., Svensson, A., Takata, M., Tison, J. L., Thorsteinsson, T., Watanabe, O.,
Wilhelms, F., White, J. W., and North Greenland Ice Core Project: High-resolution
record of Northern Hemisphere climate extending into the last interglacial
period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004.
Benetti, M., Reverdin, G., Pierre, C., Merlivat, L., Risi, C., Steen-Larsen,
H. C., and Vimeux, F.: Deuterium excess in marine water vapor: dependency on
relative humidity and surface wind speed during evaporation, J. Geophys.
Res.-Atmos., 119, 584–593, https://doi.org/10.1002/2013JD020535, 2014.
Benetti, M., Aloisi, G., Reverdin, G., Risi, C., and Sèze, G.: Importance
of boundary layer mixing for the isotopic composition of surface vapor over the
subtropical North Atlantic Ocean, J. Geophys. Res.-Atmos., 120, 2190–2209,
https://doi.org/10.1002/2014jd021947, 2015.
Benetti, M., Steen-Larsen, H. C., Reverdin, G., Sveinbjornsdottir, A. E.,
Aloisi, G., Berkelhammer, M. B., Bourles, B., Bourras, D., de Coetlogon, G.,
Cosgrove, A., Faber, A. K., Grelet, J., Hansen, S. B., Johnson, R., Legoff, H.,
Martin, N., Peters, A. J., Popp, T. J., Reynaud, T., and Winther, M.: Stable
isotopes in the atmospheric marine boundary layer water vapour over the Atlantic
Ocean, 2012–2015, Scientific Data, 4, 160128, https://doi.org/10.1038/sdata.2016.128, 2017.
Benetti, M., Lacour, J. L., Sveinbjörnsdóttir, A. E., Aloisi, G.,
Reverdin, G., Risi, C., Peters, A. J., and Steen-Larsen, H. C.: A Framework to
Study Mixing Processes in the Marine Boundary Layer Using Water Vapor Isotope
Measurements, Geophys. Res. Lett., 45, 2524–2532, https://doi.org/10.1002/2018gl077167, 2018.