Articles | Volume 19, issue 6
Atmos. Chem. Phys., 19, 3927–3937, 2019
https://doi.org/10.5194/acp-19-3927-2019
Atmos. Chem. Phys., 19, 3927–3937, 2019
https://doi.org/10.5194/acp-19-3927-2019
Research article
27 Mar 2019
Research article | 27 Mar 2019

Heat transport pathways into the Arctic and their connections to surface air temperatures

Daniel Mewes and Christoph Jacobi

Related authors

Subgrid-scale variability in clear-sky relative humidity and forcing by aerosol–radiation interactions in an atmosphere model
Paul Petersik, Marc Salzmann, Jan Kretzschmar, Ribu Cherian, Daniel Mewes, and Johannes Quaas
Atmos. Chem. Phys., 18, 8589–8599, https://doi.org/10.5194/acp-18-8589-2018,https://doi.org/10.5194/acp-18-8589-2018, 2018
Short summary
El Niño influence on the mesosphere/lower thermosphere circulation at midlatitudes as seen by a VHF meteor radar at Collm (51.3 ° N, 13 ° E)
Christoph Jacobi, Tatiana Ermakova, Daniel Mewes, and Alexander I. Pogoreltsev
Adv. Radio Sci., 15, 199–206, https://doi.org/10.5194/ars-15-199-2017,https://doi.org/10.5194/ars-15-199-2017, 2017
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019
Antonio Capponi, Natalie J. Harvey, Helen F. Dacre, Keith Beven, Cameron Saint, Cathie Wells, and Mike R. James
Atmos. Chem. Phys., 22, 6115–6134, https://doi.org/10.5194/acp-22-6115-2022,https://doi.org/10.5194/acp-22-6115-2022, 2022
Short summary
Ship-based estimates of momentum transfer coefficient over sea ice and recommendations for its parameterization
Piyush Srivastava, Ian M. Brooks, John Prytherch, Dominic J. Salisbury, Andrew D. Elvidge, Ian A. Renfrew, and Margaret J. Yelland
Atmos. Chem. Phys., 22, 4763–4778, https://doi.org/10.5194/acp-22-4763-2022,https://doi.org/10.5194/acp-22-4763-2022, 2022
Short summary
Revising the definition of anthropogenic heat flux from buildings: role of human activities and building storage heat flux
Yiqing Liu, Zhiwen Luo, and Sue Grimmond
Atmos. Chem. Phys., 22, 4721–4735, https://doi.org/10.5194/acp-22-4721-2022,https://doi.org/10.5194/acp-22-4721-2022, 2022
Short summary
An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses
Lars Hoffmann and Reinhold Spang
Atmos. Chem. Phys., 22, 4019–4046, https://doi.org/10.5194/acp-22-4019-2022,https://doi.org/10.5194/acp-22-4019-2022, 2022
Short summary
Distinct evolutions of haze pollution from winter to the following spring over the North China Plain: role of the North Atlantic sea surface temperature anomalies
Linye Song, Shangfeng Chen, Wen Chen, Jianping Guo, Conglan Cheng, and Yong Wang
Atmos. Chem. Phys., 22, 1669–1688, https://doi.org/10.5194/acp-22-1669-2022,https://doi.org/10.5194/acp-22-1669-2022, 2022
Short summary

Cited articles

Adams, J. M., Bond, N. A., and Overland, J. E.: Regional variability of the Arctic heat budget in fall and winter, J. Climate, 13, 3500–3510, https://doi.org/10.1175/1520-0442(2000)013<3500:RVOTAH>2.0.CO;2, 2000. a
Cassano, J. J., Petteri, U., and Amanda, L.: Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 1: Arctic, Int. J. Climatol., 26, 1027–1049, https://doi.org/10.1002/joc.1306, 2006. a, b
Chaudhuri, A. H., Ponte, R. M., and Nguyen, A. T.: A comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air–sea fluxes, J. Climate, 27, 5411–5421, https://doi.org/10.1175/JCLI-D-13-00424.1, 2014. a
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Briegleb, B. P., Bitz, C. M., Lin, S.-J., and Zhang, M.: The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3), J. Climate, 19, 2144–2161, https://doi.org/10.1175/JCLI3760.1, 2006. a
Dahlke, S. and Maturilli, M.: Contribution of atmospheric advection to the amplified winter warming in the arctic north atlantic Region, Adv. Meteorol., 2017, 4928620, https://doi.org/10.1155/2017/4928620, 2017. a, b
Download
Short summary
Horizontal moist static energy (MSE) transport patterns were extracted from reanalysis data using an artificial neuronal network for the winter months. The results show that during the last 30 years transport pathways that favour MSE transport through the North Atlantic are getting more frequent. This North Atlantic pathway is connected to positive temperature anomalies over the central Arctic, which implies a connection between Arctic amplification and the change in horizontal heat transport.
Altmetrics
Final-revised paper
Preprint