Articles | Volume 19, issue 4
https://doi.org/10.5194/acp-19-2421-2019
https://doi.org/10.5194/acp-19-2421-2019
Research article
 | 
25 Feb 2019
Research article |  | 25 Feb 2019

Distributions and sources of low-molecular-weight monocarboxylic acids in gas and particles from a deciduous broadleaf forest in northern Japan

Tomoki Mochizuki, Kimitaka Kawamura, Yuzo Miyazaki, Bhagawati Kunwar, and Suresh Kumar Reddy Boreddy

Related authors

Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan
Tomoki Mochizuki, Kimitaka Kawamura, Kazuma Aoki, and Nobuo Sugimoto
Atmos. Chem. Phys., 16, 14621–14633, https://doi.org/10.5194/acp-16-14621-2016,https://doi.org/10.5194/acp-16-14621-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025,https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025,https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025,https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024,https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Non biogenic source is an important but overlooked contributor to aerosol isoprene-derived organosulfates during winter in northern China
Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3823,https://doi.org/10.5194/egusphere-2024-3823, 2024
Short summary

Cited articles

Alexander, J. M., Grassian, V. H., Young, M. A., and Kleiber, P. D.: Optical properties of selected components of mineral dust aerosol processed with organic acids and humic material, J. Geophys. Res.-Atmos., 120, 2437–2452, https://doi.org/10.1002/2014JD022782, 2015. 
Al-Hosney, H. A. Carlos-Cuellar, S., Baltrusaitis, J., and Grassian, V. H.: Heterogeneous uptake and reactivity of formic acid on calcium carbonate particles: a Kunden cell reactor, FTIR and SEM study, Phys. Chem. Chem. Phys., 7, 3587–3595, https://doi.org/10.1039/b510112c, 2005. 
Andreae, M. O., Talbot, R. W., Andreae, T. W., and Harris, R. C.: Formic and acetic acid over the central Amazon region, Brazil. 1. Dry season, J. Geophys. Res., 93, 1616–1624, doi.org/10.1029/JD093iD02p01616, 1988. 
Berg Jr., W. W. and Winchester, J. M.: Aerosol chemistry of the marine atmospherem in: Chemical Oceanography, edited by: J. P. Riley and R. Chester, 2nd Ed. 7, Academic Press, London, UK, 173–231, 1978. 
Boreddy, S. K. R. and Kawamura, K.: A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust, Atmos. Chem. Phys., 15, 6437–6453, https://doi.org/10.5194/acp-15-6437-2015, 2015. 
Download
Short summary
Monocarboxylic acids (MCAs) in gases and particles were measured in deciduous forest. Formic acid in the gas phase and isopentanoic acid in the particle phase were dominant MCAs. Gaseous normal monoacids showed positive correlations with isobutyric acid. Particulate isopentanoic acid showed a positive correlation with lactic acid. The florest floor with soil microbes contributes to emission of MCAs. Our results may be useful to improve understanding of organic aerosol formation in the forest.
Altmetrics
Final-revised paper
Preprint