Articles | Volume 19, issue 4
https://doi.org/10.5194/acp-19-2421-2019
https://doi.org/10.5194/acp-19-2421-2019
Research article
 | 
25 Feb 2019
Research article |  | 25 Feb 2019

Distributions and sources of low-molecular-weight monocarboxylic acids in gas and particles from a deciduous broadleaf forest in northern Japan

Tomoki Mochizuki, Kimitaka Kawamura, Yuzo Miyazaki, Bhagawati Kunwar, and Suresh Kumar Reddy Boreddy

Related authors

Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan
Tomoki Mochizuki, Kimitaka Kawamura, Kazuma Aoki, and Nobuo Sugimoto
Atmos. Chem. Phys., 16, 14621–14633, https://doi.org/10.5194/acp-16-14621-2016,https://doi.org/10.5194/acp-16-14621-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024,https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024,https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024,https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024,https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024,https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary

Cited articles

Alexander, J. M., Grassian, V. H., Young, M. A., and Kleiber, P. D.: Optical properties of selected components of mineral dust aerosol processed with organic acids and humic material, J. Geophys. Res.-Atmos., 120, 2437–2452, https://doi.org/10.1002/2014JD022782, 2015. 
Al-Hosney, H. A. Carlos-Cuellar, S., Baltrusaitis, J., and Grassian, V. H.: Heterogeneous uptake and reactivity of formic acid on calcium carbonate particles: a Kunden cell reactor, FTIR and SEM study, Phys. Chem. Chem. Phys., 7, 3587–3595, https://doi.org/10.1039/b510112c, 2005. 
Andreae, M. O., Talbot, R. W., Andreae, T. W., and Harris, R. C.: Formic and acetic acid over the central Amazon region, Brazil. 1. Dry season, J. Geophys. Res., 93, 1616–1624, doi.org/10.1029/JD093iD02p01616, 1988. 
Berg Jr., W. W. and Winchester, J. M.: Aerosol chemistry of the marine atmospherem in: Chemical Oceanography, edited by: J. P. Riley and R. Chester, 2nd Ed. 7, Academic Press, London, UK, 173–231, 1978. 
Boreddy, S. K. R. and Kawamura, K.: A 12-year observation of water-soluble ions in TSP aerosols collected at a remote marine location in the western North Pacific: an outflow region of Asian dust, Atmos. Chem. Phys., 15, 6437–6453, https://doi.org/10.5194/acp-15-6437-2015, 2015. 
Download
Short summary
Monocarboxylic acids (MCAs) in gases and particles were measured in deciduous forest. Formic acid in the gas phase and isopentanoic acid in the particle phase were dominant MCAs. Gaseous normal monoacids showed positive correlations with isobutyric acid. Particulate isopentanoic acid showed a positive correlation with lactic acid. The florest floor with soil microbes contributes to emission of MCAs. Our results may be useful to improve understanding of organic aerosol formation in the forest.
Altmetrics
Final-revised paper
Preprint