Articles | Volume 19, issue 3
https://doi.org/10.5194/acp-19-1413-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-1413-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding aerosol–cloud interactions through modeling the development of orographic cumulus congestus during IPHEx
Yajuan Duan
Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
Markus D. Petters
Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
Related authors
Y. Duan, A. M. Wilson, and A. P. Barros
Hydrol. Earth Syst. Sci., 19, 1501–1520, https://doi.org/10.5194/hess-19-1501-2015, https://doi.org/10.5194/hess-19-1501-2015, 2015
Short summary
Short summary
A diagnostic analysis of the space-time structure of error in quantitative precipitation estimates (QPEs) from the precipitation radar on the Tropical Rainfall Measurement Mission satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. A high-density raingauge network over the southern Appalachians allows for direct comparison between ground-based measurements and satellite-based QPE (PR 2A25 Version 7 with 5 years of data 2008-2013).
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
EGUsphere, https://doi.org/10.5194/egusphere-2023-951, https://doi.org/10.5194/egusphere-2023-951, 2023
Short summary
Short summary
This work introduces a new method that uses remote sensing techniques to obtain surface number emissions of particles with a diameter greater than 500 nm. The technique was applied to study particle emissions at an urban site near Houston, TX, USA. The emissions followed a diurnal pattern and peaked near noon local time. The daily averaged emissions correlated with wind speed. The source is likely due to wind-driven erosion of material situated on asphalted and other hard surfaces.
Sabin Kasparoglu, Mohammad Maksimul Islam, Nicholas Meskhidze, and Markus D. Petters
Atmos. Meas. Tech., 15, 5007–5018, https://doi.org/10.5194/amt-15-5007-2022, https://doi.org/10.5194/amt-15-5007-2022, 2022
Short summary
Short summary
A modified version of a Handix Scientific printed optical particle spectrometer is introduced. The paper presents characterization experiments, including concentration, size, and time responses. Integration of an external multichannel analyzer card removes counting limitations of the original instrument. It is shown that the high-resolution light-scattering amplitude data can be used to sense particle-phase transitions.
Markus D. Petters
Atmos. Meas. Tech., 14, 7909–7928, https://doi.org/10.5194/amt-14-7909-2021, https://doi.org/10.5194/amt-14-7909-2021, 2021
Short summary
Short summary
Inverse methods infer physical properties from a measured instrument response. Measurement noise often interferes with the inversion. This work presents a general, domain-independent, accessible, and computationally efficient software implementation of a common class of statistical inversion methods. In addition, a new method to invert data from humidified tandem differential mobility analyzers is introduced. Results show that the approach is suitable for inversion of large-scale datasets.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
Sabin Kasparoglu, Ying Li, Manabu Shiraiwa, and Markus D. Petters
Atmos. Chem. Phys., 21, 1127–1141, https://doi.org/10.5194/acp-21-1127-2021, https://doi.org/10.5194/acp-21-1127-2021, 2021
Short summary
Short summary
Viscosity is important because it determines the lifetime, impact, and fate of particulate matter. We collected new data to rigorously test a framework that is used to constrain the phase state in global simulations. We find that the framework is accurate as long as appropriate compound specific inputs are available.
Samuel A. Atwood, Sonia M. Kreidenweis, Paul J. DeMott, Markus D. Petters, Gavin C. Cornwell, Andrew C. Martin, and Kathryn A. Moore
Atmos. Chem. Phys., 19, 6931–6947, https://doi.org/10.5194/acp-19-6931-2019, https://doi.org/10.5194/acp-19-6931-2019, 2019
Short summary
Short summary
This paper presents measurements of aerosol particles at a coastal location. The particles were classified into distinct aerosol types using both microphysical measurements and meteorological information, allowing rapid changes between the aerosol types to be reliably identified. These particles can alter cloud and precipitation processes, and inclusion of the differences between types can improve atmospheric models and remote sensing retrievals in littoral zones.
Naruki Hiranuma, Kouji Adachi, David M. Bell, Franco Belosi, Hassan Beydoun, Bhaskar Bhaduri, Heinz Bingemer, Carsten Budke, Hans-Christian Clemen, Franz Conen, Kimberly M. Cory, Joachim Curtius, Paul J. DeMott, Oliver Eppers, Sarah Grawe, Susan Hartmann, Nadine Hoffmann, Kristina Höhler, Evelyn Jantsch, Alexei Kiselev, Thomas Koop, Gourihar Kulkarni, Amelie Mayer, Masataka Murakami, Benjamin J. Murray, Alessia Nicosia, Markus D. Petters, Matteo Piazza, Michael Polen, Naama Reicher, Yinon Rudich, Atsushi Saito, Gianni Santachiara, Thea Schiebel, Gregg P. Schill, Johannes Schneider, Lior Segev, Emiliano Stopelli, Ryan C. Sullivan, Kaitlyn Suski, Miklós Szakáll, Takuya Tajiri, Hans Taylor, Yutaka Tobo, Romy Ullrich, Daniel Weber, Heike Wex, Thomas F. Whale, Craig L. Whiteside, Katsuya Yamashita, Alla Zelenyuk, and Ottmar Möhler
Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, https://doi.org/10.5194/acp-19-4823-2019, 2019
Short summary
Short summary
A total of 20 ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of cellulose particles – natural polymers. Our data showed several types of cellulose are able to nucleate ice as efficiently as some mineral dust samples and cellulose has the potential to be an important atmospheric ice-nucleating particle. Continued investigation/collaboration is necessary to obtain further insight into consistency or diversity of ice nucleation measurements.
Ankit Tandon, Nicholas E. Rothfuss, and Markus D. Petters
Atmos. Chem. Phys., 19, 3325–3339, https://doi.org/10.5194/acp-19-3325-2019, https://doi.org/10.5194/acp-19-3325-2019, 2019
Short summary
Short summary
Organic compounds may form a barrier to condensation. Such barriers have been hypothesized to prevent water and other substances from mixing with salt cores. This will hinder the particles' ability to aid cloud formation of < 100 nm particles. Here we perform experiments encasing particles in plastic shells akin to water bottles. Against expectations, the plastic shell did not alter the droplet activation behavior of the encased particles. Water appears to readily permeate the plastic shell.
Jian Wang, John E. Shilling, Jiumeng Liu, Alla Zelenyuk, David M. Bell, Markus D. Petters, Ryan Thalman, Fan Mei, Rahul A. Zaveri, and Guangjie Zheng
Atmos. Chem. Phys., 19, 941–954, https://doi.org/10.5194/acp-19-941-2019, https://doi.org/10.5194/acp-19-941-2019, 2019
Short summary
Short summary
Earlier studies showed organic hygroscopicity increases with oxidation level. Such increases have been attributed to higher water solubility for more oxidized organics. By systematically varying the water content of activating droplets, we show that for secondary organic aerosols, essentially all organics are dissolved at the point of droplet activation. Therefore, the organic hygroscopicity is not limited by solubility but is dictated mainly by the molecular weight of organic species.
Paul J. DeMott, Ottmar Möhler, Daniel J. Cziczo, Naruki Hiranuma, Markus D. Petters, Sarah S. Petters, Franco Belosi, Heinz G. Bingemer, Sarah D. Brooks, Carsten Budke, Monika Burkert-Kohn, Kristen N. Collier, Anja Danielczok, Oliver Eppers, Laura Felgitsch, Sarvesh Garimella, Hinrich Grothe, Paul Herenz, Thomas C. J. Hill, Kristina Höhler, Zamin A. Kanji, Alexei Kiselev, Thomas Koop, Thomas B. Kristensen, Konstantin Krüger, Gourihar Kulkarni, Ezra J. T. Levin, Benjamin J. Murray, Alessia Nicosia, Daniel O'Sullivan, Andreas Peckhaus, Michael J. Polen, Hannah C. Price, Naama Reicher, Daniel A. Rothenberg, Yinon Rudich, Gianni Santachiara, Thea Schiebel, Jann Schrod, Teresa M. Seifried, Frank Stratmann, Ryan C. Sullivan, Kaitlyn J. Suski, Miklós Szakáll, Hans P. Taylor, Romy Ullrich, Jesus Vergara-Temprado, Robert Wagner, Thomas F. Whale, Daniel Weber, André Welti, Theodore W. Wilson, Martin J. Wolf, and Jake Zenker
Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018, https://doi.org/10.5194/amt-11-6231-2018, 2018
Short summary
Short summary
The ability to measure ice nucleating particles is vital to quantifying their role in affecting clouds and precipitation. Methods for measuring droplet freezing were compared while co-sampling relevant particle types. Measurement correspondence was very good for ice nucleating particles of bacterial and natural soil origin, and somewhat more disparate for those of mineral origin. Results reflect recently improved capabilities and provide direction toward addressing remaining measurement issues.
Paul J. DeMott, Thomas C. J. Hill, Markus D. Petters, Allan K. Bertram, Yutaka Tobo, Ryan H. Mason, Kaitlyn J. Suski, Christina S. McCluskey, Ezra J. T. Levin, Gregory P. Schill, Yvonne Boose, Anne Marie Rauker, Anna J. Miller, Jake Zaragoza, Katherine Rocci, Nicholas E. Rothfuss, Hans P. Taylor, John D. Hader, Cedric Chou, J. Alex Huffman, Ulrich Pöschl, Anthony J. Prenni, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 17, 11227–11245, https://doi.org/10.5194/acp-17-11227-2017, https://doi.org/10.5194/acp-17-11227-2017, 2017
Short summary
Short summary
The consistency and complementarity of different methods for measuring the numbers of particles capable of forming ice in clouds are examined in the atmosphere. Four methods for collecting particles for later (offline) freezing studies are compared to a common instantaneous method. Results support very good agreement in many cases but also biases that require further research. Present capabilities and uncertainties for obtaining global data on these climate-relevant aerosols are thus defined.
Yajuan Duan, Markus D. Petters, and Ana P. Barros
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-396, https://doi.org/10.5194/acp-2017-396, 2017
Revised manuscript not accepted
Short summary
Short summary
To investigate aerosol-cloud interactions in cumulus development, a new cloud parcel model is developed to predict the vertical structure of cloud formation at early stages and evaluated against airborne observations during the Integrated Precipitation and Hydrology Experiment over the Southern Appalachian Mountains. The findings provide new insights into determinant factors of mid-day cumulus congestus formation that can explain a large fraction of warm season rainfall in mountainous regions.
Andrew C. Martin, Gavin C. Cornwell, Samuel A. Atwood, Kathryn A. Moore, Nicholas E. Rothfuss, Hans Taylor, Paul J. DeMott, Sonia M. Kreidenweis, Markus D. Petters, and Kimberly A. Prather
Atmos. Chem. Phys., 17, 1491–1509, https://doi.org/10.5194/acp-17-1491-2017, https://doi.org/10.5194/acp-17-1491-2017, 2017
Short summary
Short summary
Anthropogenic influence on air quality, aerosol properties, and cloud activity was observed at Bodega Bay, CA, during periods when air from California's interior was transported to the coast. The sudden change in aerosol properties can impact atmospheric radiative balance and cloud formation in ways that must be accounted for in regional climate simulations.
M. D. Petters, S. M. Kreidenweis, and P. J. Ziemann
Geosci. Model Dev., 9, 111–124, https://doi.org/10.5194/gmd-9-111-2016, https://doi.org/10.5194/gmd-9-111-2016, 2016
Short summary
Short summary
Organic particles suspended in air serve as nucleation seeds for droplets in atmospheric clouds. Over time their chemical composition changes towards more functionalized compounds. This work presents a model that can predict an organic compounds' ability promote the nucleation of cloud drops from its functional group composition. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote droplet nucleation. Methylene and nitrate moieties inhibit droplet nucleation.
Y. Duan, A. M. Wilson, and A. P. Barros
Hydrol. Earth Syst. Sci., 19, 1501–1520, https://doi.org/10.5194/hess-19-1501-2015, https://doi.org/10.5194/hess-19-1501-2015, 2015
Short summary
Short summary
A diagnostic analysis of the space-time structure of error in quantitative precipitation estimates (QPEs) from the precipitation radar on the Tropical Rainfall Measurement Mission satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. A high-density raingauge network over the southern Appalachians allows for direct comparison between ground-based measurements and satellite-based QPE (PR 2A25 Version 7 with 5 years of data 2008-2013).
N. Hiranuma, S. Augustin-Bauditz, H. Bingemer, C. Budke, J. Curtius, A. Danielczok, K. Diehl, K. Dreischmeier, M. Ebert, F. Frank, N. Hoffmann, K. Kandler, A. Kiselev, T. Koop, T. Leisner, O. Möhler, B. Nillius, A. Peckhaus, D. Rose, S. Weinbruch, H. Wex, Y. Boose, P. J. DeMott, J. D. Hader, T. C. J. Hill, Z. A. Kanji, G. Kulkarni, E. J. T. Levin, C. S. McCluskey, M. Murakami, B. J. Murray, D. Niedermeier, M. D. Petters, D. O'Sullivan, A. Saito, G. P. Schill, T. Tajiri, M. A. Tolbert, A. Welti, T. F. Whale, T. P. Wright, and K. Yamashita
Atmos. Chem. Phys., 15, 2489–2518, https://doi.org/10.5194/acp-15-2489-2015, https://doi.org/10.5194/acp-15-2489-2015, 2015
Short summary
Short summary
Seventeen ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of illite NX. All data showed a similar temperature trend, but the measured ice nucleation activity was on average smaller for the wet suspended samples and higher for the dry-dispersed aerosol samples at high temperatures. A continued investigation and collaboration is necessary to obtain further insights into consistency or diversity of ice nucleation measurements.
P. J. DeMott, A. J. Prenni, G. R. McMeeking, R. C. Sullivan, M. D. Petters, Y. Tobo, M. Niemand, O. Möhler, J. R. Snider, Z. Wang, and S. M. Kreidenweis
Atmos. Chem. Phys., 15, 393–409, https://doi.org/10.5194/acp-15-393-2015, https://doi.org/10.5194/acp-15-393-2015, 2015
Short summary
Short summary
Laboratory and field data are used together to develop an empirical relation between the concentrations of mineral dust particles at sizes above 0.5 microns, approximated as a single compositional type, and ice nucleating particle concentrations measured versus temperature. This should be useful in global modeling of ice cloud formation. The utility of laboratory data for parameterization development is reinforced, and the need for careful interpretation of ice nucleation data is emphasized.
T. K. V. Nguyen, M. D. Petters, S. R. Suda, H. Guo, R. J. Weber, and A. G. Carlton
Atmos. Chem. Phys., 14, 10911–10930, https://doi.org/10.5194/acp-14-10911-2014, https://doi.org/10.5194/acp-14-10911-2014, 2014
S. Nakao, S. R. Suda, M. Camp, M. D. Petters, and S. M. Kreidenweis
Atmos. Meas. Tech., 7, 2227–2241, https://doi.org/10.5194/amt-7-2227-2014, https://doi.org/10.5194/amt-7-2227-2014, 2014
J. D. Hader, T. P. Wright, and M. D. Petters
Atmos. Chem. Phys., 14, 5433–5449, https://doi.org/10.5194/acp-14-5433-2014, https://doi.org/10.5194/acp-14-5433-2014, 2014
J. Tao and A. P. Barros
Hydrol. Earth Syst. Sci., 18, 367–388, https://doi.org/10.5194/hess-18-367-2014, https://doi.org/10.5194/hess-18-367-2014, 2014
M. D. Petters and S. M. Kreidenweis
Atmos. Chem. Phys., 13, 1081–1091, https://doi.org/10.5194/acp-13-1081-2013, https://doi.org/10.5194/acp-13-1081-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Assimilation of 3D polarimetric microphysical retrievals in a convective-scale NWP system
Sensitivity of cloud-phase distribution to cloud microphysics and thermodynamics in simulated deep convective clouds and SEVIRI retrievals
Assessing the destructiveness of tropical cyclones induced by anthropogenic aerosols in an atmosphere–ocean coupled framework
Opinion: A critical evaluation of the evidence for aerosol invigoration of deep convection
Historical (1960–2014) lightning and LNOx trends and their controlling factors in a chemistry–climate model
The chance of freezing – a conceptional study to parameterize temperature-dependent freezing by including randomness of ice-nucleating particle concentrations
Evaluation of hygroscopic cloud seeding in warm-rain processes by a hybrid microphysics scheme using a Weather Research and Forecasting (WRF) model: a real case study
Radiation fog properties in two consecutive events under polluted and clean conditions in the Yangtze River Delta, China: a simulation study
A bin microphysics parcel model investigation of secondary ice formation in an idealised shallow convective cloud
Effects of Intermittent Aerosol Forcing on the Stratocumulus-to-Cumulus Transition
Influence of atmospheric rivers and associated weather systems on precipitation in the Arctic
Insights of warm-cloud biases in Community Atmospheric Model 5 and 6 from the single-column modeling framework and Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) observations
Interaction of microphysics and dynamics in a warm conveyor belt simulated with the ICOsahedral Nonhydrostatic (ICON) model
Impact of urban land use on mean and heavy rainfall during the Indian Summer Monsoon
Does prognostic seeding along flight tracks produce the desired effects of cirrus cloud thinning?
Large-eddy simulation of a two-layer boundary-layer cloud system from the Arctic Ocean 2018 expedition
Opposing trends of cloud coverage over land and ocean under global warming
Opinion: Tropical cirrus — From micro-scale processes to climate-scale impacts
Aerosol–cloud–radiation interaction during Saharan dust episodes: the dusty cirrus puzzle
Towards a more reliable forecast of ice supersaturation: Concept of a one-moment ice cloud scheme that avoids saturation adjustment
Aerosol–cloud impacts on aerosol detrainment and rainout in shallow maritime tropical clouds
Mixed-phase direct numerical simulation: ice growth in cloud-top generating cells
Aerosol impacts on the entrainment efficiency of Arctic mixed-phase convection in a simulated air mass over open water
Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System
Water isotopic characterisation of the cloud-circulation coupling in the North Atlantic trades. Part 2: The imprint of the atmospheric circulation at different scales
Water isotopic characterisation of the cloud-circulation coupling in the North Atlantic trades. Part 1: A process-oriented evaluation of COSMOiso simulations with EUREC4A observations
Evaluation of aerosol–cloud interactions in E3SM using a Lagrangian framework
Impact of formulations of the homogeneous nucleation rate on ice nucleation events in cirrus
Temperature and cloud condensation nuclei (CCN) sensitivity of orographic precipitation enhanced by a mixed-phase seeder–feeder mechanism: a case study for the 2015 Cumbria flood
Aerosol–precipitation elevation dependence over the central Himalayas using cloud-resolving WRF-Chem numerical modeling
Machine learning of cloud types in satellite observations and climate models
A modeling study of an extreme rainfall event along the northern coast of Taiwan on 2 June 2017
Long-term upper-troposphere climatology of potential contrail occurrence over the Paris area derived from radiosonde observations
Equilibrium climate sensitivity increases with aerosol concentration due to changes in precipitation efficiency
Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right?
Aerosol characteristics and polarimetric signatures for a deep convective storm over the northwestern part of Europe – modeling and observations
Evaluation of tropical water vapour from CMIP6 global climate models using the ESA CCI Water Vapour climate data records
Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations
The impacts of secondary ice production on microphysics and dynamics in tropical convection
Cloud adjustments from large-scale smoke–circulation interactions strongly modulate the southeastern Atlantic stratocumulus-to-cumulus transition
The influence of multiple groups of biological ice nucleating particles on microphysical properties of mixed-phase clouds observed during MC3E
Quantifying vertical wind shear effects in shallow cumulus clouds over Amazonia
Cirrus cloud thinning using a more physically based ice microphysics scheme in the ECHAM-HAM general circulation model
Impacts of combined microphysical and land-surface uncertainties on convective clouds and precipitation in different weather regimes
Weakening of tropical sea breeze convective systems through interactions of aerosol, radiation, and soil moisture
Sensitivity analysis of an aerosol-aware microphysics scheme in Weather Research and Forecasting (WRF) during case studies of fog in Namibia
Do Arctic mixed-phase clouds sometimes dissipate due to insufficient aerosol? Evidence from comparisons between observations and idealized simulations
Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation
Impact of Holuhraun volcano aerosols on clouds in cloud-system-resolving simulations
Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets
Lucas Reimann, Clemens Simmer, and Silke Trömel
Atmos. Chem. Phys., 23, 14219–14237, https://doi.org/10.5194/acp-23-14219-2023, https://doi.org/10.5194/acp-23-14219-2023, 2023
Short summary
Short summary
Polarimetric radar observations were assimilated for the first time in a convective-scale numerical weather prediction system in Germany and their impact on short-term precipitation forecasts was evaluated. The assimilation was performed using microphysical retrievals of liquid and ice water content and yielded slightly improved deterministic 9 h precipitation forecasts for three intense summer precipitation cases with respect to the assimilation of radar reflectivity alone.
Cunbo Han, Corinna Hoose, Martin Stengel, Quentin Coopman, and Andrew Barrett
Atmos. Chem. Phys., 23, 14077–14095, https://doi.org/10.5194/acp-23-14077-2023, https://doi.org/10.5194/acp-23-14077-2023, 2023
Short summary
Short summary
Cloud phase has been found to significantly impact cloud thermodynamics and Earth’s radiation budget, and various factors influence it. This study investigates the sensitivity of the cloud-phase distribution to the ice-nucleating particle concentration and thermodynamics. Multiple simulation experiments were performed using the ICON model at the convection-permitting resolution of 1.2 km. Simulation results were compared to two different retrieval products based on SEVIRI measurements.
Yun Lin, Yuan Wang, Jen-Shan Hsieh, Jonathan H. Jiang, Qiong Su, Lijun Zhao, Michael Lavallee, and Renyi Zhang
Atmos. Chem. Phys., 23, 13835–13852, https://doi.org/10.5194/acp-23-13835-2023, https://doi.org/10.5194/acp-23-13835-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) can cause catastrophic damage to coastal regions. We used a numerical model that explicitly simulates aerosol–cloud interaction and atmosphere–ocean coupling. We show that aerosols and ocean coupling work together to make TC storms bigger but weaker. Moreover, TCs in polluted air have more rainfall and higher sea levels, leading to more severe storm surges and flooding. Our research highlights the roles of aerosols and ocean-coupling feedbacks in TC hazard assessment.
Adam C. Varble, Adele L. Igel, Hugh Morrison, Wojciech W. Grabowski, and Zachary J. Lebo
Atmos. Chem. Phys., 23, 13791–13808, https://doi.org/10.5194/acp-23-13791-2023, https://doi.org/10.5194/acp-23-13791-2023, 2023
Short summary
Short summary
As atmospheric particles called aerosols increase in number, the number of droplets in clouds tends to increase, which has been theorized to increase storm intensity. We critically evaluate the evidence for this theory, showing that flaws and limitations of previous studies coupled with unaddressed cloud process complexities draw it into question. We provide recommendations for future observations and modeling to overcome current uncertainties.
Yanfeng He and Kengo Sudo
Atmos. Chem. Phys., 23, 13061–13085, https://doi.org/10.5194/acp-23-13061-2023, https://doi.org/10.5194/acp-23-13061-2023, 2023
Short summary
Short summary
Lightning has big social impacts. Lightning-produced NOx (LNOx) plays a vital role in atmospheric chemistry and climate. Investigating past lightning and LNOx trends can provide essential indicators of all lightning-related phenomena. Simulations show almost flat global lightning and LNOx trends during 1960–2014. Past global warming enhances the trends positively, but increases in aerosol have the opposite effect. Moreover, global lightning decreased markedly after the Pinatubo eruption.
Hannah C. Frostenberg, André Welti, Mikael Luhr, Julien Savre, Erik S. Thomson, and Luisa Ickes
Atmos. Chem. Phys., 23, 10883–10900, https://doi.org/10.5194/acp-23-10883-2023, https://doi.org/10.5194/acp-23-10883-2023, 2023
Short summary
Short summary
Observations show that ice-nucleating particle concentrations (INPCs) have a large variety and follow lognormal distributions for a given temperature. We introduce a new immersion freezing parameterization that applies this lognormal behavior. INPCs are drawn randomly from a temperature-dependent lognormal distribution. We then show that the ice content of the modeled Arctic stratocumulus cloud is highly sensitive to the probability of drawing large INPCs.
Kai-I Lin, Kao-Shen Chung, Sheng-Hsiang Wang, Li-Hsin Chen, Yu-Chieng Liou, Pay-Liam Lin, Wei-Yu Chang, Hsien-Jung Chiu, and Yi-Hui Chang
Atmos. Chem. Phys., 23, 10423–10438, https://doi.org/10.5194/acp-23-10423-2023, https://doi.org/10.5194/acp-23-10423-2023, 2023
Short summary
Short summary
This study develops a hybrid microphysics scheme to enable the complex model simulation of cloud seeding based on observational cloud condensation nuclei size distribution. Our results show that more precipitation can be developed in the scenarios seeding in the in-cloud region, and seeding over an area of tens km2 is the most efficient strategy due to the strengthening of the accretion process. Moreover, particles bigger than 0.4 μm are the main factor contributing to cloud-seeding effects.
Naifu Shao, Chunsong Lu, Xingcan Jia, Yuan Wang, Yubin Li, Yan Yin, Bin Zhu, Tianliang Zhao, Duanyang Liu, Shengjie Niu, Shuxian Fan, Shuqi Yan, and Jingjing Lv
Atmos. Chem. Phys., 23, 9873–9890, https://doi.org/10.5194/acp-23-9873-2023, https://doi.org/10.5194/acp-23-9873-2023, 2023
Short summary
Short summary
Fog is an important meteorological phenomenon that affects visibility. Aerosols and the planetary boundary layer (PBL) play critical roles in the fog life cycle. In this study, aerosol-induced changes in fog properties become more remarkable in the second fog (Fog2) than in the first fog (Fog1). The reason is that aerosol–cloud interaction (ACI) delays Fog1 dissipation, leading to the PBL meteorological conditions being more conducive to Fog2 formation and to stronger ACI in Fog2.
Rachel L. James, Jonathan Crosier, and Paul J. Connolly
Atmos. Chem. Phys., 23, 9099–9121, https://doi.org/10.5194/acp-23-9099-2023, https://doi.org/10.5194/acp-23-9099-2023, 2023
Short summary
Short summary
Secondary ice production (SIP) may significantly enhance the ice particle concentration in mixed-phase clouds. We present a systematic modelling study of secondary ice formation in idealised shallow convective clouds for various conditions. Our results suggest that the SIP mechanism of collisions of supercooled water drops with more massive ice particles may be a significant ice formation mechanism in shallow convective clouds outside the rime-splintering temperature range (−3 to −8 °C).
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2023-1720, https://doi.org/10.5194/egusphere-2023-1720, 2023
Short summary
Short summary
In this study, we explore the impact of deliberate aerosol perturbation in the in the North-East Pacific region using large-eddy simulations. Our results show that cloud reflectivity is sensitive to the aerosol sprayer arrangement in the pristine system, whereas in the polluted system it is largely proportional to the total number of aerosol particles injected. These insights would aid in assessing the efficiency of various aerosol injection strategies for climate intervention applications.
Melanie Lauer, Annette Rinke, Irina Gorodetskaya, Michael Sprenger, Mario Mech, and Susanne Crewell
Atmos. Chem. Phys., 23, 8705–8726, https://doi.org/10.5194/acp-23-8705-2023, https://doi.org/10.5194/acp-23-8705-2023, 2023
Short summary
Short summary
We present a new method to analyse the influence of atmospheric rivers (ARs), cyclones, and fronts on the precipitation in the Arctic, based on two campaigns: ACLOUD (early summer 2017) and AFLUX (early spring 2019). There are differences between both campaign periods: in early summer, the precipitation is mostly related to ARs and fronts, especially when they are co-located, while in early spring, cyclones isolated from ARs and fronts contributed most to the precipitation.
Yuan Wang, Xiaojian Zheng, Xiquan Dong, Baike Xi, and Yuk L. Yung
Atmos. Chem. Phys., 23, 8591–8605, https://doi.org/10.5194/acp-23-8591-2023, https://doi.org/10.5194/acp-23-8591-2023, 2023
Short summary
Short summary
Marine boundary layer clouds remain poorly predicted in global climate models due to multiple entangled uncertainty sources. This study uses the in situ observations from a recent field campaign to constrain and evaluate cloud physics in a simplified version of a climate model. Progress and remaining issues in the cloud physics parameterizations are identified. We systematically evaluate the impacts of large-scale forcing, microphysical scheme, and aerosol concentrations on the cloud property.
Annika Oertel, Annette K. Miltenberger, Christian M. Grams, and Corinna Hoose
Atmos. Chem. Phys., 23, 8553–8581, https://doi.org/10.5194/acp-23-8553-2023, https://doi.org/10.5194/acp-23-8553-2023, 2023
Short summary
Short summary
Warm conveyor belts (WCBs) are cloud- and precipitation-producing airstreams in extratropical cyclones that are important for the large-scale flow and cloud radiative forcing. We analyze cloud formation processes during WCB ascent in a two-moment microphysics scheme. Quantification of individual diabatic heating rates shows the importance of condensation, vapor deposition, rain evaporation, melting, and cloud-top radiative cooling for total heating and WCB-related potential vorticity structure.
Renaud Falga and Chien Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1445, https://doi.org/10.5194/egusphere-2023-1445, 2023
Short summary
Short summary
The impact of the urban land use on the regional meteorology and rainfall during the Indian summer monsoon has been assessed in this study. Using a cloud-resolving model centered around Kolkata, we have shown that the urban heat island effect lead to a rainfall enhancement through amplification of convective activity, especially during the night. Furthermore, the results demonstrated that the kinetic effect of the city induced the initiation of a night time storm.
Colin Tully, David Neubauer, Diego Villanueva, and Ulrike Lohmann
Atmos. Chem. Phys., 23, 7673–7698, https://doi.org/10.5194/acp-23-7673-2023, https://doi.org/10.5194/acp-23-7673-2023, 2023
Short summary
Short summary
This study details the first attempt with a GCM to simulate a fully prognostic aerosol species specifically for cirrus climate intervention. The new approach is in line with the real-world delivery mechanism via aircraft. However, to achieve an appreciable signal from seeding, smaller particles were needed, and their mass emissions needed to be scaled by at least a factor of 100. These biases contributed to either overseeding or small and insignificant effects in response to seeding cirrus.
Ines Bulatovic, Julien Savre, Michael Tjernström, Caroline Leck, and Annica M. L. Ekman
Atmos. Chem. Phys., 23, 7033–7055, https://doi.org/10.5194/acp-23-7033-2023, https://doi.org/10.5194/acp-23-7033-2023, 2023
Short summary
Short summary
We use numerical modeling with detailed cloud microphysics to investigate a low-altitude cloud system consisting of two cloud layers – a type of cloud situation which was commonly observed during the summer of 2018 in the central Arctic (north of 80° N). The model generally reproduces the observed cloud layers and the thermodynamic structure of the lower atmosphere well. The cloud system is maintained unless there are low aerosol number concentrations or high large-scale wind speeds.
Huan Liu, Ilan Koren, Orit Altaratz, and Mickaël D. Chekroun
Atmos. Chem. Phys., 23, 6559–6569, https://doi.org/10.5194/acp-23-6559-2023, https://doi.org/10.5194/acp-23-6559-2023, 2023
Short summary
Short summary
Clouds' responses to global warming contribute the largest uncertainty in climate prediction. Here, we analyze 42 years of global cloud cover in reanalysis data and show a decreasing trend over most continents and an increasing trend over the tropical and subtropical oceans. A reduction in near-surface relative humidity can explain the decreasing trend in cloud cover over land. Our results suggest potential stress on the terrestrial water cycle, associated with global warming.
Blaž Gasparini, Sylvia C. Sullivan, Adam B. Sokol, Bernd Kärcher, Eric Jensen, and Dennis L. Hartmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-1214, https://doi.org/10.5194/egusphere-2023-1214, 2023
Short summary
Short summary
Tropical cirrus clouds are essential for the climate, but our understanding of these clouds is limited due to their dependence on a wide range of small- and large-scale climate processes. In this Opinion, we review recent advances in the study of tropical cirrus clouds, highlight remaining open questions, and discuss what we can do to resolve them.
Axel Seifert, Vanessa Bachmann, Florian Filipitsch, Jochen Förstner, Christian M. Grams, Gholam Ali Hoshyaripour, Julian Quinting, Anika Rohde, Heike Vogel, Annette Wagner, and Bernhard Vogel
Atmos. Chem. Phys., 23, 6409–6430, https://doi.org/10.5194/acp-23-6409-2023, https://doi.org/10.5194/acp-23-6409-2023, 2023
Short summary
Short summary
We investigate how mineral dust can lead to the formation of cirrus clouds. Dusty cirrus clouds lead to a reduction in solar radiation at the surface and, hence, a reduced photovoltaic power generation. Current weather prediction systems are not able to predict this interaction between mineral dust and cirrus clouds. We have developed a new physical description of the formation of dusty cirrus clouds. Overall we can show a considerable improvement in the forecast quality of clouds and radiation.
Dario Sperber and Klaus Gierens
EGUsphere, https://doi.org/10.5194/egusphere-2023-914, https://doi.org/10.5194/egusphere-2023-914, 2023
Short summary
Short summary
A significant share of aviation's climate impact is due to persistent contrails. Avoiding their creation is a step for sustainable air transportation. For this purpose, a reliable forecast of so called ice supersaturated regions is needed, which then allows to plan aircraft routes without persistent contrails. Here we propose a method that leads to better prediction of ice supersaturated regions.
Gabrielle R. Leung, Stephen M. Saleeby, G. Alexander Sokolowsky, Sean W. Freeman, and Susan C. van den Heever
Atmos. Chem. Phys., 23, 5263–5278, https://doi.org/10.5194/acp-23-5263-2023, https://doi.org/10.5194/acp-23-5263-2023, 2023
Short summary
Short summary
This study uses a suite of high-resolution simulations to explore how the concentration and type of aerosol particles impact shallow tropical clouds and the overall aerosol budget. Under more-polluted conditions, there are more aerosol particles present, but we also find that clouds are less able to remove those aerosol particles via rainout. Instead, those aerosol particles are more likely to be detrained aloft and remain in the atmosphere for further aerosol–cloud interactions.
Sisi Chen, Lulin Xue, Sarah Tessendorf, Kyoko Ikeda, Courtney Weeks, Roy Rasmussen, Melvin Kunkel, Derek Blestrud, Shaun Parkinson, Melinda Meadows, and Nick Dawson
Atmos. Chem. Phys., 23, 5217–5231, https://doi.org/10.5194/acp-23-5217-2023, https://doi.org/10.5194/acp-23-5217-2023, 2023
Short summary
Short summary
The possible mechanism of effective ice growth in the cloud-top generating cells in winter orographic clouds is explored using a newly developed ultra-high-resolution cloud microphysics model. Simulations demonstrate that a high availability of moisture and liquid water is critical for producing large ice particles. Fluctuations in temperature and moisture down to millimeter scales due to cloud turbulence can substantially affect the growth history of the individual cloud particles.
Jan Chylik, Dmitry Chechin, Regis Dupuy, Birte S. Kulla, Christof Lüpkes, Stephan Mertes, Mario Mech, and Roel A. J. Neggers
Atmos. Chem. Phys., 23, 4903–4929, https://doi.org/10.5194/acp-23-4903-2023, https://doi.org/10.5194/acp-23-4903-2023, 2023
Short summary
Short summary
Arctic low-level clouds play an important role in the ongoing warming of the Arctic. Unfortunately, these clouds are not properly represented in weather forecast and climate models. This study tries to cover this gap by focusing on clouds over open water during the spring, observed by research aircraft near Svalbard. The study combines the high-resolution model with sets of observational data. The results show the importance of processes that involve both ice and the liquid water in the clouds.
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Short summary
In this study, we show that recent versions of two atmospheric models – the Unified Model and Integrated Forecasting System – overestimate Arctic cloud fraction within the lower troposphere by comparison with recent remote-sensing measurements made during the Arctic Ocean 2018 expedition. The overabundance of cloud is interlinked with the modelled thermodynamic structure, with strong negative temperature biases coincident with these overestimated cloud layers.
Leonie Villiger and Franziska Aemisegger
EGUsphere, https://doi.org/10.5194/egusphere-2023-450, https://doi.org/10.5194/egusphere-2023-450, 2023
Short summary
Short summary
In this study, three numerical simulations performed with an isotope-enabled weather forecast model are used to investigate the cloud-circulation coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. It is shown that stable water isotopes near cloud base in the tropical reflect (1) the diel cycle of the atmospheric circulation which drives the formation and dissipation of clouds and (2) changes in the large-scale circulation over the North Atlantic.
Leonie Villiger, Marina Dütsch, Sandrine Bony, Marie Lothon, Stephan Pfahl, Heini Wernli, Pierre-Etienne Brilouet, Patrick Chazette, Pierre Coutris, Julien Delanoë, Cyrille Flamant, Alfons Schwarzenboeck, Martin Werner, and Franziska Aemisegger
EGUsphere, https://doi.org/10.5194/egusphere-2023-449, https://doi.org/10.5194/egusphere-2023-449, 2023
Short summary
Short summary
This study evaluates three numerical simulations performed with an isotope-enabled weather forecast model and investigates the coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. We show that the simulations reproduce key characteristics of shallow trade-wind clouds as observed during the field experiment EUREC4A and that the spatial distribution of stable water vapour isotopes is shaped by the overturning circulation associated with these clouds.
Matthew W. Christensen, Po-Lun Ma, Peng Wu, Adam C. Varble, Johannes Mülmenstädt, and Jerome D. Fast
Atmos. Chem. Phys., 23, 2789–2812, https://doi.org/10.5194/acp-23-2789-2023, https://doi.org/10.5194/acp-23-2789-2023, 2023
Short summary
Short summary
An increase in aerosol concentration (tiny airborne particles) is shown to suppress rainfall and increase the abundance of droplets in clouds passing over Graciosa Island in the Azores. Cloud drops remain affected by aerosol for several days across thousands of kilometers in satellite data. Simulations from an Earth system model show good agreement, but differences in the amount of cloud water and its extent remain despite modifications to model parameters that control the warm-rain process.
Peter Spichtinger, Patrik Marschalik, and Manuel Baumgartner
Atmos. Chem. Phys., 23, 2035–2060, https://doi.org/10.5194/acp-23-2035-2023, https://doi.org/10.5194/acp-23-2035-2023, 2023
Short summary
Short summary
We investigate the impact of the homogeneous nucleation rate on nucleation events in cirrus. As long as the slope of the rate is represented sufficiently well, the resulting ice crystal number concentrations are not crucially affected. Even a change in the prefactor over orders of magnitude does not change the results. However, the maximum supersaturation during nucleation events shows strong changes. This quantity should be used for diagnostics instead of the popular nucleation threshold.
Julia Thomas, Andrew Barrett, and Corinna Hoose
Atmos. Chem. Phys., 23, 1987–2002, https://doi.org/10.5194/acp-23-1987-2023, https://doi.org/10.5194/acp-23-1987-2023, 2023
Short summary
Short summary
We study the sensitivity of rain formation processes during a heavy-rainfall event over mountains to changes in temperature and pollution. Total rainfall increases by 2 % K−1, and a 6 % K−1 increase is found at the highest altitudes, caused by a mixed-phase seeder–feeder mechanism (frozen cloud particles melt and grow further as they fall through a liquid cloud layer). In a cleaner atmosphere this process is enhanced. Thus the risk of severe rainfall in mountains may increase in the future.
Pramod Adhikari and John F. Mejia
Atmos. Chem. Phys., 23, 1019–1042, https://doi.org/10.5194/acp-23-1019-2023, https://doi.org/10.5194/acp-23-1019-2023, 2023
Short summary
Short summary
We used an atmospheric model to assess the impact of aerosols through radiation and cloud interaction on elevation-dependent precipitation and surface temperature over the central Himalayan region. Results showed contrasting altitudinal precipitation responses to the increased aerosol concentration, which can significantly impact the hydroclimate of the central Himalayas, increasing the risk for extreme events and influencing the regional supply of water resources.
Peter Kuma, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland
Atmos. Chem. Phys., 23, 523–549, https://doi.org/10.5194/acp-23-523-2023, https://doi.org/10.5194/acp-23-523-2023, 2023
Short summary
Short summary
We present a machine learning method for determining cloud types in climate model output and satellite observations based on ground observations of cloud genera. We analyse cloud type biases and changes with temperature in climate models and show that the bias is anticorrelated with climate sensitivity. Models simulating decreasing stratiform and increasing cumuliform clouds with increased CO2 concentration tend to have higher climate sensitivity than models simulating the opposite tendencies.
Chung-Chieh Wang, Ting-Yu Yeh, Chih-Sheng Chang, Ming-Siang Li, Kazuhisa Tsuboki, and Ching-Hwang Liu
Atmos. Chem. Phys., 23, 501–521, https://doi.org/10.5194/acp-23-501-2023, https://doi.org/10.5194/acp-23-501-2023, 2023
Short summary
Short summary
The extreme rainfall event (645 mm in 24 h) at the northern coast of Taiwan on 2 June 2017 is studied using a cloud model. Two 1 km experiments with peak amounts of 541 and 400 mm are compared to isolate the reasons for such a difference. It is found that the frontal rainband remains fixed in location for a longer period in the former run due to a low disturbance that acts to focus the near-surface convergence. Therefore, the rainfall is more concentrated and there is a higher total amount.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 23, 287–309, https://doi.org/10.5194/acp-23-287-2023, https://doi.org/10.5194/acp-23-287-2023, 2023
Short summary
Short summary
Recent studies estimate the radiative impact of contrails to be similar to or larger than that of emitted CO2; thus, contrail mitigation might be an opportunity to reduce the climate effects of aviation. A radiosonde data set is analyzed in terms of the vertical distribution of potential contrails, contrail mitigation by flight altitude changes, and linkages with the tropopause and jet stream. The effect of prospective jet engine developments and alternative fuels are estimated.
Guy Dagan
Atmos. Chem. Phys., 22, 15767–15775, https://doi.org/10.5194/acp-22-15767-2022, https://doi.org/10.5194/acp-22-15767-2022, 2022
Short summary
Short summary
Using idealized simulations we demonstrate that the equilibrium climate sensitivity (ECS), i.e. the increase in surface temperature under equilibrium conditions due to doubling of the CO2 concentration, increases with the aerosol concentration. The ECS increase is explained by a faster increase in precipitation efficiency with warming under high aerosol concentrations, which more efficiently depletes the water from the cloud and thus is manifested as an increase in the cloud feedback parameter.
Sonya L. Fiddes, Alain Protat, Marc D. Mallet, Simon P. Alexander, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 14603–14630, https://doi.org/10.5194/acp-22-14603-2022, https://doi.org/10.5194/acp-22-14603-2022, 2022
Short summary
Short summary
Climate models have difficulty simulating Southern Ocean clouds, impacting how much sunlight reaches the surface. We use machine learning to group different cloud types observed from satellites and simulated in a climate model. We find the model does a poor job of simulating the same cloud type as what the satellite shows and, even when it does, the cloud properties and amount of reflected sunlight are incorrect. We have a lot of work to do to model clouds correctly over the Southern Ocean.
Prabhakar Shrestha, Jana Mendrok, and Dominik Brunner
Atmos. Chem. Phys., 22, 14095–14117, https://doi.org/10.5194/acp-22-14095-2022, https://doi.org/10.5194/acp-22-14095-2022, 2022
Short summary
Short summary
The study extends the Terrestrial Systems Modeling Platform with gas-phase chemistry aerosol dynamics and a radar forward operator to enable detailed studies of aerosol–cloud–precipitation interactions. This is demonstrated using a case study of a deep convective storm, which showed that the strong updraft in the convective core of the storm produced aerosol-tower-like features, which affected the size of the hydrometeors and the simulated polarimetric features (e.g., ZDR and KDP columns).
Jia He, Helene Brogniez, and Laurence Picon
Atmos. Chem. Phys., 22, 12591–12606, https://doi.org/10.5194/acp-22-12591-2022, https://doi.org/10.5194/acp-22-12591-2022, 2022
Short summary
Short summary
A 2003–2017 satellite-based atmospheric water vapour climate data record is used to assess climate models and reanalyses. The focus is on the tropical belt, whose regional variations in the hydrological cycle are related to the tropospheric overturning circulation. While there are similarities in the interannual variability, the major discrepancies can be explained by the presence of clouds, the representation of moisture fluxes at the surface and cloud processes in the models.
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441, https://doi.org/10.5194/acp-22-12417-2022, https://doi.org/10.5194/acp-22-12417-2022, 2022
Short summary
Short summary
The spatial and temporal restrictions of observations and oversimplified aerosol representation in large eddy simulations (LES) limit our understanding of aerosol–stratocumulus interactions. In this closure study of in situ and remote sensing observations and outputs from UCLALES–SALSA, we have assessed the role of convective overturning and aerosol effects in two cloud events observed at the Puijo SMEAR IV station, Finland, a diurnal-high aerosol case and a nocturnal-low aerosol case.
Zhipeng Qu, Alexei Korolev, Jason A. Milbrandt, Ivan Heckman, Yongjie Huang, Greg M. McFarquhar, Hugh Morrison, Mengistu Wolde, and Cuong Nguyen
Atmos. Chem. Phys., 22, 12287–12310, https://doi.org/10.5194/acp-22-12287-2022, https://doi.org/10.5194/acp-22-12287-2022, 2022
Short summary
Short summary
Secondary ice production (SIP) is an important physical phenomenon that results in an increase in the cloud ice particle concentration and can have a significant impact on the evolution of clouds. Here, idealized simulations of a tropical convective system were conducted. Agreement between the simulations and observations highlights the impacts of SIP on the maintenance of tropical convection in nature and the importance of including the modelling of SIP in numerical weather prediction models.
Michael S. Diamond, Pablo E. Saide, Paquita Zuidema, Andrew S. Ackerman, Sarah J. Doherty, Ann M. Fridlind, Hamish Gordon, Calvin Howes, Jan Kazil, Takanobu Yamaguchi, Jianhao Zhang, Graham Feingold, and Robert Wood
Atmos. Chem. Phys., 22, 12113–12151, https://doi.org/10.5194/acp-22-12113-2022, https://doi.org/10.5194/acp-22-12113-2022, 2022
Short summary
Short summary
Smoke from southern Africa blankets the southeast Atlantic from June-October, overlying a major transition region between overcast and scattered clouds. The smoke affects Earth's radiation budget by absorbing sunlight and changing cloud properties. We investigate these effects in regional climate and large eddy simulation models based on international field campaigns. We find that large-scale circulation changes more strongly affect cloud transitions than smoke microphysical effects in our case.
Sachin Patade, Deepak Waman, Akash Deshmukh, Ashok Kumar Gupta, Arti Jadav, Vaughan T. J. Phillips, Aaron Bansemer, Jacob Carlin, and Alexander Ryzhkov
Atmos. Chem. Phys., 22, 12055–12075, https://doi.org/10.5194/acp-22-12055-2022, https://doi.org/10.5194/acp-22-12055-2022, 2022
Short summary
Short summary
This modeling study focuses on the role of multiple groups of primary biological aerosol particles as ice nuclei on cloud properties and precipitation. This was done by implementing a more realistic scheme for biological ice nucleating particles in the aerosol–cloud model. Results show that biological ice nucleating particles have a limited role in altering the ice phase and precipitation in deep convective clouds.
Micael Amore Cecchini, Marco de Bruine, Jordi Vilà-Guerau de Arellano, and Paulo Artaxo
Atmos. Chem. Phys., 22, 11867–11888, https://doi.org/10.5194/acp-22-11867-2022, https://doi.org/10.5194/acp-22-11867-2022, 2022
Short summary
Short summary
Shallow clouds (vertical extent up to 3 km height) are ubiquitous throughout the Amazon and are responsible for redistributing the solar heat and moisture vertically and horizontally. They are a key component of the water cycle because they can grow past the shallow phase to contribute significantly to the precipitation formation. However, they need favourable environmental conditions to grow. In this study, we analyse how changing wind patterns affect the development of such shallow clouds.
Colin Tully, David Neubauer, Nadja Omanovic, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 11455–11484, https://doi.org/10.5194/acp-22-11455-2022, https://doi.org/10.5194/acp-22-11455-2022, 2022
Short summary
Short summary
The proposed geoengineering method, cirrus cloud thinning, was evaluated using a more physically based microphysics scheme coupled to a more realistic approach for calculating ice cloud fractions in the ECHAM-HAM GCM. Sensitivity tests reveal that using the new ice cloud fraction approach and increasing the critical ice saturation ratio for ice nucleation on seeding particles reduces warming from overseeding. However, this geoengineering method is unlikely to be feasible on a global scale.
Christian Barthlott, Amirmahdi Zarboo, Takumi Matsunobu, and Christian Keil
Atmos. Chem. Phys., 22, 10841–10860, https://doi.org/10.5194/acp-22-10841-2022, https://doi.org/10.5194/acp-22-10841-2022, 2022
Short summary
Short summary
The relevance of microphysical and land-surface uncertainties for convective-scale predictability is evaluated with a combined-perturbation strategy in realistic convection-resolving simulations. We find a large ensemble spread which demonstrates that the uncertainties investigated here and, in particular, their collective effect are highly relevant for quantitative precipitation forecasting of summertime convection in central Europe.
J. Minnie Park and Susan C. van den Heever
Atmos. Chem. Phys., 22, 10527–10549, https://doi.org/10.5194/acp-22-10527-2022, https://doi.org/10.5194/acp-22-10527-2022, 2022
Short summary
Short summary
This study explores how increased aerosol particles impact tropical sea breeze cloud systems under different environments and how a range of environments modulate these cloud responses. Overall, sea breeze flows and clouds that develop therein become weaker due to interactions between aerosols, sunlight, and land surface. In addition, surface rainfall also decreases with more aerosol particles. Weakening of cloud and rain with more aerosols is found irrespective of 130 different environments.
Michael John Weston, Stuart John Piketh, Frédéric Burnet, Stephen Broccardo, Cyrielle Denjean, Thierry Bourrianne, and Paola Formenti
Atmos. Chem. Phys., 22, 10221–10245, https://doi.org/10.5194/acp-22-10221-2022, https://doi.org/10.5194/acp-22-10221-2022, 2022
Short summary
Short summary
An aerosol-aware microphysics scheme is evaluated for fog cases in Namibia. AEROCLO-sA campaign observations are used to access and parameterise the model. The model cloud condensation nuclei activation is lower than the observations. The scheme is designed for clouds with updrafts, while fog typically forms in stable conditions. A pseudo updraft speed assigned to the lowest model levels helps achieve more realistic cloud droplet number concentration and size distribution in the model.
Lucas J. Sterzinger, Joseph Sedlar, Heather Guy, Ryan R. Neely III, and Adele L. Igel
Atmos. Chem. Phys., 22, 8973–8988, https://doi.org/10.5194/acp-22-8973-2022, https://doi.org/10.5194/acp-22-8973-2022, 2022
Short summary
Short summary
Aerosol particles are required for cloud droplets to form, and the Arctic atmosphere often has much fewer aerosols than at lower latitudes. In this study, we investigate whether aerosol concentrations can drop so low as to no longer support a cloud. We use observations to initialize idealized model simulations to investigate a worst-case scenario where all aerosol is removed from the environment instantaneously. We find that this mechanism is possible in two cases and is unlikely in the third.
Pooja Verma and Ulrike Burkhardt
Atmos. Chem. Phys., 22, 8819–8842, https://doi.org/10.5194/acp-22-8819-2022, https://doi.org/10.5194/acp-22-8819-2022, 2022
Short summary
Short summary
This paper investigates contrail ice formation within cirrus and the impact of natural cirrus on the contrail ice formation in the high-resolution ICON-LEM simulations over Germany. Contrail formation often leads to increases in cirrus ice crystal number concentration by a few orders of magnitude. Contrail formation is affected by pre-existing cirrus, leading to changes in contrail formation conditions and ice nucleation rates that can be significant in optically thick cirrus.
Mahnoosh Haghighatnasab, Jan Kretzschmar, Karoline Block, and Johannes Quaas
Atmos. Chem. Phys., 22, 8457–8472, https://doi.org/10.5194/acp-22-8457-2022, https://doi.org/10.5194/acp-22-8457-2022, 2022
Short summary
Short summary
The impact of aerosols emitted by the Holuhraun volcanic eruption on liquid clouds was assessed from a pair of cloud-system-resolving simulations along with satellite retrievals. Inside and outside the plume were compared in terms of their statistical distributions. Analyses indicated enhancement for cloud droplet number concentration inside the volcano plume in model simulations and satellite retrievals, while there was on average a small effect on both liquid water path and cloud fraction.
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022, https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Short summary
In winter when solar radiation is absent in the Arctic, the poleward transport of heat and moisture into the high Arctic becomes the main contribution of Arctic warming. Over completely frozen ocean sectors, total surface energy budget is dominated by net long-wave heat, while over the Barents Sea, with an open ocean to the south, total net surface energy budget is dominated by the surface turbulent heat.
Cited articles
Abdul-Razzak, H., Ghan, S. J., and Rivera-Carpio, C.: A parameterization of
aerosol activation: 1. Single aerosol type, J. Geophys. Res., 103, 6123–6131, https://doi.org/10.1029/97jd03735, 1998.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness,
Science, 245, 1227–1230, 1989.
Andreae, M. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions.
Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, 2008.
Baker, M. B., Corbin, R. G., and Latham, J.: The influence of entrainment on
the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing,
Q. J. Roy. Meteor. Soc., 106, 581–598, 1980.
Barros, A. P. and Lettenmaier, D. P.: Dynamic Modeling of
Orographically-Induced Precipitation, Rev. Geophys.,
32, 265–284, 1994.
Barros, A. P., Prat, O. P., and Shrestha, P.: Revisiting Low and List (1982);
Evaluation of Raindrop Collision Parameterizations Using Laboratory
Observations and Modeling, J. Atmos. Sci.,
65, 2983–2993, https://doi.org/10.1175/2008JAS2630.1, 2008.
Barros, A. P., Petersen, W., Schwaller, M., Cifelli, R., Mahoney, K.,
Peters-Liddard, C., Shepherd, M., Nesbitt, S., Wolff, D., Heymsfield, G., and
Starr, D.: NASA GPM-Ground Validation: Integrated Precipitation and Hydrology
Experiment 2014 Science Plan, Duke University, Durham, NC,
https://doi.org/10.7924/G8CC0XMR, 2014.
Barros, A. P., Shrestha, P., Chavez, S., and Duan, Y.: Modeling
aerosol–cloud-precipitation interactions in mountainous regions –
Challenges in the representation of indirect microphysical effects with
impacts at sub-regional scales, in: Atmospheric Chemistry, IntechBookOpen
(Pub.), https://doi.org/10.5772/intechopen.80025, 2018.
Beard, K. V.: Terminal velocity and shape of cloud and precipitation drops
aloft, J. Atmos. Sci., 33, 851–864, 1976.
Beard, K. V.: Terminal velocity adjustment for cloud and precipiattion drops
aloft, J. Atmos. Sci., 34, 1293–1298, 1977.
Beard, K. V. and Ochs, H. T.: Collection and coalescence efficiencies for
accretion, J. Geophys. Res., 89, 7165–7169, 1984.
Beard, K. V. and Ochs III, H. T.: Collisions between small precipitation
drops. Part II: Formulas for coalescence, temporary coalescence, and
satellites, J. Atmos. Sci, 52, 3977–3996, 1995.
Berry, E. X. and Reinhardt, R. L.: An analysis of cloud drop growth by
collection: Part I. Double distributions, J. Atmos.
Sci., 31, 1814–1824, 1974.
Best, A. C.: Empirical formulae for the terminal velocity of water drops
falling through the atmosphere, Q. J. Roy. Meteor. Soc., 76, 302–311, 1950.
Bott, A.: A flux method for the numerical solution of the stochastic
collection equation, J. Atmos. Sci., 55, 2284–2293,
1998.
Bott, A.: A flux method for the numerical solution of the stochastic
collection equation: Extension to two-dimensional particle distributions,
J. Atmos. Sci., 57, 284–294, 2000.
Box, G. E., Hunter, W. G., and Hunter, J. S.: Statistics for experimenters:
an introduction to design, data analysis, and model building, John Wiley &
Sons, Hoboken, NJ, USA, 1978.
Cash, J. R. and Karp, A. H.: A variable order Runge-Kutta method for initial
value problems with rapidly varying right-hand sides, ACM T.
Math. Software, 16, 201–222, 1990.
Chodes, N., Warner, J., and Gagin, A.: A determination of the condensation
coefficient of water from the growth rate of small cloud droplets, J. Atmos. Sci., 31, 1351–1357, 1974.
Christensen, S. I. and Petters, M. D.: The role of temperature in cloud
droplet activation, J. Phys. Chem. A, 116, 9706–9717, https://doi.org/10.1021/jp3064454, 2012.
Chuang, P. Y.: Measurement of the timescale of hygroscopic growth for
atmospheric aerosols, J. Geophys. Res., 108, 4282,
https://doi.org/10.1029/2002jd002757, 2003.
Conant, W. C., VanReken, T. M., Rissman, T. A., Varutbangkul, V., Jonsson, H.
H., Nenes, A., Jimenez, J. L., Delia, A. E., Bahreini, R., Roberts, G. C.,
Flagan, R. C., and Seinfeld, J. H.: aerosol–cloud drop concentration closure
in warm cumulus, J. Geophys. Res., 109, D13204,
https://doi.org/10.1029/2003jd004324, 2004.
Cooper, W. A., Bruintjes, R. T., and Mather, G. K.: Calculations pertaining
to hygroscopic seeding with flares, J. Appl. Meteorol., 36,
1449–1469, 1997.
De Wekker, S. F. J. and Kossmann, M.: Convective Boundary Layer Heights Over
Mountainous Terrain – A Review of Concepts, Front. Earth Sci., 3, 77,
https://doi.org/10.3389/feart.2015.00077, 2015
Duan, Y.: Mapping the Impact of aerosol–cloud Interactions on Cloud Formation
and Warm-season Rainfall in Mountainous Regions Using Observations and
Models, PhD disertation, Duke University, 305 pp., 2017.
Duan, Y. and Barros, A. P.: Understanding How Low-Level Clouds and Fog
Modify the Diurnal Cycle of Orographic Precipitation Using In Situ and
Satellite Observations, Remote Sens., 9, 920, https://doi.org/10.3390/rs9090920, 2017.
Duan, Y., Wilson, A. M., and Barros, A. P.: Scoping a field experiment: error
diagnostics of TRMM precipitation radar estimates in complex terrain as a
basis for IPHEx2014, Hydrol. Earth Syst. Sci., 19, 1501–1520,
https://doi.org/10.5194/hess-19-1501-2015, 2015.
Duan, Y., Petters, M. D., and Barros, A. P.: Understanding aerosol–cloud
interactions in the development of orographic cumulus congestus during IPHEx,
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-396, 2017.
Fan, J., Yuan, T., Comstock, J. M., Ghan, S., Khain, A., Leung, L. R., Li,
Z., Martins, V. J., and Ovchinnikov, M.: Dominant role by vertical wind shear
in regulating aerosol effects on deep convective clouds, J. Geophys. Res.,
114, D22206, https://doi.org/10.1029/2009jd012352, 2009.
Flossmann, A. I., Hall, W. D., and Pruppacher, H. R.: A theoretical study of
the wet removal of atmospheric pollutants. Part I: The redistribution of
aerosol particles captured through nucleation and impaction scavenging by
growing cloud drops, J. Atmos. Sci., 42, 583–606, 1985.
Fountoukis, C. and Nenes, A.: Continued development of a cloud droplet
formation parameterization for global climate models, J. Geophys. Res., 110, D11212, https://doi.org/10.1029/2004jd005591, 2005.
Fountoukis, C., Nenes, A., Meskhidze, N., Bahreini, R., Conant, W. C.,
Jonsson, H., Murphy, S., Sorooshian, A., Varutbangkul, V., Brechtel, F.,
Flagan, R. C., and Seinfeld, J. H.: Aerosol–cloud drop concentration closure
for clouds sampled during the International Consortium for Atmospheric
Research on Transport and Transformation 2004 campaign, J. Geophys. Res., 112, D10S30, https://doi.org/10.1029/2006jd007272, 2007.
Fukuta, N. and Myers, M. N.: Simultaneous Measurement of Condensation and Thermal Accommodation Coefficients for Cloud Droplet Growth in Due Consideration of a New Moving Surface-Boundary Effect, J. Atmos. Sci., 64, 955–968, https://doi.org/10.1175/jas3834.1, 2007.
Fukuta, N. and Walter, L.: Kinetics of hydrometeor growth from a vaper-spherical model, J. Atmos. Sci., 27, 1160–1172,
1970.
Garnier, J. P., Ehrhard, P., and Mirabel, P.: Water droplet growth study in a
continuous flow diffusion cloud chamber, Atmos. Res., 21, 41–51,
1987.
Gebremichael, M. and Barros, A.: Evaluation of MODIS Gross Primary
Productivity (GPP) in tropical monsoon regions, Remote Sens.
Environ., 100, 150–166, https://doi.org/10.1016/j.rse.2005.10.009, 2006.
Ghan, S. J., Abdul-Razzak, H., Nenes, A., Ming, Y., Liu, X., Ovchinnikov, M.,
Shipway, B., Meskhidze, N., Xu, J., and Shi, X.: Droplet nucleation:
Physically-based parameterizations and comparative evaluation, J. Adv. Model. Earth Syst., 3, M10001, https://doi.org/10.1029/2011ms000074, 2011.
Givati, A. and Rosenfeld, D.: Quantifying precipitation suppression due to
air pollution, J. Appl. Meteorol., 43, 1038–1056, 2004.
Guzel, H. and Barros, A. P.: Using Acoustic Emission Testing to Monitor
Kinetic Energy of Raindrop and Rainsplash Erosion, in: Soil
Erosion Research for the 21st Century, Proc. Int. Symp., 3–5 January 2001,
Honolulu, HI, USA, edited by: Ascough II, J. C. and Flanagan, D. C., St. Joseph, MI,
ASAE, 701P0007, 525–528, https://doi.org/10.13031/2013.4593, 2001.
Hagen, D. E., Schmitt, J., Trueblood, M., Carstens, J., White, D. R., and
Alofs, D. J.: Condensation coefficient measurement for water in the UMR cloud
simulation chamber, J. tmos. Sci., 46, 803–816, 1989.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: A review, Rev. Geophys., 38,
513, https://doi.org/10.1029/1999rg000078, 2000.
Hindmarsh, A. C.: ODEPACK, a systematized collection of ODE solvers,
Scientific Computing, edited by: Stepleman, R., North-Holland, New York,
1983.
Hu, Z. and Srivastava, R. C.: Evolution of raindrop size distribution by
coalescence, breakup, and evaporation: Theory and observations, J. Atmos. Sci., 52, 1761–1783, 1995.
Jacobson, M. Z.: Fundamentals of atmospheric modeling, 2nd edn., Cambridge
University Press, New York, NY, USA, 2005.
Jacobson, M. Z. and Turco, R. P.: SMVGEAR: A sparse-matrix, vectorized Gear
code for atmospheric models, Atmos. Environ., 28, 273–284, 1994.
Jacobson, M. Z. and Turco, R. P.: Simulating Condensational Growth,
Evaporation, and Coagulation of Aerosols Using a Combined Moving and
Stationary Size Grid, Aerosol Sci. Technol., 22, 73–92,
https://doi.org/10.1080/02786829408959729, 1995.
Jacobson, M. Z., Turco, R. P., Jensen, E. J., and Toon, O. B.: Modeling
coagulation among particles of different composition and size, Atmos.
Environ., 28, 1327–1338, 1994.
Jaenicke, R.: Tropospheric aerosols, in: aerosol–cloud-climate interactions,
edited by: Hobbs, P. V., Academic Press, San Diego, CA, USA, 1–31, 1993.
Jiang, J. H., Su, H., Schoeberl, M. R., Massie, S. T., Colarco, P., Platnick,
S., and Livesey, N. J.: Clean and polluted clouds: Relationships among
pollution, ice clouds, and precipitation in South America, Geophys. Res. Lett., 35, L14804, https://doi.org/10.1029/2008gl034631, 2008.
Kerkweg, A., Wurzler, S., Reisin, T., and Bott, A.: On the cloud processing
of aerosol particles: An entraining air-parcel model with two-dimensional
spectral cloud microphysics and a new formulation of the collection kernel,
Q. J. Roy. Meteor. Soc., 129, 1–18,
https://doi.org/10.1256/qj.02.52, 2003.
Khain, A., Ovtchinnikov, M., Pinsky, M., Pokrovsky, A., and Krugliak, H.:
Notes on the state-of-the-art numerical modeling of cloud microphysics,
Atmos. Res., 55, 159–224, 2000.
Khain, A., Rosenfeld, D., and Pokrovsky, A.: Aerosol impact on the dynamics
and microphysics of deep convective clouds, Q. J. Roy.
Meteor. Soc., 131, 2639–2663, 2005.
Khain, A. P. and Pinsky, M. B.: Turbulence effects on the collision kernel. II: Increase of the swept volume of colliding drops, Q. J. Roy. Meteor. Soc., 123, 1543–1560, 1997.
Khairoutdinov, M., Randall, D., and DeMott, C.: Simulations of the
atmospheric general circulation using a cloud-resolving model as a
superparameterization of physical processes, J. Atmos. Sci., 62, 2136–2154, 2005.
Kokhanovsky, A. and de Leeuw, G.: Satellite Aerosol Remote Sensing Over
Land, Environmental Sciences, Springer-Verlag Berlin Heidelberg, 2009.
Koren, I., Martins, J. V., Remer, L. A., and Afargan, H.: Smoke invigoration
versus inhibition of clouds over the Amazon, Science, 321, 946–949,
https://doi.org/10.1126/science.1159185, 2008.
Korolev, A. V. and Mazin, I. P.: Supersaturation of Water Vapor in Clouds, J. Atmos. Sci., 60, 2957–2974, 2003.
Kovetz, A. and Olund, B.: The effect of coalescence and condensation on rain
formation in a cloud of finite vertical extent, J. Atmos.
Sci., 26, 1060–1065, 1969.
Kreidenweis, S. M., Walcek, C. J., Feingold, G., Gong, W., Jacobson, M. Z.,
Kim, C. H., Liu, X., Penner, J. E., Nenes, A., and Seinfeld, J. H.:
Modification of aerosol mass and size distribution due to aqueous-phase SO2
oxidation in clouds: Comparisons of several models, J. Geophys. Res., 108, 4213, https://doi.org/10.1029/2002JD002697, 2003.
Krueger, S. K., Su, C. W., and McMurtry, P. A.: Modeling entrainment and
finescale mixing in cumulus clouds, J. Atmos. Sci., 54,
2697–2712, 1997.
Kuba, N. and Fujiyoshi, Y.: Development of a cloud microphysical model and
parameterizations to describe the effect of CCN on warm cloud, Atmos. Chem.
Phys., 6, 2793–2810, https://doi.org/10.5194/acp-6-2793-2006, 2006.
Kumar, S. and Ramkrishna, D.: On the solution of population balance equations
by discretization – I. A fixed pivot technique, Chem. Eng. Sci., 51,
1311–1332, 1996.
Lance, S., Brock, C. A., Rogers, D., and Gordon, J. A.: Water droplet
calibration of the Cloud Droplet Probe (CDP) and in-flight performance in
liquid, ice and mixed-phase clouds during ARCPAC, Atmos. Meas. Tech., 3,
1683–1706, https://doi.org/10.5194/amt-3-1683-2010, 2010.
Leaitch, W. R., Strapp, J. W., Isaac, G. A., and Hudson, J. G.: Cloud droplet
nucleation and cloud scavenging of aerosol sulphate in polluted atmospheres,
Tellus B, 38, 328–344, 1986.
Leroy, D., Wobrock, W., and Flossmann, A. I.: The role of boundary layer
aerosol particles for the development of deep convective clouds: A
high-resolution 3D model with detailed (bin) microphysics applied to
CRYSTAL-FACE, Atmos. Res., 91, 62–78,
https://doi.org/10.1016/j.atmosres.2008.06.001, 2009.
Link, M., Zhou, Y., Taubman, B., Sherman, J., Morrow, H., Krintz, I.,
Robertson, L., Cook, R., Stocks, J., West, M., and Sive, B. C.: A
characterization of volatile organic compounds and secondary organic aerosol
at a mountain site in the Southeastern United States, J. Atmos. Chem., 72,
81–104, https://doi.org/10.1007/s10874-015-9305-5, 2015.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review,
Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Low, T. B. and List, R.: Collision, coalescence and breakup of raindrops.
Part I: Experimentally established coalescence efficiencies and fragment size
distributions in breakup, J. Atmos. Sci., 39, 1591–1606,
1982.
Lowenthal, D., Zielinska, B., Mason, B., Samy, S., Samburova, V., Collins,
D., Spencer, C., Taylor, N., Allen, J., and Kumar, N.: Aerosol
characterization studies at Great Smoky Mountains National Park, summer 2006,
J. Geophys. Res,, 114, D08206, https://doi.org/10.1029/2008jd011274, 2009.
Lynn, B., Khain, A., Rosenfeld, D., and Woodley, W. L.: Effects of aerosols
on precipitation from orographic clouds, J. Geophys. Res., 112, D10225,
https://doi.org/10.1029/2006JD007537, 2007.
Marek, R. and Straub, J.: Analysis of the evaporation coefficient and the
condensation coefficient of water, Int. J. Heat Mass Tran., 44, 39–53, 2001.
McCarthy, J.: Field verification of the relationship between entrainment rate
and cumulus cloud diameter, J. Atmos. Sci., 31,
1028–1039, 1974.
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M.,
O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, https://doi.org/10.5194/acp-6-2593-2006, 2006.
Meskhidze, N., Nenes, A., Conant, W. C., and Seinfeld, J. H.: Evaluation of a
new cloud droplet activation parameterization with in situ data from
CRYSTAL-FACE and CSTRIPE, J. Geophys. Res., 110, D16202, https://doi.org/10.1029/2004JD005703, 2005.
Morton, B. R.: Buoyant plumes in a moist atmosphere, J. Fluid
Mech., 2, 127–144, 1957.
Muhlbauer, A. and Lohmann, U.: Sensitivity studies of the role of aerosols
in warm-phase orographic precipitation in different dynamical flow regimes,
J. Atmos. Sci., 65, 2522–2542, 2008.
Muhlbauer, A., Hashino, T., Xue, L., Teller, A., Lohmann, U., Rasmussen, R. M., Geresdi, I., and Pan, Z.: Intercomparison
of aerosol–cloud–precipitation interactions in stratiform orographic mixed-phase clouds, Atmos. Chem. Phys., 10, 8173–8196, https://doi.org/10.5194/acp-10-8173-2010, 2010.
Nenes, A., Ghan, S., Abdul-Razzak, H., Chuang, P. Y., and Seinfeld, J. H.:
Kinetic limitations on cloud droplet formation and impact on cloud albedo,
Tellus B, 53, 133–149, 2001.
Nenes, A., Charlson, R. J., Facchini, M. C., Kulmala, M., Laaksonen, A., and
Seinfeld, J. H.: Can chemical effects on cloud droplet number rival the first
indirect effect?, Geophys. Res. Lett., 29, 1848,
https://doi.org/10.1029/2002gl015295, 2002.
Nguyen, T. K. V., Petters, M. D., Suda, S. R., Guo, H., Weber, R. J., and Carlton, A. G.: Trends in particle-phase liquid water during the Southern
Oxidant and Aerosol Study, Atmos. Chem. Phys., 14, 10911–10930, https://doi.org/10.5194/acp-14-10911-2014, 2014.
Nugent, A. D., Watson, C. D., Thompson, G., and Smith, R. B.: Aerosol Impacts
on Thermally Driven Orographic Convection, J. Atmos. Sci., 73, 3115–3132, https://doi.org/10.1175/jas-d-15-0320.1, 2016.
Paluch, I. R.: The entrainment mechanism in Colorado cumuli, J. Atmos. Sci., 36, 2467–2478, 1979.
Petersen, W. and Barros, A.: GPM Ground Validation Integrated Precipitation
and Hydrology Experiment (IPHEx) Field Campaign Data Collection, NASA EOSDIS
Global Hydrology Resource Center Distributed Active Archive Center
Huntsville, Alabama, USA, https://doi.org/10.5067/GPMGV/IPHEX/DATA101, 2018.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Petters, M. D., Carrico, C. M., Kreidenweis, S. M., Prenni, A. J., DeMott, P.
J., Collett, J. L., and Moosmüller, H.: Cloud condensation nucleation
activity of biomass burning aerosol, J. Geophys. Res., 114, D22205,
https://doi.org/10.1029/2009jd012353, 2009.
Petters, S. S. and Petters, M. D.: Surfactant effect on cloud condensation
nuclei for two-component internally mixed aerosols, J. Geophys. Res.-Atmos.,
121, 1878–1895, https://doi.org/10.1002/2015JD024090, 2016.
Pinsky, M., Khain, A., and Shapiro, M.: Collisions of small drops in a
turbulent flow. Part I: Collision efficiency. Problem formulation and
preliminary results, J. Atmos. Sci., 56, 2585–2600,
1999.
Pinsky, M., Khain, A., and Shapiro, M.: Stochastic effects of cloud droplet
hydrodynamic interaction in a turbulent flow, Atmos. Res., 53,
131–169, 2000.
Pinsky, M., Khain, A., and Shapiro, M.: Collision efficiency of drops in a
wide range of Reynolds numbers: Effects of pressure on spectrum evolution,
J. Atmos. Sci., 58, 742–764, 2001.
Pinsky, M., Khain, A., and Krugliak, H.: Collisions of Cloud Droplets in a
Turbulent Flow. Part V: Application of Detailed Tables of Turbulent Collision
Rate Enhancement to Simulation of Droplet Spectra Evolution, J. Atmos. Sci., 65, 357–374, https://doi.org/10.1175/2007jas2358.1, 2008.
Pinsky, M., Mazin, I. P., Korolev, A., and Khain, A.: Supersaturation and
Diffusional Droplet Growth in Liquid Clouds, J. Atmos. Sci., 70, 2778–2793, https://doi.org/10.1175/jas-d-12-077.1, 2013.
Pinsky, M. B. and Khain, A. P.: Effects of in-cloud nucleation and
turbulence on droplet spectrum formation in cumulus clouds, Q. J. Roy. Meteor. Soc., 128, 501–534, 2002.
Poellot, M.: GPM Ground Validation UND Citation Cloud Microphysics IPHEx,
Dataset, NASA Global Hydrology Resource Center Distributed Active Archive
Center, Huntsville, Alabama, USA, https://doi.org/10.5067/GPMGV/IPHEX/DATA101, 2015.
Prat, O. P. and Barros, A. P.: A Robust Numerical Solution of the Stochastic
Collection–Breakup Equation for Warm Rain, J. Appl. Meteorol. Clim., 46, 1480–1497, https://doi.org/10.1175/jam2544.1, 2007a.
Prat, O. P. and Barros, A. P.: Exploring the use of a column model for the characterization of microphysical processes in warm rain:
results from a homogeneous rainshaft model, Adv. Geosci., 10, 145–152, https://doi.org/10.5194/adgeo-10-145-2007, 2007b.
Prat, O. P., Barros, A. P., and Testik, F. Y.: On the Influence of Raindrop
Collision Outcomes on Equilibrium Drop Size Distributions, J. Atmos. Sci., 69, 1534–1546, https://doi.org/10.1175/jas-d-11-0192.1, 2012.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical Recipes: The art of scientific computing, 3rd edn., Cambridge
University Press, Cambridge, MA, USA, 2007.
Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., and Lelieveld, J.:
Global distribution of the effective aerosol hygroscopicity parameter for CCN
activation, Atmos. Chem. Phys., 10, 5241–5255,
https://doi.org/10.5194/acp-10-5241-2010, 2010.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and
Precipitation, Springer, Netherlands, 1978.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation,
Atmos. Oceanogr. Sci. Libr., Kulwer Academic Publishers, Alphen aan den Rijn,
The Netherlands, 1997.
Ramanathan, V., Crutzen, P., Kiehl, J., and Rosenfeld, D.: Aerosols, climate,
and the hydrological cycle, Science, 294, 2119–2124, 2001.
Randall, D., Khairoutdinov, M., Arakawa, A., and Grabowski, W.: Breaking the
Cloud Parameterization Deadlock, B. Am. Meteorol.
Soc., 84, 1547–1564, https://doi.org/10.1175/bams-84-11-1547, 2003.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi,
S., Reissell, A., and Andreae, M. O.: Flood or drought: how do aerosols
affect precipitation?, Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606,
2008.
Scorer, R. S. and Ludlam, F.: Bubble theory of penetrative convection,
Q. J. Roy. Meteor. Soc., 79, 94–103, 1953.
Seifert, A., Khain, A., Blahak, U., and Beheng, K. D.: Possible effects of
collisional breakup on mixed-phase deep convection simulated by a spectral
(bin) cloud model, J. Atmos. Sci., 62, 1917–1931, 2005.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics, John
Wiley, New York, 1998.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, 2nd edn., Wiley, New York, NY, USA, 2006.
Shaw, R. A. and Lamb, D.: Experimental determination of the thermal
accommodation and condensation coefficients of water, J. Chem.
Phys., 111, 10659–10663, https://doi.org/10.1063/1.480419, 1999.
Simmel, M., Diehl, K., and Wurzler, S.: Numerical simulation of the
microphysics of an orographic cloud: Comparison with measurements and
sensitivity studies, Atmos. Environ., 39, 4365–4373,
https://doi.org/10.1016/j.atmosenv.2005.02.017, 2005.
Snider, J. R., Guibert, S., Brenguier, J. L., and Putaud, J. P.: Aerosol
activation in marine stratocumulus clouds: 2. Köhler and parcel theory
closure studies, J. Geophys. Res., 108, 8629,
https://doi.org/10.1029/2002jd002692, 2003.
Squires, P. and Turner, J. S.: An entraining jet model for cumulo-nimbus
updraughts, Tellus A, 14, 422–434, 1962.
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols
on convective clouds and precipitation, Rev. Geophys., 50, RG2001,
https://doi.org/10.1029/2011rg000369, 2012.
Telford, J. W. and Chai, S. K.: A new aspect of condensation theory, Pure Appl. Geophys., 118, 720–742, 1980.
Telford, J. W., Keck, T. S., and Chai, S. K.: Entrainment at cloud tops and
the droplet spectra, J. Atmos. Sci., 41, 3170–3179,
1984.
Testik, F. Y., Barros, A. P., and Bliven, L. F.: Toward a Physical
Characterization of Raindrop Collision Outcome Regimes, J. Atmos. Sci., 68, 1097–1113, https://doi.org/10.1175/2010jas3706.1, 2011.
Turner, J. S.: The motion of buoyant elements in turbulent surroundings, J. Fluid Mech., 16, 1–16, 1963.
Twomey, S.: The influence of pollution on the shortwave albedo of clouds,
J. Atmos. Sci., 34, 1149–1152, 1977.
Warner, J.: The Microstructure of Cumulus Cloud. Part II. The Effect on
Droplet Size Distribution of the Cloud Nucleus Spectrum and Updraft Velocity,
J. Atmos. Sci., 26, 1272–1282, 1969.
Wilson, A. M. and Barros, A. P.: An Investigation of Warm Rainfall
Microphysics in the Southern Appalachians: Orographic Enhancement via
Low-Level Seeder–Feeder Interactions, J. Atmos. Sci., 71, 1783–1805,
https://doi.org/10.1175/jas-d-13-0228.1, 2014.
Wilson, A. M. and Barros, A. P.: Landform controls on low level moisture
convergence and the diurnal cycle of warm season orographic rainfall in the
Southern Appalachians, J. Hydrol., 531, 475–493,
https://doi.org/10.1016/j.jhydrol.2015.10.068, 2015.
Wilson, A. M. and Barros, A. P.: Orographic Land-Atmosphere Interactions and
the Diurnal Cycle of Low Level Clouds and Fog, J. Hydrometeorol., 18,
1513–1533, https://doi.org/10.1175/jhm-d-16-0186.1, 2017.
Yang, Y., Fan, J., Leung, L. R., Zhao, C., Li, Z., and Rosenfeld, D.:
Mechanisms Contributing to Suppressed Precipitation in Mt. Hua of Central
China. Part I: Mountain Valley Circulation, J. Atmos. Sci., 73, 1351–1366,
https://doi.org/10.1175/jas-d-15-0233.1, 2016.
Yildiz, O. and Barros, A. P.: Elucidating vegetation controls on the
hydroclimatology of a mid-latitude basin, J. Hydrol., 333, 431–448,
https://doi.org/10.1016/j.jhydrol.2006.09.010, 2007.
Zou, Y. S. and Fukuta, N.: The effect of diffusion kinetics on the
supersaturation in clouds, Atmos. Res., 52, 115–141, 1999.
Short summary
A new cloud parcel model that simulates entrainment, condensational growth, and collision–coalescence processes is presented and evaluated against airborne observations in complex terrain during IPHEx. Analysis of model simulations reveals that nonlinear interactions among turbulent dispersion, activation, and droplet growth processes modulate spectral width and explain the emergence of bimodal cloud drop spectra in aircraft measurements from different cloud regions and at different heights.
A new cloud parcel model that simulates entrainment, condensational growth, and...
Altmetrics
Final-revised paper
Preprint