Articles | Volume 19, issue 22
https://doi.org/10.5194/acp-19-14009-2019
https://doi.org/10.5194/acp-19-14009-2019
Research article
 | 
21 Nov 2019
Research article |  | 21 Nov 2019

Organic tracers of fine aerosol particles in central Alaska: summertime composition and sources

Dhananjay Kumar Deshmukh, M. Mozammel Haque, Yongwon Kim, and Kimitaka Kawamura

Related authors

Characterization of organic aerosols from a Chinese megacity during winter: predominance of fossil fuel combustion
Md. Mozammel Haque, Kimitaka Kawamura, Dhananjay K. Deshmukh, Cao Fang, Wenhuai Song, Bao Mengying, and Yan-Lin Zhang
Atmos. Chem. Phys., 19, 5147–5164, https://doi.org/10.5194/acp-19-5147-2019,https://doi.org/10.5194/acp-19-5147-2019, 2019
Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes
Dhananjay K. Deshmukh, Kimitaka Kawamura, Manuel Lazaar, Bhagawati Kunwar, and Suresh K. R. Boreddy
Atmos. Chem. Phys., 16, 5263–5282, https://doi.org/10.5194/acp-16-5263-2016,https://doi.org/10.5194/acp-16-5263-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024,https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024,https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024,https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024,https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024,https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary

Cited articles

Agarwal, S., Aggarwal, S. G., Okuzawa, K., and Kawamura, K.: Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols, Atmos. Chem. Phys., 10, 5839–5858, https://doi.org/10.5194/acp-10-5839-2010, 2010. 
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitations Part 1: the nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, 2008. 
Atlas, E. and Giam, C. S.: Global transport of organic ambient concentrations in remote marine atmosphere, Science, 211, 163–165, 1981. 
Bai, J., Sun, X., Zhang, C., Xu, Y., and Qi, C.: The OH-initiated atmospheric reaction mechanism and kinetics for levoglucosan emitted in biomass burning, Chemosphere, 93, 2004–2010, 2013. 
Download
Short summary
Organic tracers are useful to understand the sources and formation mechanisms of organic aerosols. We determined organic tracers in PM2.5 samples collected during the summer season of 2009 using a gas chromatograph–mass spectrometer. A notable feature in the Alaskan aerosol is the high levels of anhydrosugars and n-alkanoic acids. Our results demonstrate that forest fires and plant emissions are the crucial factors controlling the organic aerosol burden in the atmosphere of central Alaska.
Altmetrics
Final-revised paper
Preprint