Articles | Volume 18, issue 2
https://doi.org/10.5194/acp-18-705-2018
https://doi.org/10.5194/acp-18-705-2018
Research article
 | 
22 Jan 2018
Research article |  | 22 Jan 2018

Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK

Yuk S. Tang, Christine F. Braban, Ulrike Dragosits, Anthony J. Dore, Ivan Simmons, Netty van Dijk, Janet Poskitt, Gloria Dos Santos Pereira, Patrick O. Keenan, Christopher Conolly, Keith Vincent, Rognvald I. Smith, Mathew R. Heal, and Mark A. Sutton

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Christine Braban on behalf of the Authors (25 Sep 2017)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (27 Sep 2017) by Fangqun Yu
RR by Anonymous Referee #2 (07 Oct 2017)
RR by László Horváth (07 Oct 2017)
ED: Reconsider after major revisions (09 Oct 2017) by Fangqun Yu
AR by Christine Braban on behalf of the Authors (07 Nov 2017)  Author's response   Manuscript 
ED: Publish as is (12 Nov 2017) by Fangqun Yu
AR by Christine Braban on behalf of the Authors (21 Nov 2017)
Download
Short summary
A unique long-term dataset of NH3 and NH4+ data from the NAMN is used to assess spatial, seasonal and long-term variability across the UK. NH3 is spatially variable, with distinct temporal profiles according to source types. NH4+ is spatially smoother, with peak concentrations in spring from long-range transport. Decrease in NH3 is smaller than emissions, but NH4+ decreased faster than NH3, due to a shift from stable (NH4)2SO4 to semi-volatile NH4NO3, increasing the atmospheric lifetime of NH3.
Altmetrics
Final-revised paper
Preprint