Articles | Volume 18, issue 5
https://doi.org/10.5194/acp-18-3457-2018
https://doi.org/10.5194/acp-18-3457-2018
Research article
 | 
08 Mar 2018
Research article |  | 08 Mar 2018

Emissions databases for polycyclic aromatic compounds in the Canadian Athabasca oil sands region – development using current knowledge and evaluation with passive sampling and air dispersion modelling data

Xin Qiu, Irene Cheng, Fuquan Yang, Erin Horb, Leiming Zhang, and Tom Harner

Related authors

Method development estimating ambient oxidized mercury concentration from monitored mercury wet deposition
S. Chen, X. Qiu, L. Zhang, F. Yang, and P. Blanchard
Atmos. Chem. Phys., 13, 11287–11293, https://doi.org/10.5194/acp-13-11287-2013,https://doi.org/10.5194/acp-13-11287-2013, 2013

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A three-dimensional simulation and process analysis of tropospheric ozone depletion events (ODEs) during the springtime in the Arctic using CMAQ (Community Multiscale Air Quality Modeling System)
Le Cao, Simeng Li, Yicheng Gu, and Yuhan Luo
Atmos. Chem. Phys., 23, 3363–3382, https://doi.org/10.5194/acp-23-3363-2023,https://doi.org/10.5194/acp-23-3363-2023, 2023
Short summary
A high-resolution satellite-based map of global methane emissions reveals missing wetland, fossil fuel, and monsoon sources
Xueying Yu, Dylan B. Millet, Daven K. Henze, Alexander J. Turner, Alba Lorente Delgado, A. Anthony Bloom, and Jianxiong Sheng
Atmos. Chem. Phys., 23, 3325–3346, https://doi.org/10.5194/acp-23-3325-2023,https://doi.org/10.5194/acp-23-3325-2023, 2023
Short summary
Global impact of the COVID-19 lockdown on surface concentration and health risk of atmospheric benzene
Chaohao Ling, Lulu Cui, and Rui Li
Atmos. Chem. Phys., 23, 3311–3324, https://doi.org/10.5194/acp-23-3311-2023,https://doi.org/10.5194/acp-23-3311-2023, 2023
Short summary
Variable effects of spatial resolution on modeling of nitrogen oxides
Chi Li, Randall V. Martin, Ronald C. Cohen, Liam Bindle, Dandan Zhang, Deepangsu Chatterjee, Hongjian Weng, and Jintai Lin
Atmos. Chem. Phys., 23, 3031–3049, https://doi.org/10.5194/acp-23-3031-2023,https://doi.org/10.5194/acp-23-3031-2023, 2023
Short summary
Tropospheric NO2 vertical profiles over South Korea and their relation to oxidant chemistry: implications for geostationary satellite retrievals and the observation of NO2 diurnal variation from space
Laura Hyesung Yang, Daniel J. Jacob, Nadia K. Colombi, Shixian Zhai, Kelvin H. Bates, Viral Shah, Ellie Beaudry, Robert M. Yantosca, Haipeng Lin, Jared F. Brewer, Heesung Chong, Katherine R. Travis, James H. Crawford, Lok N. Lamsal, Ja-Ho Koo, and Jhoon Kim
Atmos. Chem. Phys., 23, 2465–2481, https://doi.org/10.5194/acp-23-2465-2023,https://doi.org/10.5194/acp-23-2465-2023, 2023
Short summary

Cited articles

Agency for Toxic Substances and Disease Registry (ATSDR): Case Studies in Environmental Medicine, in: Toxicity of Polycyclic Aromatic Hydrocarbons, ATSDR, Atlanta, Georgia, USA, 68 pp., 2009. 
AEP (Alberta Environment and Parks): Air Quality Model Guideline (AQMG), available at: http://aep.alberta.ca/air/air-quality-modelling/default.aspx (last access: 2 March 2018), 2013. 
CCME (Canadian Council of Ministers of the Environment): Canadian Soil Quality Guidelines for Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects), Scientific Criteria Document, Environment and Climate Change Canada, Gatineau, Québec, Canada, 218 pp., 2010. 
CEMA (Cumulative Environmental Management Association): Lower Athabasca Region Source and Emission Inventory. Fort McMurray, Alberta, available at: http://library.cemaonline.ca/ckan/dataset/2011-0038/resource/fba8a3b0-72df-45ed-bf12-8ca254fdd5b1 (last access: 2 March 2018), 2011. 
ECCC (Environment and Climate Change Canada): Source Emissions, Oil Sands Region, Emissions-package, available at: http://donnees.ec.gc.ca/data/air/monitor/source-emissions-monitoring-oil-sands-region/source-emissions-oil-sands-region/emissions-package/?lang=en (last access: 2 March 2018), 2016. 
Download
Short summary
We developed emissions databases for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region and evaluated the emissions databases by comparing CALPUFF-modelled concentrations with monitored data. Model–measurement agreement improved near oil sands mines due to updated PAC emissions from tailings ponds. Modelled concentrations were underestimated at remote sites and for alkylated PACs suggesting that the emissions of PACs particularly alkylated compounds are underestimated.
Altmetrics
Final-revised paper
Preprint