Articles | Volume 18, issue 5
https://doi.org/10.5194/acp-18-3457-2018
https://doi.org/10.5194/acp-18-3457-2018
Research article
 | 
08 Mar 2018
Research article |  | 08 Mar 2018

Emissions databases for polycyclic aromatic compounds in the Canadian Athabasca oil sands region – development using current knowledge and evaluation with passive sampling and air dispersion modelling data

Xin Qiu, Irene Cheng, Fuquan Yang, Erin Horb, Leiming Zhang, and Tom Harner

Related authors

Method development estimating ambient oxidized mercury concentration from monitored mercury wet deposition
S. Chen, X. Qiu, L. Zhang, F. Yang, and P. Blanchard
Atmos. Chem. Phys., 13, 11287–11293, https://doi.org/10.5194/acp-13-11287-2013,https://doi.org/10.5194/acp-13-11287-2013, 2013

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Comparative ozone production sensitivity to NOx and VOCs in Quito, Ecuador, and Santiago, Chile
María Cazorla, Melissa Trujillo, Rodrigo Seguel, and Laura Gallardo
Atmos. Chem. Phys., 25, 7087–7109, https://doi.org/10.5194/acp-25-7087-2025,https://doi.org/10.5194/acp-25-7087-2025, 2025
Short summary
South Asia anthropogenic ammonia emission inversion through assimilating IASI observations
Ji Xia, Yi Zhou, Li Fang, Yingfei Qi, Dehao Li, Hong Liao, and Jianbing Jin
Atmos. Chem. Phys., 25, 7071–7086, https://doi.org/10.5194/acp-25-7071-2025,https://doi.org/10.5194/acp-25-7071-2025, 2025
Short summary
A new parameterization of photolysis rates for oxygenated volatile organic compounds (OVOCs)
Yuwen Peng, Bin Yuan, Sihang Wang, Xin Song, Zhe Peng, Wenjie Wang, Suxia Yang, Jipeng Qi, Xianjun He, Yibo Huangfu, Xiao-Bing Li, and Min Shao
Atmos. Chem. Phys., 25, 7037–7052, https://doi.org/10.5194/acp-25-7037-2025,https://doi.org/10.5194/acp-25-7037-2025, 2025
Short summary
Constraining the budget of NOx and volatile organic compounds at a remote tropical island using multi-platform observations and WRF-Chem model simulations
Catalina Poraicu, Jean-François Müller, Trissevgeni Stavrakou, Crist Amelynck, Bert W. D. Verreyken, Niels Schoon, Corinne Vigouroux, Nicolas Kumps, Jérôme Brioude, Pierre Tulet, and Camille Mouchel-Vallon
Atmos. Chem. Phys., 25, 6903–6941, https://doi.org/10.5194/acp-25-6903-2025,https://doi.org/10.5194/acp-25-6903-2025, 2025
Short summary
Multi-observational estimation of regional and sectoral emission contributions to the persistent high growth rate of atmospheric CH4 for 2020–2022
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, Irène Xueref-Remy, and Damiano Sferlazzo
Atmos. Chem. Phys., 25, 6757–6785, https://doi.org/10.5194/acp-25-6757-2025,https://doi.org/10.5194/acp-25-6757-2025, 2025
Short summary

Cited articles

Agency for Toxic Substances and Disease Registry (ATSDR): Case Studies in Environmental Medicine, in: Toxicity of Polycyclic Aromatic Hydrocarbons, ATSDR, Atlanta, Georgia, USA, 68 pp., 2009. 
AEP (Alberta Environment and Parks): Air Quality Model Guideline (AQMG), available at: http://aep.alberta.ca/air/air-quality-modelling/default.aspx (last access: 2 March 2018), 2013. 
CCME (Canadian Council of Ministers of the Environment): Canadian Soil Quality Guidelines for Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects), Scientific Criteria Document, Environment and Climate Change Canada, Gatineau, Québec, Canada, 218 pp., 2010. 
CEMA (Cumulative Environmental Management Association): Lower Athabasca Region Source and Emission Inventory. Fort McMurray, Alberta, available at: http://library.cemaonline.ca/ckan/dataset/2011-0038/resource/fba8a3b0-72df-45ed-bf12-8ca254fdd5b1 (last access: 2 March 2018), 2011. 
ECCC (Environment and Climate Change Canada): Source Emissions, Oil Sands Region, Emissions-package, available at: http://donnees.ec.gc.ca/data/air/monitor/source-emissions-monitoring-oil-sands-region/source-emissions-oil-sands-region/emissions-package/?lang=en (last access: 2 March 2018), 2016. 
Download
Short summary
We developed emissions databases for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region and evaluated the emissions databases by comparing CALPUFF-modelled concentrations with monitored data. Model–measurement agreement improved near oil sands mines due to updated PAC emissions from tailings ponds. Modelled concentrations were underestimated at remote sites and for alkylated PACs suggesting that the emissions of PACs particularly alkylated compounds are underestimated.
Share
Altmetrics
Final-revised paper
Preprint