Articles | Volume 18, issue 19
https://doi.org/10.5194/acp-18-14017-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-14017-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Molecular and physical characteristics of aerosol at a remote free troposphere site: implications for atmospheric aging
Simeon K. Schum
Department of Chemistry, Michigan Technological University, Houghton,
MI, USA
Atmospheric Sciences Program, Michigan Technological University,
Houghton, MI, USA
now at: the National Institute of Aerospace, Hampton, VA, USA
Katja Džepina
Department of Chemistry, Michigan Technological University, Houghton,
MI, USA
now at: the Department of Biotechnology, University of Rijeka,
Rijeka, Croatia
Paulo Fialho
Institute for Volcanology and Risk Assessment – IVAR, University of
the Azores, Angra do Heroísmo, Portugal
Claudio Mazzoleni
Atmospheric Sciences Program, Michigan Technological University,
Houghton, MI, USA
Department of Physics, Michigan Technological University, Houghton,
MI, USA
Department of Chemistry, Michigan Technological University, Houghton,
MI, USA
Atmospheric Sciences Program, Michigan Technological University,
Houghton, MI, USA
Related authors
No articles found.
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
Atmos. Chem. Phys., 24, 14209–14238, https://doi.org/10.5194/acp-24-14209-2024, https://doi.org/10.5194/acp-24-14209-2024, 2024
Short summary
Short summary
This study investigates the formation mechanism of a tropopause cirrus cloud layer observed at extremely cold temperatures over Hyderabad in India during the 2017 Asian summer monsoon using balloon-borne sensors. Ice crystals smaller than 50 µm were found in this optically thin cirrus cloud layer. Combined analysis of back trajectories, satellite, and model data revealed that the formation of this layer was influenced by waves and stratospheric hydration induced by typhoon Hato.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
Zezhen Cheng, Megan Morgenstern, Bo Zhang, Matthew Fraund, Nurun Nahar Lata, Rhenton Brimberry, Matthew A. Marcus, Lynn Mazzoleni, Paulo Fialho, Silvia Henning, Birgit Wehner, Claudio Mazzoleni, and Swarup China
Atmos. Chem. Phys., 22, 9033–9057, https://doi.org/10.5194/acp-22-9033-2022, https://doi.org/10.5194/acp-22-9033-2022, 2022
Short summary
Short summary
We observed a high abundance of liquid and internally mixed particles in samples collected in the North Atlantic free troposphere during summer. We also found several solid and semisolid particles for different emission sources and transport patterns. Our results suggest that considering the mixing state, emission source, and transport patterns of particles is necessary to estimate their phase state in the free troposphere, which is critical for predicting their effects on climate.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Erika Brattich, Hongyu Liu, Bo Zhang, Miguel Ángel Hernández-Ceballos, Jussi Paatero, Darko Sarvan, Vladimir Djurdjevic, Laura Tositti, and Jelena Ajtić
Atmos. Chem. Phys., 21, 17927–17951, https://doi.org/10.5194/acp-21-17927-2021, https://doi.org/10.5194/acp-21-17927-2021, 2021
Short summary
Short summary
In this study we analyse the output of a chemistry and transport model together with observations of different meteorological and compositional variables to demonstrate the link between sudden stratospheric warming and transport of stratospheric air to the surface in the subpolar regions of Europe during the cold season. Our findings have particular implications for atmospheric composition since climate projections indicate more frequent sudden stratospheric warming under a warmer climate.
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021, https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Short summary
This study investigates precipitation impacts on long-range transport of North American outflow over the western North Atlantic Ocean (WNAO). Results demonstrate that precipitation scavenging plays a significant role in modifying surface aerosol concentrations over the WNAO, especially in winter and spring due to large-scale scavenging processes. This study highlights how precipitation impacts surface aerosol properties with relevance for other marine regions vulnerable to continental outflow.
Wenhua Wang, Longyi Shao, Claudio Mazzoleni, Yaowei Li, Simone Kotthaus, Sue Grimmond, Janarjan Bhandari, Jiaoping Xing, Xiaolei Feng, Mengyuan Zhang, and Zongbo Shi
Atmos. Chem. Phys., 21, 5301–5314, https://doi.org/10.5194/acp-21-5301-2021, https://doi.org/10.5194/acp-21-5301-2021, 2021
Short summary
Short summary
We compared the characteristics of individual particles at ground level and above the mixed-layer height. We found that the particles above the mixed-layer height during haze periods are more aged compared to ground level. More coal-combustion-related primary organic particles were found above the mixed-layer height. We suggest that the particles above the mixed-layer height are affected by the surrounding areas, and once mixed down to the ground, they might contribute to ground air pollution.
Bo Zhang, Hongyu Liu, James H. Crawford, Gao Chen, T. Duncan Fairlie, Scott Chambers, Chang-Hee Kang, Alastair G. Williams, Kai Zhang, David B. Considine, Melissa P. Sulprizio, and Robert M. Yantosca
Atmos. Chem. Phys., 21, 1861–1887, https://doi.org/10.5194/acp-21-1861-2021, https://doi.org/10.5194/acp-21-1861-2021, 2021
Short summary
Short summary
We simulate atmospheric 222Rn using the GEOS-Chem model to improve understanding of 222Rn emissions and characterize convective transport in the model. We demonstrate the potential of a customized global 222Rn emission scenario to improve simulated surface 222Rn concentrations and seasonality. We assess convective transport using observed 222Rn vertical profiles. Results have important implications for using chemical transport models to interpret the transport of trace gases and aerosols.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Georges Saliba, Chia-Li Chen, Savannah L. Lewis, Lynn M. Russell, Michael A. Shook, Ewan C. Crosbie, Luke D. Ziemba, Matthew D. Brown, Taylor J. Shingler, Claire E. Robinson, Elizabeth B. Wiggins, Kenneth L. Thornhill, Edward L. Winstead, Carolyn Jordan, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 21, 831–851, https://doi.org/10.5194/acp-21-831-2021, https://doi.org/10.5194/acp-21-831-2021, 2021
Short summary
Short summary
Models describing atmospheric airflow were combined with satellite measurements representative of marine phytoplankton and other meteorological variables. These combined variables were compared to measured aerosol to identify upwind influences on aerosol concentrations. Results indicate that phytoplankton production rates upwind impact the aerosol mass. Also, results suggest that the condensation of mass onto short-lived large sea spray particles may be a significant sink of aerosol mass.
Leonid Nichman, Martin Wolf, Paul Davidovits, Timothy B. Onasch, Yue Zhang, Doug R. Worsnop, Janarjan Bhandari, Claudio Mazzoleni, and Daniel J. Cziczo
Atmos. Chem. Phys., 19, 12175–12194, https://doi.org/10.5194/acp-19-12175-2019, https://doi.org/10.5194/acp-19-12175-2019, 2019
Short summary
Short summary
Previous studies showed widespread ice nucleation activity of soot. In this systematic study we investigated the factors that affect the heterogeneous ice nucleation activity of soot surrogates in the cirrus cloud regime. Our observations are consistent with an ice nucleation mechanism of pore condensation followed by freezing. The results show significant variations in ice nucleation activity as a function of size, morphology, and surface chemistry of the black-carbon-containing particles.
Matthew Brege, Marco Paglione, Stefania Gilardoni, Stefano Decesari, Maria Cristina Facchini, and Lynn R. Mazzoleni
Atmos. Chem. Phys., 18, 13197–13214, https://doi.org/10.5194/acp-18-13197-2018, https://doi.org/10.5194/acp-18-13197-2018, 2018
Short summary
Short summary
The detailed molecular composition of ambient fog and aerosol influenced by regional biomass burning and secondary processes was studied. Aerosol and aqueous-phase functionalization and oxidation were observed, leading to fog compositions that are more "SOA-like" than aerosols. The significance of the aqueous phase in transforming the molecular chemistry and contributing to secondary organic aerosol is demonstrated here.
Martine Collaud Coen, Elisabeth Andrews, Diego Aliaga, Marcos Andrade, Hristo Angelov, Nicolas Bukowiecki, Marina Ealo, Paulo Fialho, Harald Flentje, A. Gannet Hallar, Rakesh Hooda, Ivo Kalapov, Radovan Krejci, Neng-Huei Lin, Angela Marinoni, Jing Ming, Nhat Anh Nguyen, Marco Pandolfi, Véronique Pont, Ludwig Ries, Sergio Rodríguez, Gerhard Schauer, Karine Sellegri, Sangeeta Sharma, Junying Sun, Peter Tunved, Patricio Velasquez, and Dominique Ruffieux
Atmos. Chem. Phys., 18, 12289–12313, https://doi.org/10.5194/acp-18-12289-2018, https://doi.org/10.5194/acp-18-12289-2018, 2018
Short summary
Short summary
High altitude stations are often emphasized as free tropospheric measuring sites but they remain influenced by atmospheric boundary layer. An ABL-TopoIndex is defined from a topography analysis around the stations. This new index allows ranking stations as a function of the ABL influence due to topography or help to choose a new site to sample FT. The ABL-TopoIndex is validated by aerosol optical properties and number concentration measured at 29 high altitude stations of five continents.
Sara D. Forestieri, Taylor M. Helgestad, Andrew T. Lambe, Lindsay Renbaum-Wolff, Daniel A. Lack, Paola Massoli, Eben S. Cross, Manvendra K. Dubey, Claudio Mazzoleni, Jason S. Olfert, Arthur J. Sedlacek III, Andrew Freedman, Paul Davidovits, Timothy B. Onasch, and Christopher D. Cappa
Atmos. Chem. Phys., 18, 12141–12159, https://doi.org/10.5194/acp-18-12141-2018, https://doi.org/10.5194/acp-18-12141-2018, 2018
Short summary
Short summary
We characterized optical properties of flame-derived black carbon particles and interpret our observations through the use of Mie theory and Rayleigh–Debye–Gans theory. We determined that the mass absorption coefficient is independent of particle collapse and use this to derive theory- and wavelength-specific refractive indices for black carbon (BC). We demonstrate the inadequacy of Mie theory and suggest an alternative approach for atmospheric models to better represent light absorption by BC.
Deep Sengupta, Vera Samburova, Chiranjivi Bhattarai, Elena Kirillova, Lynn Mazzoleni, Michealene Iaukea-Lum, Adam Watts, Hans Moosmüller, and Andrey Khlystov
Atmos. Chem. Phys., 18, 10849–10867, https://doi.org/10.5194/acp-18-10849-2018, https://doi.org/10.5194/acp-18-10849-2018, 2018
Short summary
Short summary
Optical properties of polar and non-polar extracts of biomass burning organic aerosols (BBOAs) generated by burning of globally and regionally important fuels were studied. The non-polar fraction of BBOAs was found to be more light absorbing than the polar fraction. Laboratory aging of BBOAs produced by flaming fuels increased aerosol light absorption attributed to the formation of organo-nitrogen compounds. Refractive indices were retrieved for both polar and non-polar extracts of BBOAs.
Nathan F. Taylor, Don R. Collins, Douglas H. Lowenthal, Ian B. McCubbin, A. Gannet Hallar, Vera Samburova, Barbara Zielinska, Naresh Kumar, and Lynn R. Mazzoleni
Atmos. Chem. Phys., 17, 2555–2571, https://doi.org/10.5194/acp-17-2555-2017, https://doi.org/10.5194/acp-17-2555-2017, 2017
Short summary
Short summary
The impacts of aerosols on health, visibility, and climate are very sensitive to their ability to take up water under subsaturated conditions and to serve as cloud condensation nuclei. These hydration properties are tightly linked to aerosol composition. This report finds that water soluble organic compounds contribute significantly to atmospheric aerosol hydration both as an independent fraction of aerosol mass and through complementary interactions with common inorganic aerosol constituents.
Janarjan Bhandari, Swarup China, Timothy Onasch, Lindsay Wolff, Andrew Lambe, Paul Davidovits, Eben Cross, Adam Ahern, Jason Olfert, Manvendra Dubey, and Claudio Mazzoleni
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-270, https://doi.org/10.5194/amt-2016-270, 2016
Revised manuscript not accepted
Short summary
Short summary
Soot particles emitted during the incomplete burning activities, absorb solar radiation and contribute to global warming. Light absorption by soot is also affected by its structure. To investigate whether the soot particle changes its structure or not, we used thermodenuding technique in which soot particles were passed through a heated tube (275 0C). Our study found only minor restructuring of soot suggesting no significant biases in absorption by the modification of soot structure alone.
B. V. Scarnato, S. China, K. Nielsen, and C. Mazzoleni
Atmos. Chem. Phys., 15, 6913–6928, https://doi.org/10.5194/acp-15-6913-2015, https://doi.org/10.5194/acp-15-6913-2015, 2015
K. Dzepina, C. Mazzoleni, P. Fialho, S. China, B. Zhang, R. C. Owen, D. Helmig, J. Hueber, S. Kumar, J. A. Perlinger, L. J. Kramer, M. P. Dziobak, M. T. Ampadu, S. Olsen, D. J. Wuebbles, and L. R. Mazzoleni
Atmos. Chem. Phys., 15, 5047–5068, https://doi.org/10.5194/acp-15-5047-2015, https://doi.org/10.5194/acp-15-5047-2015, 2015
Short summary
Short summary
Aerosol was sampled at the Pico Mountain Observatory located at 2.2km amsl on Pico Island of the North Atlantic Azores archipelago. Two aerosol samples characterized by ultrahigh resolution mass spectrometry had biomass burning and marine emissions origins, as corroborated by collocated gas- and particle-phase measurements, air masses analyses and satellites. The paper presents the first molecular characterization of aged and processed aerosol intercepted at a remote lower free troposphere
B. Zhang, R. C. Owen, J. A. Perlinger, A. Kumar, S. Wu, M. Val Martin, L. Kramer, D. Helmig, and R. E. Honrath
Atmos. Chem. Phys., 14, 2267–2287, https://doi.org/10.5194/acp-14-2267-2014, https://doi.org/10.5194/acp-14-2267-2014, 2014
Y. Zhao, A. G. Hallar, and L. R. Mazzoleni
Atmos. Chem. Phys., 13, 12343–12362, https://doi.org/10.5194/acp-13-12343-2013, https://doi.org/10.5194/acp-13-12343-2013, 2013
N. Sharma, I. J. Arnold, H. Moosmüller, W. P. Arnott, and C. Mazzoleni
Atmos. Meas. Tech., 6, 3501–3513, https://doi.org/10.5194/amt-6-3501-2013, https://doi.org/10.5194/amt-6-3501-2013, 2013
M. Gyawali, W. P. Arnott, R. A. Zaveri, C. Song, M. Pekour, B. Flowers, M. K. Dubey, A. Setyan, Q. Zhang, J. W. Harworth, J. G. Radney, D. B. Atkinson, S. China, C. Mazzoleni, K. Gorkowski, R. Subramanian, B. T. Jobson, and H. Moosmüller
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-7113-2013, https://doi.org/10.5194/acpd-13-7113-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Enhanced emission of intermediate-volatility/semi-volatile organic matter in gas and particle phases from ship exhausts with low-sulfur fuels
Measurement report: Crustal materials play an increasing role in elevating particle pH – insights from 12-year records in a typical inland city of China
Significant contributions of biomass burning to PM2.5-bound aromatic compounds: insights from field observations and quantum chemical calculations
Measurement report: In-depth characterization of ship emissions during operations in a Mediterranean port
Direct measurement of N2O5 heterogeneous uptake coefficients on atmospheric aerosols in southwestern China and evaluation of current parameterizations
Measurement report: Per- and polyfluoroalkyl substances (PFAS) in particulate matter (PM10) from activated sludge aeration
African dust transported to Barbados in the wintertime lacks indicators of chemical aging
A 60-year atmospheric nitrate isotope record from a southeastern Greenland ice core with minimal postdepositional alteration
Measurement report: Characterization of aerosol hygroscopicity over Southeast Asia during the NASA CAMP2Ex campaign
Molecular characterization of organic aerosols in urban and forested areas of Paris using high-resolution mass spectrometry
Measurement report: Wintertime aerosol characterization at an urban traffic site in Helsinki, Finland
Source apportionment and ecotoxicity of PM2.5 pollution events in a major Southern Hemisphere megacity: influence of a biofuel-impacted fleet and biomass burning
The impacts of pollution sources and temperature on the light absorption of HULIS were revealed by UHPLC-HRMS/MS at the molecular structure level
Marine organic aerosol at Mace Head: effects from phytoplankton and source region variability
Fossil-Dominated SOA Formation in Coastal China: Size-Divergent Pathways of Aqueous Fenton Reactions versus Gas-phase VOC Autoxidation
Measurement report: Sources and meteorology influencing highly time-resolved PM2.5 trace elements at three urban sites in the extremely polluted Indo-Gangetic Plain in India
Formation of highly absorptive secondary brown carbon through nighttime multiphase chemistry of biomass burning emissions
Measurement report: Vertically resolved atmospheric properties observed over the Southern Great Plains with the ArcticShark uncrewed aerial system
Technical note: Towards a stronger observational support for haze pollution control by interpreting carbonaceous aerosol results derived from different measurement approaches
Non-biogenic sources are an important but overlooked contributor to aerosol isoprene-derived organosulfates during winter in northern China
Unveiling single-particle composition, size, shape, and mixing state of freshly emitted Icelandic dust via electron microscopy analysis
The Critical Role of Volatile Organic Compounds Emission in Nitrate Formation in Lhasa, Tibetan Plateau: Insights from Oxygen Isotope Anomaly Measurements
The critical role of aqueous-phase processes in aromatic-derived nitrogen-containing organic aerosol formation in cities with different energy consumption patterns
Characterization of atmospheric water-soluble brown carbon in the Athabasca oil sands region, Canada
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Measurement Report: Molecular composition, sources, and evolution of atmospheric organic aerosols in a basin city in China
Burning conditions and transportation pathways determine biomass-burning aerosol properties in the Ascension Island marine boundary layer
Observations of high-time-resolution and size-resolved aerosol chemical composition and microphysics in the central Arctic: implications for climate-relevant particle properties
Measurement report: Brown carbon aerosol in rural Germany – sources, chemistry, and diurnal variations
Particle flux-gradient relationships in the high Arctic: Emission and deposition patterns across three surface types
Climatology of aerosol pH and its controlling factors at the Melpitz continental background site in central Europe
Measurement Report: Polycyclic aromatic hydrocarbons (PAHs) and their alkylated (RPAHs), nitrated (NPAHs) and oxygenated (OPAHs) derivatives in the global marine atmosphere: occurrence, spatial variations, and source apportionment
Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
Seasonal investigation of ultrafine-particle organic composition in an eastern Amazonian rainforest
Characterizing lead-rich particles in Beijing's atmosphere following coal-to-gas conversion: Insights from single particle aerosol mass spectrometry
Contrasting solubility and speciation of metal ions in total suspended particulate matter and fog from the coast of Namibia
Significant secondary formation of nitrogenous organic aerosols in an urban atmosphere revealed by bihourly measurements of bulk organic nitrogen and comprehensive molecular markers
High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning
Carbonate content and stable isotopic composition of aerosol carbon in the Canadian High Arctic
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
Iron isotopes reveal significant aerosol dissolution over the Pacific Ocean
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Complementary aerosol mass spectrometry elucidates sources of wintertime sub-micron particle pollution in Fairbanks, Alaska, during ALPACA 2022
Enrichment of organic nitrogen in fog residuals observed in the Italian Po Valley
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Technical note: Reconstructing surface missing aerosol elemental carbon data in long-term series with ensemble learning
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 25, 7053–7069, https://doi.org/10.5194/acp-25-7053-2025, https://doi.org/10.5194/acp-25-7053-2025, 2025
Short summary
Short summary
Intermediate-volatility/semi-volatile organic compounds in gas and particle phases from ship exhausts are enhanced due to the switch of fuels from low sulfur to ultra-low sulfur. The findings indicate that optimization is necessary for the forthcoming global implementation of an ultra-low-sulfur oil policy. Besides, we find that organic diagnostic markers of hopanes in conjunction with the ratio of octadecanoic to tetradecanoic could be considered potential tracers for heavy fuel oil exhausts.
Hongyu Zhang, Shenbo Wang, Zhangsen Dong, Xiao Li, and Ruiqin Zhang
Atmos. Chem. Phys., 25, 6943–6955, https://doi.org/10.5194/acp-25-6943-2025, https://doi.org/10.5194/acp-25-6943-2025, 2025
Short summary
Short summary
Analyzing 12-year Zhengzhou data revealed post-2019 crustal material rebound caused by soil dust resuspension, elevating particle pH. Similar coarse particle increases are observed across cities of the North China Plain. Long-term particle acidity evolution in this region requires an integrated assessment of interactions among acidic precursors, ammonia, and crustal components.
Yanqin Ren, Zhenhai Wu, Fang Bi, Hong Li, Haijie Zhang, Junling Li, Rui Gao, Fangyun Long, Zhengyang Liu, Yuanyuan Ji, and Gehui Wang
Atmos. Chem. Phys., 25, 6975–6990, https://doi.org/10.5194/acp-25-6975-2025, https://doi.org/10.5194/acp-25-6975-2025, 2025
Short summary
Short summary
The daily concentrations of Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and nitrated phenols (NPs) in PM2.5 were all increased during the heating season. Biomass burning was identified to be the primary source of these aromatic compounds, particularly for PAHs. Phenol and nitrobenzene are two main primary precursors for 4NP, with phenol showing lower reaction barriers. P-Cresol was identified as the primary precursor for the formation of 4-methyl-5-nitrocatechol.
Lise Le Berre, Brice Temime-Roussel, Grazia Maria Lanzafame, Barbara D'Anna, Nicolas Marchand, Stéphane Sauvage, Marvin Dufresne, Liselotte Tinel, Thierry Leonardis, Joel Ferreira de Brito, Alexandre Armengaud, Grégory Gille, Ludovic Lanzi, Romain Bourjot, and Henri Wortham
Atmos. Chem. Phys., 25, 6575–6605, https://doi.org/10.5194/acp-25-6575-2025, https://doi.org/10.5194/acp-25-6575-2025, 2025
Short summary
Short summary
A summer campaign in a Mediterranean port examined pollution caused by ships. Two stations in the port measured pollution levels and captured over 350 ship plumes to study their chemical composition. Results showed that pollution levels, such as ultra-fine particles, were higher in the port than in the city and offer strong support to improve emission inventories. These findings may also serve as reference to assess the benefits of a sulfur Emission Control Area in the Mediterranean in 2025.
Jiayin Li, Tianyu Zhai, Xiaorui Chen, Haichao Wang, Shuyang Xie, Shiyi Chen, Chunmeng Li, Yuanjun Gong, Huabin Dong, and Keding Lu
Atmos. Chem. Phys., 25, 6395–6406, https://doi.org/10.5194/acp-25-6395-2025, https://doi.org/10.5194/acp-25-6395-2025, 2025
Short summary
Short summary
We directly measured the dinitrogen pentoxide (N2O5) uptake coefficient using an aerosol flow tube, which critically impacts the NOx fate and particulate nitrate formation in a typical highland city, Kunming, in China. We found that the performance of current γ (N2O5) parameterizations showed deviations with the varying aerosol liquid water content (ALWC). Such differences would lead to biased estimation of particulate nitrate production potential. We give suggestions for future research directions.
Jishnu Pandamkulangara Kizhakkethil, Zongbo Shi, Anna Bogush, and Ivan Kourtchev
Atmos. Chem. Phys., 25, 5947–5958, https://doi.org/10.5194/acp-25-5947-2025, https://doi.org/10.5194/acp-25-5947-2025, 2025
Short summary
Short summary
Pollution with per- and polyfluoroalkyl substances (PFAS) has received attention due to their environmental persistence and bioaccumulation, but their sources remain poorly understood. PM10 (particulate matter) collected above a scaled-down activated sludge tank treating domestic sewage in the UK was analysed for a range of short-, medium-, and long-chain PFAS. Eight PFAS were detected in the PM10. Our results suggest that wastewater treatment processes, i.e. activated sludge aeration, could aerosolise PFAS into airborne PM.
Haley M. Royer, Michael T. Sheridan, Hope E. Elliott, Edmund Blades, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Zihua Zhu, Andrew P. Ault, and Cassandra J. Gaston
Atmos. Chem. Phys., 25, 5743–5759, https://doi.org/10.5194/acp-25-5743-2025, https://doi.org/10.5194/acp-25-5743-2025, 2025
Short summary
Short summary
Saharan dust transported across the Atlantic to the Caribbean, South America, and North America is hypothesized to undergo chemical processing by acids that enhances cloud droplet formation and nutrient availability. In this study, chemical analysis performed on African dust deposited over Barbados shows that acid tracers are found mostly on sea salt and smoke particles, rather than dust, indicating that dust particles undergo minimal chemical processing.
Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka
Atmos. Chem. Phys., 25, 5727–5742, https://doi.org/10.5194/acp-25-5727-2025, https://doi.org/10.5194/acp-25-5727-2025, 2025
Short summary
Short summary
Nitrate isotope records in ice cores reveal changes in NOₓ emissions and atmospheric oxidation chemistry driven by human activity. However, UV-driven postdepositional processes can alter nitrate in snow, making snow accumulation rates critical for preserving these records. This study examines nitrate isotopes in a southeastern Greenland ice core, where high snow accumulation minimizes these effects, providing a reliable archive of atmospheric nitrogen cycling.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5469–5495, https://doi.org/10.5194/acp-25-5469-2025, https://doi.org/10.5194/acp-25-5469-2025, 2025
Short summary
Short summary
Novel aerosol hygroscopicity analyses of CAMP2Ex (Cloud, Aerosol, and Monsoon Processes Philippines Experiment) field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region, affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 25, 4885–4905, https://doi.org/10.5194/acp-25-4885-2025, https://doi.org/10.5194/acp-25-4885-2025, 2025
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analyses of samples collected during the ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in summer 2022 in the greater Paris area. After analysis of the chemical composition by means of total carbon determination and high-resolution mass spectrometry, this work highlights the influence of anthropogenic inputs on the chemical composition of both urban and forested areas.
Kimmo Teinilä, Sanna Saarikoski, Henna Lintusaari, Teemu Lepistö, Petteri Marjanen, Minna Aurela, Heidi Hellén, Toni Tykkä, Markus Lampimäki, Janne Lampilahti, Luis Barreira, Timo Mäkelä, Leena Kangas, Juha Hatakka, Sami Harni, Joel Kuula, Jarkko V. Niemi, Harri Portin, Jaakko Yli-Ojanperä, Ville Niemelä, Milja Jäppi, Katrianne Lehtipalo, Joonas Vanhanen, Liisa Pirjola, Hanna E. Manninen, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 25, 4907–4928, https://doi.org/10.5194/acp-25-4907-2025, https://doi.org/10.5194/acp-25-4907-2025, 2025
Short summary
Short summary
Physical and chemical properties of particulate matter and concentrations of trace gases were measured in a street canyon in Helsinki, Finland, and an urban background site in January–February 2022 to investigate the effect of wintertime conditions on pollutants. State-of-the-art instruments and a mobile laboratory were used, and the measurement data were analysed further with modelling tools like positive matrix factorization and the Pollution Detection Algorithm.
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
Atmos. Chem. Phys., 25, 4587–4616, https://doi.org/10.5194/acp-25-4587-2025, https://doi.org/10.5194/acp-25-4587-2025, 2025
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources remain relevant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane-bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Tao Qiu, Yanting Qiu, Yongyi Yuan, Rui Su, Xiangxinyue Meng, Jialiang Ma, Xiaofan Wang, Yu Gu, Zhijun Wu, Yang Ning, Xiuyi Hua, Dapeng Liang, and Deming Dong
EGUsphere, https://doi.org/10.5194/egusphere-2025-1808, https://doi.org/10.5194/egusphere-2025-1808, 2025
Short summary
Short summary
Our research reveals that some species from biomass burning and coal combustion dominate the light absorption of organic aerosols during winter. Cold weather helps these species accumulate in aerosols by slowing their degradation and altering atmospheric chemical processes. This means colder regions might experience stronger and more persistent climate impacts. Our findings highlight the importance of local temperatures and pollution sources when tackling climate challenges.
Emmanuel Chevassus, Kirsten N. Fossum, Darius Ceburnis, Lu Lei, Chunshui Lin, Wei Xu, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 25, 4107–4129, https://doi.org/10.5194/acp-25-4107-2025, https://doi.org/10.5194/acp-25-4107-2025, 2025
Short summary
Short summary
This study presents the first source apportionment of organic aerosol at Mace Head via high-resolution mass spectrometry. Introducing transfer entropy as a novel method reveals that aged organic aerosol originates from both open-ocean ozonolysis and local peat-burning oxidation. Methanesulfonic acid and organic sea spray both mirror phytoplankton activity, with the former closely tied to coccolithophore blooms and the latter linked to diatoms, chlorophytes, and cyanobacteria.
Jia-Yuan Wang, Meng-Xue Tang, Shan Lu, Ke-Jin Tang, Xing Peng, Ling-Yan He, and Xiao-Feng Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1034, https://doi.org/10.5194/egusphere-2025-1034, 2025
Short summary
Short summary
Our study explores how secondary organic aerosols (SOA), a major component of air pollution, form in different particle sizes in a coastal city in China. We found that SOA in fine particles is mainly produced through aqueous chemical reactions, especially those involving iron. In contrast, coarse particles form SOA through reactions with ozone and gases from both fossil fuels and natural sources. These findings highlight the need for size-specific air pollution models.
Ashutosh K. Shukla, Sachchida N. Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M. Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and André S. H. Prévôt
Atmos. Chem. Phys., 25, 3765–3784, https://doi.org/10.5194/acp-25-3765-2025, https://doi.org/10.5194/acp-25-3765-2025, 2025
Short summary
Short summary
Our study delves into the elemental composition of aerosols at three sites across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in chlorine (Cl)-rich and solid fuel combustion (SFC) sources, indicating dynamic emission sources, agricultural burning impacts, and meteorological influences. Surges in Cl-rich particles during cold periods highlight their role in particle growth under high-relative-humidity conditions.
Ye Kuang, Biao Luo, Shan Huang, Junwen Liu, Weiwei Hu, Yuwen Peng, Duohong Chen, Dingli Yue, Wanyun Xu, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 25, 3737–3752, https://doi.org/10.5194/acp-25-3737-2025, https://doi.org/10.5194/acp-25-3737-2025, 2025
Short summary
Short summary
This research reveals the potential importance of nighttime NO3 radical chemistry and aerosol water in the rapid formation of secondary brown carbon from diluted biomass burning emissions. The findings enhance our understanding of nighttime biomass burning evolution and its implications for climate and regional air quality, especially regarding interactions with background aerosol water and water-rich fogs and clouds.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Yuan Cheng, Ying-jie Zhong, Zhi-qing Zhang, Xu-bing Cao, and Jiu-meng Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-537, https://doi.org/10.5194/egusphere-2025-537, 2025
Short summary
Short summary
As an emerging hotspot of atmospheric sciences, Northeast China is distinct due to the frigid winter and the strong emissions from agricultural fires. Based on field campaigns conducted in Harbin, we successively identified the analytical method that could lead to proper results of organic and elemental carbon. Our results are believed to be a support for future efforts on exploration of the PM2.5 sources in Northeast China, which are essential for further improving the regional air quality.
Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2967–2978, https://doi.org/10.5194/acp-25-2967-2025, https://doi.org/10.5194/acp-25-2967-2025, 2025
Short summary
Short summary
Previous measurement–model comparisons of atmospheric isoprene levels showed a significant unidentified source of isoprene in some northern Chinese cities during winter. Here, the first combination of large-scale observations and field combustion experiments provides novel insights into biomass burning emissions as a significant source of isoprene-derived organosulfates during winter in northern cities of China.
Agnesh Panta, Konrad Kandler, Kerstin Schepanski, Andres Alastuey, Pavla Dagsson Waldhauserova, Sylvain Dupont, Melanie Eknayan, Cristina González-Flórez, Adolfo González-Romero, Martina Klose, Mara Montag, Xavier Querol, Jesús Yus-Díez, and Carlos Pérez García-Pando
EGUsphere, https://doi.org/10.5194/egusphere-2025-494, https://doi.org/10.5194/egusphere-2025-494, 2025
Short summary
Short summary
Iceland is among the most active dust source areas in the world. Dust properties are influenced by particle size, mineralogy, shape, and mixing state. This work characterizes freshly emitted individual aerosol particles of Icelandic dust using electron microscopy. Our study provides insights into critical particle-specific information will contribute to better constraining climate models that consider mineralogical variations in their representation of the dust cycle.
Xueqin Zheng, Junwen Liu, Nima Chuduo, Bian Ba, Pengfei Yu, Phu Drolgar, Fang Cao, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-164, https://doi.org/10.5194/egusphere-2025-164, 2025
Short summary
Short summary
In this study, we present the first report on the annual variation of stable oxygen isotope anomalies (∆17O = δ17O - 0.52 × δ18O) in NO3- collected from the urban area of Lhasa , on the Tibetan Plateau, China. Using a Bayesian isotope mixture model, we found that the relative contribution of the NO3+VOC pathway to NO3- formation in spring in Lhasa was several times higher than in urban cities, highlighting the significant influence of VOC transported from outside the Tibetan Plateau.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2763–2780, https://doi.org/10.5194/acp-25-2763-2025, https://doi.org/10.5194/acp-25-2763-2025, 2025
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of nitrogen-containing organic compounds (NOCs) in PM2.5 during winter were compared among cities with different energy consumption patterns. The aerosol NOC pollution during winter in China is closely associated with the intensity of precursor emissions and the aqueous-phase processes. Our results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter in China.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
Atmos. Chem. Phys., 25, 2423–2442, https://doi.org/10.5194/acp-25-2423-2025, https://doi.org/10.5194/acp-25-2423-2025, 2025
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca oil sands region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (collected during the summer of 2021) identified oil sands operations as a measurable brown carbon source. Industrial aerosol emissions were unlikely to impact regional radiative forcing. These findings show that fluorescence spectroscopy can be used to monitor brown carbon in the AOSR.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 25, 2407–2422, https://doi.org/10.5194/acp-25-2407-2025, https://doi.org/10.5194/acp-25-2407-2025, 2025
Short summary
Short summary
In situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below-cloud-base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Junke Zhang, Xinyi Fu, Chunying Chen, Yunfei Su, Siyu Liu, Luyao Chen, Yubao Chen, Gehui Wang, and Andre S. H. Prevot
EGUsphere, https://doi.org/10.5194/egusphere-2025-92, https://doi.org/10.5194/egusphere-2025-92, 2025
Short summary
Short summary
The 125 organic aerosol (OA) compounds in PM2.5 in winter in Chengdu were measured at the molecular level. OA was dominated by fatty acids, phthalate esters, and anhydrosugars, and were deeply influenced by anthropogenic sources. As pollution worsens: secondary inorganic species and secondary organic carbon (OC) dominated the increase in PM2.5; fatty acids and anhydrosugars dominated the increase in OA; and the contribution of secondary formation and biomass burning to OC increased markedly.
Amie Dobracki, Ernie R. Lewis, Arthur J. Sedlacek III, Tyler Tatro, Maria A. Zawadowicz, and Paquita Zuidema
Atmos. Chem. Phys., 25, 2333–2363, https://doi.org/10.5194/acp-25-2333-2025, https://doi.org/10.5194/acp-25-2333-2025, 2025
Short summary
Short summary
Biomass-burning aerosol is commonly present in the marine boundary layer over the southeast Atlantic Ocean between June and October. Our research indicates that burning conditions, aerosol transport pathways, and prolonged oxidation processes (heterogeneous and aqueous phases) determine the chemical, microphysical, and optical properties of the boundary layer aerosol. Notably, we find that the aerosol optical properties can be estimated from the chemical properties alone.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiia Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
Atmos. Chem. Phys., 25, 2207–2241, https://doi.org/10.5194/acp-25-2207-2025, https://doi.org/10.5194/acp-25-2207-2025, 2025
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol–climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Local wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Harald Saathoff, Uzoamaka Ezenobi, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
Atmos. Chem. Phys., 25, 1917–1930, https://doi.org/10.5194/acp-25-1917-2025, https://doi.org/10.5194/acp-25-1917-2025, 2025
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase was determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at a rural location in central Europe.
Theresa Mathes, Heather Guy, John Prytherch, Julia Kojoj, Ian Brooks, Sonja Murto, Paul Zieger, Birgit Wehner, Michael Tjernström, and Andreas Held
EGUsphere, https://doi.org/10.5194/egusphere-2025-183, https://doi.org/10.5194/egusphere-2025-183, 2025
Short summary
Short summary
The Arctic is warming faster than the global average and aerosol-cloud-sea-ice interactions are crucial for studying its climate system. During the ARTofMELT Expedition 2023, particle and sensible heat fluxes were measured over multiple surfaces. Wide lead surfaces acted as particle sources with the strongest sensible heat fluxes, while closed ice surfaces acted as a particle sink. This study improves methods to measure these interactions, enhancing our understanding of Arctic climate processes.
Vikram Pratap, Christopher J. Hennigan, Bastian Stieger, Andreas Tilgner, Laurent Poulain, Dominik van Pinxteren, Gerald Spindler, and Hartmut Herrmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-457, https://doi.org/10.5194/egusphere-2025-457, 2025
Short summary
Short summary
In this work, we characterize trends in aerosol pH and its controlling factors over the period of 2010 – 2019 at the Melpitz research station in eastern Germany. We find strong trends in aerosol pH and major inorganic species in response to changing emissions. We conduct a detailed thermodynamic analysis of the aerosol system and discuss implications for controlling PM2.5 in the region.
Rui Li, Yubing Shen, Yumeng Shao, Yining Gao, Ziwei Yao, Qian Liu, Xing Liu, and Guitao Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3740, https://doi.org/10.5194/egusphere-2024-3740, 2025
Short summary
Short summary
It is the first time to reveal the global variations of PAHs derivatives in the marine air. We found that marine aerosols in East China Sea (ECS) and Western Pacific (WP) were significantly affected by coal and engine combustion, while those in Bismarck Sea (BS) and East Australian Sea (EAS) were mainly influenced by wildfire and coal combustion. Antarctic Ocean (AO) was dominated by biomass burning and local shipping emissions. This finding help elucidate the mechanism of global PAH cycle.
James Brean, David C. S. Beddows, Eija Asmi, Aki Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Rolf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall'Osto
Atmos. Chem. Phys., 25, 1145–1162, https://doi.org/10.5194/acp-25-1145-2025, https://doi.org/10.5194/acp-25-1145-2025, 2025
Short summary
Short summary
Our results emphasise how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 25, 959–977, https://doi.org/10.5194/acp-25-959-2025, https://doi.org/10.5194/acp-25-959-2025, 2025
Short summary
Short summary
We present measurements of the organic composition of ultrafine particles collected from the eastern Amazon, an understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant for ultrafine-particle growth throughout the year, compounds related to other sources, such as biological-spore emissions and biomass burning, exhibit striking seasonal differences, implying extensive variation in regional ultrafine-particle sources.
Xiufeng Lian, Yongjiang Xu, Fengxian Liu, Long Peng, Xiaodong Hu, Guigang Tang, Xu Dao, Hui Guo, Liwei Wang, Bo Huang, Chunlei Cheng, Lei Li, Guohua Zhang, Xinhui Bi, Xiaofei Wang, Zhen Zhou, and Mei Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3469, https://doi.org/10.5194/egusphere-2024-3469, 2025
Short summary
Short summary
In this study, we analyzed the mixing state and atmospheric chemical processes of Pb-rich single particles in Beijing. Then, we focused on analyzing the differences in Pb-rich particles between the heating period and non-heating period, as well as the formation mechanism of lead nitrate after coal-to-gas conversion. Our results highlighted the improvement of coal-to-gas conversion on Pb in the particulate.
Chiara Giorio, Anne Monod, Valerio Di Marco, Pierre Herckes, Denise Napolitano, Amy Sullivan, Gautier Landrot, Daniel Warnes, Marika Nasti, Sara D'Aronco, Agathe Gérardin, Nicolas Brun, Karine Desboeufs, Sylvain Triquet, Servanne Chevaillier, Claudia Di Biagio, Francesco Battaglia, Frédéric Burnet, Stuart J. Piketh, Andreas Namwoonde, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4140, https://doi.org/10.5194/egusphere-2024-4140, 2025
Short summary
Short summary
A comparison between the solubility of trace metals in pairs of total suspended particulate (TSP) and fog water samples collected in Henties Bay, Namibia, during the AEROCLO-sA field campaign is presented. We found enhanced solubility of metals in fog samples which we attributed to metal-ligand complexes formation in the early stages of particle activation into droplets which can then remain in a kinetically stable form in fog or lead to the formation of colloidal nanoparticles.
Xu Yu, Min Zhou, Shuhui Zhu, Liping Qiao, Jinjian Li, Yingge Ma, Zijing Zhang, Kezheng Liao, Hongli Wang, and Jian Zhen Yu
EGUsphere, https://doi.org/10.5194/egusphere-2024-4103, https://doi.org/10.5194/egusphere-2024-4103, 2025
Short summary
Short summary
Online measurements of bulk aerosol organic nitrogen (ON), in conjunction with a comprehensive array of source markers, have revealed five emission sources and five potentially significant formation processes of nitrogenous organic aerosols. This study provides first quantitative source analysis of ON aerosol and valuable observational evidence on secondary ON aerosol formation through NH3 and NOx chemistries.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Petr Vodička, Kimitaka Kawamura, Bhagawati Kunwar, Lin Huang, Dhananjay K. Deshmukh, Md. Mozammel Haque, Sangeeta Sharma, and Leonard Barrie
EGUsphere, https://doi.org/10.5194/egusphere-2024-3656, https://doi.org/10.5194/egusphere-2024-3656, 2025
Short summary
Short summary
Carbonate carbon (CC) is not negligible in Arctic total suspended particles (TSP). If not considered, CC biases the contribution of elemental and organic carbon. CC content in TSP was strongly reflected in the δ13C values of total carbon (TC). Carbon contribution from CaCO3 supports strong dependence of CC and δ13C on Ca. Finally, two hypothetical CC sources were identified based on the analysis of air mass back trajectories – dust resuspension and marine microorganisms.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025, https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Capucine Camin, François Lacan, Catherine Pradoux, Marie Labatut, Anne Johansen, and James W. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2024-3777, https://doi.org/10.5194/egusphere-2024-3777, 2024
Short summary
Short summary
This manuscript presents the chemical composition of aerosols (> 1µm) over the Equatorial and Tropical Pacific Ocean, presenting the first measurements of iron isotopes in aerosols from this region. Iron concentrations and isotopes were determined using a Neptune MC-ICPMS. Our data analysis reveals that a significant portion of the aerosols undergo dissolution and removal during atmospheric transport. These findings contribute to original conclusions about the chemistry and physics of aerosols.
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barrett, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2024-3789, https://doi.org/10.5194/egusphere-2024-3789, 2024
Short summary
Short summary
Fairbanks is among the most polluted cities with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the sub-micron PM elucidated residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulphur-containing organic aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites with wide-ranging influences.
Fredrik Mattsson, Almuth Neuberger, Liine Heikkinen, Yvette Gramlich, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Paul Zieger, Ilona Riipinen, and Claudia Mohr
EGUsphere, https://doi.org/10.5194/egusphere-2024-3629, https://doi.org/10.5194/egusphere-2024-3629, 2024
Short summary
Short summary
This study investigated aerosol-cloud interactions, focusing on organic nitrogen (ON) formation in the aqueous phase. Measurements were conducted in wintertime Italian Po Valley, using aerosol mass spectrometry. The fog was enriched in more hygroscopic inorganic compounds and ON, containing e.g. imidazoles. The formation of imidazole by aerosol-fog interactions could be confirmed for the first time in atmospheric observations. Findings highlight the role of fog in nitrogen aerosol formation.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Qingxiao Meng, Yunjiang Zhang, Sheng Zhong, Jie Fang, Lili Tang, Yongcai Rao, Minfeng Zhou, Jian Qiu, Xiaofeng Xu, Jean-Eudes Petit, Olivier Favez, and Xinlei Ge
EGUsphere, https://doi.org/10.5194/egusphere-2024-2776, https://doi.org/10.5194/egusphere-2024-2776, 2024
Short summary
Short summary
We developed a new method to reconstruct missing elemental carbon (EC) data in four Chinese cities from 2013 to 2023. Using machine learning, we accurately filled data gaps and introduced a new approach to analyze EC trends. Our findings reveal a significant decline in EC due to stricter pollution controls, though this slowed after 2020. This study provides a versatile framework for addressing data gaps and supports strategies to reduce urban air pollution and its climate impacts.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Cited articles
Aggarwal, S. G. and Kawamura, K.: Carbonaceous and inorganic composition in
long-range transported aerosols over northern Japan: Implication for aging of
water-soluble organic fraction, Atmos. Env., 43, 2532–2540,
https://doi.org/10.1016/j.atmosenv.2009.02.032, 2009.
Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A.,
Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun,
Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M.
R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy,
Metzger, A., Baltensperger, U., and Jimenez J. L.: O∕C and OM/OC
Ratios of Primary, Secondary, and Ambient Organic Aerosols with
High-Resolution Time-of-Flight Aerosol Mass Spectrometry, Environ. Sci.
Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008.
Arangio, A. M., Slade, J. H., Berkemeier, T., Pöschl, U., Knopf, D. A.,
and Shiraiwa, M.: Multiphase Chemical Kinetics of OH Radical Uptake by
Molecular Organic Markers of Biomass Burning Aerosols: Humidity and
Temperature Dependence, Surface Reaction, and Bulk Diffusion, J. Phys. Chem.,
119, 4533–4544, https://doi.org/10.1021/jp510489z , 2015.
Bao, H., Niggemann, J., Luo, L., Dittmar, T., and Kao, S.: Aerosols as a
source of dissolved black carbon to the ocean, Nat. Commun., 8, 1–7,
https://doi.org/10.1038/s41467-017-00437-3, 2017.
Berkemeier, T., Shiraiwa, M., Pöschl, U., and Koop, T.: Competition
between water uptake and ice nucleation by glassy organic aerosol particles,
Atmos. Chem. Phys., 14, 12513–12531,
https://doi.org/10.5194/acp-14-12513-2014, 2014.
Berkemeier, T., Steimer, S., Krieger, U., Peter, T., Pöschl, U., Ammann,
M., and Shiraiwa, M.: Ozone uptake on glassy, semi-solid and liquid organic
matter and the role of reactive oxygen intermediates in atmospheric aerosol
chemistry, Phys. Chem. Chem. Phys., 18, 12662–12674,
https://doi.org/10.1039/c6cp00634e, 2016.
Bertrand, A., Stefenelli, G., Jen, C. N., Pieber, S. M., Bruns, E. A., Ni,
H., Temime-Roussel, B., Slowik, J. G., Goldstein, A. H., Haddad, I. E.,
Baltensperger, U., Prévôt, A. S. H., Wortham, H., and Marchand, N.:
Evolution of the chemical fingerprint of biomass burning organic aerosol
during aging, Atmos. Chem. Phys., 18, 7607–7624,
https://doi.org/10.5194/acp-18-7607-2018 , 2018.
Bignal, K. L., Langridge, S., and Zhou, J. L.: Release of polycyclic aromatic
hydrocarbons, carbon monoxide and particulate matter from biomass combustion
in a wood-fired boiler under varying boiler conditions, Atmos. Env., 42,
8863–8871, https://doi.org/10.1016/j.atmosenv.2008.09.013, 2008.
Blando, J. D. and Turpin, B. J.: Secondary organic aerosol formation in cloud
and fog droplets: a literature evaluation of plausibility, Atmos. Environ.,
34, 1623–1632, https://doi.org/10.1016/s1352-2310(99)00392-1 , 2000.
Bougiatioti, A., Stavroulas, I., Kostenidou, E., Zarmpas, P., Theodosi, C.,
Kouvarakis, G., Canonaco, F., Prevot, A. S. H., Nenes, A., Pandis, S. N., and
Mihalopoulos, N.: Processing of biomass-burning aerosol in the eastern
Mediterranean during summertime, Atmos. Chem. Phys., 14, 4793–4807,
https://doi.org/10.5194/acp-14-4793-2014, 2014.
Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R.,
Nenes, A., Kanakidou, M., and Mihalopoulos, N.: Particle water and pH in the
eastern Mediterranean: source variability and implications for nutrient
availability, Atmos. Chem. Phys., 16, 4579–4591,
https://doi.org/10.5194/acp-16-4579-2016, 2016.
Brege, M., Paglione, M., Gilardoni, S., Decesari, S., Facchini, M. C., and
Mazzoleni, L. R.: Molecular insights on aging and aqueous phase processing
from ambient biomass burning emissions-influenced Po Valley fog and aerosol,
Atmos. Chem. Phys., 18, 13197–13214,
https://doi.org/10.5194/acp-18-13197-2018, 2018.
Brown, S. S., deGouw, J. A., Warneke, C., Ryerson, T. B., Dubé, W. P.,
Atlas, E., Weber, R. J., Peltier, R. E., Neuman, J. A., Roberts, J. M.,
Swanson, A., Flocke, F., McKeen, S. A., Brioude, J., Sommariva, R., Trainer,
M., Fehsenfeld, F. C., and Ravishankara, A. R.: Nocturnal isoprene oxidation
over the Northeast United States in summer and its impact on reactive
nitrogen partitioning and secondary organic aerosol, Atmos. Chem. Phys., 9,
3027–3042, https://doi.org/10.5194/acp-9-3027-2009, 2009.
Cao, F., Zhang, S., Kawamura, K., Liu, X., Yang, C., Xu, Z., Fan, M., Zhang,
W., Bao, M., Chang, Y., Song, W., Liu, S., Lee, X., Li, J., Zhang, G., and
Zhang, Y.: Chemical characteristics of dicarboxylic acids and related organic
compounds in PM2.5 during biomass-burning and non-biomass-burning
seasons at a rural site of Northeast China, Environ. Pollut., 231, 654–662,
https://doi.org/10.1016/j.envpol.2017.08.045, 2017.
Capes, G., Johnson, B., McFiggans, G., Williams, P. I., Haywood, J., and Coe,
H.: Aging of biomass burning aerosols over West Africa: Aircraft measurements
of chemical composition, microphysical properties, and emission ratios, J.
Geophys. Res.-Atmos., 113, 1–13, https://doi.org/10.1029/2008jd009845, 2008.
Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S., Reff, A., Lim,
H.-J., and Ervens, B.: Atmospheric oxalic acid and SOA production from
glyoxal: Results of aqueous photooxidation experiments, Atmos. Environ., 41,
7588–7602, https://doi.org/10.1016/j.atmosenv.2007.05.035, 2007.
Cech, N. B. and Enke, C. G.: Practical implications of some recent studies in
electrospray ionization fundamentals, Mass Spec. Rev., 20, 362–387,
https://doi.org/10.1002/mas.10008, 2001.
Chen, Z. M., Wang, H. L., Zhu, L. H., Wang, C. X., Jie, C. Y., and Hua, W.:
Aqueous-phase ozonolysis of methacrolein and methyl vinyl ketone: a
potentially important source of atmospheric aqueous oxidants, Atmos. Chem.
Phys., 8, 2255–2265, https://doi.org/10.5194/acp-8-2255-2008, 2008.
China, S., Scarnato, B., Owen, R. C., Zhang, B., Ampadu, M. T., Kumar, S.,
Džepina, K., Dziobak, M. P., Fialho, P., Perlinger, J. A., Hueber, J.,
Helmig, D., Mazzoleni, L. R., and Mazzoleni, C.: Morphology and mixing state
of aged soot particles at a remote marine free troposphere site: Implications
for optical properties, Geophys. Res. Lett., 42, 1243–1250,
https://doi.org/10.1002/2014gl062404, 2015.
China, S., Alpert, P. A., Zhang, B., Schum, S., Džepina, K., Wright, K.,
Owen, R. C., Fialho, P., Mazzoleni, L. R., Mazzoleni, C., and Knopf, D. A.:
Ice cloud formation potential by free tropospheric particles from long-range
transport over the Northern Atlantic Ocean, J. Geophys. Res.-Atmos., 122,
3065–3079, https://doi.org/10.1002/2016jd025817, 2017.
Chow, J. C., Lowenthal, D. H., Chen, L. W. A., Wang, X., and Watson, J. G.:
Mass reconstruction methods for PM2.5: a review, Air Qual. Atmos. Hlth., 8,
243–263, https://doi.org/10.1007/s11869-015-0338-3, 2015.
Collaud Coen, M., Weingartner, E., Furger, M., Nyeki, S., Prevot, A. S. H.,
Steinbacher, M., and Baltensperger, U.: Aerosol climatology and planetary
boundary influence at the Jungfraujoch analyzed by synoptic weather types,
Atmos. Chem. Phys., 11, 5931–5944, https://doi.org/10.5194/acp-11-5931-2011,
2011.
Cook, R. D., Lin, Y.-H., Peng, Z., Boone, E., Chu, R. K., Dukett, J. E.,
Gunsch, M. J., Zhang, W., Tolic, N., Laskin, A., and Pratt, K. A.: Biogenic,
urban, and wildfire influences on the molecular composition of dissolved
organic compounds in cloud water, Atmos. Chem. Phys., 17, 15167–15180,
https://doi.org/10.5194/acp-17-15167-2017, 2017.
Corrigan, A. L., Russell, L. M., Takahama, S., Äijälä, M., Ehn,
M., Junninen, H., Rinne, J., Petäjä, T., Kulmala, M., Vogel, A. L.,
Hoffmann, T., Ebben, C. J., Geiger, F. M., Chhabra, P., Seinfeld, J. H.,
Worsnop, D. R., Song, W., Auld, J., and Williams, J.: Biogenic and biomass
burning organic aerosol in a boreal forest at Hyytiälä, Finland,
during HUMPPA-COPEC 2010, Atmos. Chem. Phys., 13, 12233–12256,
https://doi.org/10.5194/acp-13-12233-2013 , 2013.
Crahan, K. K., Hegg, D., Covert, D. S., and Jonsson, H.: An exploration of
aqueous oxalic acid production in the coastal marine atmosphere, Atmos.
Environ., 38, 3757–3764, https://doi.org/10.1016/j.atmosenv.2004.04.009 , 2004.
DeRieux, W.-S. W., Li, Y., Lin, P., Laskin, J., Laskin, A., Bertram, A. K.,
Nizkorodov, S. A., and Shiraiwa, M.: Predicting the glass transition
temperature and viscosity of secondary organic material using molecular
composition, Atmos. Chem. Phys., 18, 6331–6351,
https://doi.org/10.5194/acp-18-6331-2018, 2018.
Desyaterik, Y., Sun, Y., Shen, X., Lee, T., Wang, X., Wang, T., and Collett,
J. L.: Speciation of “brown” carbon in cloud water impacted by agricultural
biomass burning in eastern China, J. Geophys. Res.-Atmos., 118, 7389–7399,
https://doi.org/10.1002/jgrd.50561, 2013.
Donahue, N., Epstein, S., Pandis, S., and Robinson, A.: A two-dimensional
volatility basis set: 1. organic-aerosol mixing thermodynamics, Atmos. Chem.
Phys., 11, 3303–3318, https://doi.org/10.5194/acp-11-3303-2011, 2011.
Duan, F., Liu, X., Yu, T., and Cachier, H.: Identification and estimate of
biomass burning contribution to the urban aerosol organic carbon
concentrations in Beijing, Atmos. Env., 38, 1275–1282,
https://doi.org/10.1016/j.atmosenv.2003.11.037, 2004.
Dunlea, E. J., DeCarlo, P. F., Aiken, A. C., Kimmel, J. R., Peltier, R. E.,
Weber, R. J., Tomlinson, J., Collins, D. R., Shinozuka, Y., McNaughton, C.
S., Howell, S. G., Clarke, A. D., Emmons, L. K., Apel, E. C., Pfister, G. G.,
van Donkelaar, A., Martin, R. V., Millet, D. B., Heald, C. L., and Jimenez,
J. L.: Evolution of Asian aerosols during transpacific transport in INTEX-B,
Atmos. Chem. Phys., 9, 7257–7287, https://doi.org/10.5194/acp-9-7257-2009,
2009.
Džepina, K., Mazzoleni, C., Fialho, P., China, S., Zhang, B., Owen, R.
C., Helmig, D., Hueber, J., Kumar, S., Perlinger, J. A., Kramer, L. J.,
Dziobak, M. P., Ampadu, M. T., Olsen, S., Wuebbles, D. J., and Mazzoleni, L.
R.: Molecular characterization of free tropospheric aerosol collected at the
Pico Mountain Observatory: a case study with a long-range transported biomass
burning plume, Atmos. Chem. Phys., 15, 5047–5068,
https://doi.org/10.5194/acp-15-5047-2015, 2015.
Ervens, B., Carlton, A. G., Turpin B. J., Altieri, K. E., Kreidenweis, S. M.,
and Feingold, G.: Secondary organic aerosol yields from cloud-processing of
isoprene oxidation products, Geophys. Res. Lett., 35,
https://doi.org/10.1029/2007gl031828, 2008.
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol
formation in cloud droplets and aqueous particles (aqSOA): a review of
laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102,
https://doi.org/10.5194/acp-11-11069-2011, 2011.
Fialho, P., Hansen, A. D. A., and Honrath, R. E.: Absorption coefficients by
aerosols in remote areas: a new approach to decouple dust and black carbon
absorption coefficients using seven-wavelength Aethalometer data, J. Aerosol
Sci., 36, 267–282, https://doi.org/10.1016/j.jaerosci.2004.09.004, 2005.
Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thornhill, K. L.,
Anderson, B., Diskin, G., Perring, A. E., Schwarz, J. P., Campuzano-Jost, P.,
Day, D. A., Palm, B. B., Jimenez, J. L., Nenes, A., and Weber, R. J.:
Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42,
4623–4630, https://doi.org/10.1002/2015gl063897, 2015.
George, I. J. and Abbatt, J. P. D.: Heterogeneous oxidation of atmospheric
aerosol particles by gas-phase radicals, Nat. Chem., 2, 713–722,
https://doi.org/10.1038/nchem.806, 2010.
Helmig, D., Muoz, M., Hueber, J., Mazzoleni, C., Mazzoleni, L., Owen, R. C.,
Val-Martin, M., Fialho, P., Plass-Duelmer, C., Palmer, P. I., Lewis, A. C.,
and Pfister G.: Climatology and atmospheric chemistry of the non-methane
hydrocarbons ethane and propane over the North Atlantic, Elem. Sci. Anth., 3,
000054, https://doi.org/10.12952/journal.elementa.000054, 2015.
Herzsprung, P., Hertkorn, N., Tümpling, W., Harir, M., Friese, K., and
Schmitt-Kopplin, P.: Understanding molecular formula assignment of Fourier
transform ion cyclotron resonance mass spectrometry data of natural organic
matter from a chemical point of view, Anal. Bioanal. Chem., 406, 7977–7987,
https://doi.org/10.1007/s00216-014-8249-y, 2014.
Hinks, M., Brady, M., Lignell, H., Song, M., Grayson, J., Bertram, A., Lin,
P., Laskin, A., Laskin, J., and Nizkorodov, S.: Effect of viscosity on
photodegradation rates in complex secondary organic aerosol materials, Phys.
Chem. Chem. Phys., 18, 8785–8793, https://doi.org/10.1039/c5cp05226b, 2015.
Hoyle, C. R., Fuchs, C., Järvinen, E., Saathoff, H., Dias, A., Haddad, I.
E., Gysel, M., Coburn, S. C., Tröstl, J., Bernhammer, A.-K., Bianchi, F.,
Breitenlechner, M., Corbin, J. C., Craven, J., Donahue, N. M., Duplissy, J.,
Ehrhart, S., Frege, C., Gordon, H., Höppel, N., Heinritzi, M.,
Kristensen, T. B., Molteni, U., Nichman, L., Pinterich, T., Prévôt,
A. S. H., Simon, M., Slowik, J. G., Steiner, G., Tomé, A., Vogel, A. L.,
Volkamer, R., Wagner, A. C., Wagner, R., Wexler, A. S., Williamson, C.,
Winkler, P. M., Yan, C., Amorim, A., Dommen, J., Curtius, J., Gallagher, M.
W., Flagan, R. C., Hansel, A., Kirkby, J., Kulmala, M., Möhler, O.,
Stratmann, F., Worsnop, D. R., and Baltensperger, U.: Aqueous phase oxidation
of sulphur dioxide by ozone in cloud droplets, Atmos. Chem. Phys., 16,
1693–1712, https://doi.org/10.5194/acp-16-1693-2016 , 2016.
Huang, R., Zhang, Y., Bozzetti, C., Ho, K., Cao, J., Han, Y., Daellenbach, K.
R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber,
S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski,
M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat, S.,
Baltensperger, U., El Haddad, I., and Prevot, A. S. H.: High secondary
aerosol contribution to particulate pollution during haze events in China,
Nature, 514, 13774, https://doi.org/10.1038/nature13774, 2014.
Iinuma, Y., Boege, O., Graefe, R., and Herrmann, H.: Methyl-Nitrocatechols:
Atmospheric Tracer Compounds for Biomass Burning Secondary Organic Aerosols,
Environ. Sci. Technol., 44, 8453–8459, https://doi.org/10.1021/es102938a, 2010.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A.
C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y,
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M.,
Džepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C.,
Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C.
E., Baltensperger U., and Worsnop D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones,
L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie M., and van der
Werf, G. R.: Biomass burning emissions estimated with a global fire
assimilation system based on observed fire radiative power, Biogeosciences,
9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012.
Kido-Soule, M., Longnecker, K., Giovannoni, S., and Kujawinski, E.: Impact of
instrument and experiment parameters on reproducibility of ultrahigh
resolution ESI FT-ICR mass spectra of natural organic matter, Org. Geochem.,
41, 725–733, https://doi.org/10.1016/j.orggeochem.2010.05.017, 2010.
Kirpes, R. M., Bondy, A. L., Bonanno, D., Moffet, R. C., Wang, B., Laskin,
A., Ault, A. P., and Pratt, K. A.: Secondary sulfate is internally mixed with
sea spray aerosol and organic aerosol in the winter Arctic, Atmos. Chem.
Phys., 18, 3937–3949, https://doi.org/10.5194/acp-18-3937-2018, 2018.
Kleissl, J., Honrath, R. E., Dziobak, M. P., Tanner, D., Val Martín, M.,
Owen, R. C., and Helmig, D.: Occurrence of upslope flows at the Pico
mountaintop observatory: A case study of orographic flows on a small,
volcanic island, J. Geophys. Res.-Atmos., 112, https://doi.org/10.1029/2006jd007565,
2007.
Koch, B. P. and Dittmar, T.: From mass to structure: an aromaticity index for
high-resolution mass data of natural organic matter, Rapid Commun. Mass Sp.,
20, 926–932, https://doi.org/10.1002/rcm.2386, 2006
Koch, B. P. and Dittmar, T.: From mass to structure: an aromaticity index for
high-resolution mass data of natural organic matter, Rapid Commun. Mass Sp.,
30, p. 250, https://doi.org/10.1002/rcm.7433, 2016.
Koop, T., Bookhold, J., Shiraiwa, M., and Pöschl, U.: Glass transition
and phase state of organic compounds: dependency on molecular properties and
implications for secondary organic aerosols in the atmosphere, Phys. Chem.
Chem. Phys., 13, 19238–19255, https://doi.org/10.1039/c1cp22617g, 2011.
Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M.
R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm,
H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.: Carbon
oxidation state as a metric for describing the chemistry of atmospheric
organic aerosol, Nat. Chem., 3, 133–139, https://doi.org/10.1038/nchem.948, 2011.
Lai, C., Liu, Y., Ma, J., Ma, Q., and He, H.: Degradation kinetics of
levoglucosan initiated by hydroxyl radical under different environmental
conditions, Atmos. Environ., 91, 32–39, https://doi.org/10.1016/j.atmosenv.2014.03.054 ,
2014.
Laing, J. R., Jaffe, D. A., and Hee, J. R.: Physical and optical properties
of aged biomass burning aerosol from wildfires in Siberia and the Western USA
at the Mt. Bachelor Observatory, Atmos. Chem. Phys., 16, 15185–15197,
https://doi.org/10.5194/acp-16-15185-2016, 2016.
Lambe, A. T., Onasch, T. B., Massoli, P., Croasdale, D. R., Wright, J. P.,
Ahern, A. T., Williams, L. R., Worsnop, D. R., Brune, W. H., and Davidovits,
P.: Laboratory studies of the chemical composition and cloud condensation
nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary
organic aerosol (OPOA), Atmos. Chem. Phys., 11, 8913–8928,
https://doi.org/10.5194/acp-11-8913-2011, 2011
Laskin, A., Laskin, J., and Nizkorodov, S.: Chemistry of Atmospheric Brown
Carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015
Lee, A. K. Y., Herckes, P., Leaitch, W. R., Macdonald, A. M., and Abbatt, J.
P. D.: Aqueous OH oxidation of ambient organic aerosol and cloud water
organics: Formation of highly oxidized products, Geophys. Res. Lett., 38,
1–5, https://doi.org/10.1029/2011gl047439, 2011.
Levin, E., McMeeking, G. R., Carrico, C. M., Mack, L. E., Kreidenweis, S. M.,
Wold, C. E., Moosmüller, H., Arnott, W. P., Hao, W. M., Collett, J. L.,
and Malm, W. C.: Biomass burning smoke aerosol properties measured during
Fire Laboratory at Missoula Experiments (FLAME), J. Geophys. Res.-Atmos, 115,
1–15, https://doi.org/10.1029/2009jd013601, 2010.
Li, Y., Pöschl, U., and Shiraiwa, M.: Molecular corridors and
parameterizations of volatility in the chemical evolution of organic
aerosols, Atmos. Chem. Phys., 16, 3327–3344,
https://doi.org/10.5194/acp-16-3327-2016, 2016.
Lignell, H., Hinks, M., and Nizkorodov, S.: Exploring matrix effects on
photochemistry of organic aerosols, P. Natl. Acad. Sci. USA, 111,
13780–13785, https://doi.org/10.1073/pnas.1322106111, 2014.
Lim, Y. B., Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.:
Aqueous chemistry and its role in secondary organic aerosol (SOA) formation,
Atmos. Chem. Phys., 10, 10521–10539,
https://doi.org/10.5194/acp-10-10521-2010 , 2010.
Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A.,
and Laskin, A.: Molecular Characterization of Brown Carbon in Biomass Burning
Aerosol Particles, Environ. Sci. Technol., 50, 11815–11824,
https://doi.org/10.1021/acs.est.6b03024, 2016.
Liu, S. and Liang, X.: Observed Diurnal Cycle Climatology of Planetary
Boundary Layer Height, J. Climate, 23, 5790–5809,
https://doi.org/10.1175/2010jcli3552.1, 2010.
Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J.,
Müller, M., Jimenez, J. L., Campuzano-Jost, P., Beyersdorf, A. J., Blake,
D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A., Diskin, G. S.,
Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W., King, L. E., Kleinman, L.,
Meinardi, S., Mikoviny, T., Onasch, T. B., Palm, B. B., Peischl, J., Pollack,
I. B., Ryerson, T. B., Sachse, G. W., Sedlacek, A. J., Shilling, J. E.,
Springston, S., Clair, J., Tanner, D. J., Teng, A. P., Wennberg, P. O.,
Wisthaler, A., and Wolfe, G. M.: Airborne measurements of western US
wildfire emissions: Comparison with prescribed burning and air quality
implications, J. Geophys. Res.-Atmos, 122, 6108–6129,
https://doi.org/10.1002/2016jd026315, 2017.
Massoli, P., Lambe, A. T., Ahern, A. T., Williams, L. R., Ehn, M.,
Mikkilä, J., Canagaratna, M. R., Brune, W. H., Onasch, T. B., Jayne, J.
T., Petäjä, T., Kulmala, M., Laaksonen, A., Kolb, C. E., Davidovits,
P., and Worsnop, D. R.: Relationship between aerosol oxidation level and
hygroscopic properties of laboratory generated secondary organic aerosol
(SOA) particles, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010gl045258,
2010.
Mazzoleni, L. R., Ehrmann, B. M., Shen, X., Marshall, A. G., and Collett, J.
L.: Water-Soluble Atmospheric Organic Matter in Fog: Exact Masses and
Chemical Formula Identification by Ultrahigh-Resolution Fourier Transform Ion
Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 44,
3690–3697, https://doi.org/10.1021/es903409k, 2010.
Mazzoleni, L. R., Saranjampour, P., Dalbec, M. M., Samburova, V., Hallar, A.
G., Zielinska, B., Lowenthal, D. H., and Kohl, S.: Identification of
water-soluble organic carbon in non-urban aerosols using ultrahigh-resolution
FT-ICR mass spectrometry: organic anions, Environ. Chem., 9, 285–297,
https://doi.org/10.1071/en11167, 2012.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J.
H., and Worsnop, D. R.: Changes in organic aerosol composition with aging
inferred from aerosol mass spectra, Atmos. Chem. Phys., 11, 6465–6474,
https://doi.org/10.5194/acp-11-6465-2011, 2011.
Nguyen, T. V., Zhang, Q., Jimenez, J. L., Pike, M., and Carlton, A. G.:
Liquid Water: Ubiquitous Contributor to Aerosol Mass, Environ. Sci. Technol.
Lett., 3, 257–263, https://doi.org/10.1021/acs.estlett.6b00167 , 2016.
O'Brien, R. E., Laskin, A., Laskin, J., Liu, S., Weber, R., Russell, L. M.,
and Goldstein, A. H.: Molecular characterization of organic aerosol using
nanospray desorption/electrospray ionization mass spectrometry: CalNex 2010
field study, Atmos. Environ., 68, 265–272,
https://doi.org/10.1016/j.atmosenv.2012.11.056, 2013.
Olivier, J. G. J. and Berdowski, J. J. M.: Global emissions sources and
sinks, in: The Climate System, edited by: Berdowski, J., Guicherit, R., and
Heij, B. J., A.A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse,
the Netherlands, 33–78, 2001.
Perraudin, E., Budzinski, H., and Villenave, E.: Kinetic Study of the
Reactions of Ozone with Polycyclic Aromatic Hydrocarbons Adsorbed on
Atmospheric Model Particles, J. Atmos. Chem., 56, 57–82,
https://doi.org/10.1007/s10874-006-9042-x, 2006.
Pfister, G. G., Emmons, L. K., Hess, P. G., Honrath, R. E., Lamarque, J. F.,
Val Martin, M., Owen, R. C., Avery, M. A., Browell, E. V., Holloway, J. S.,
Nedelec, P., Purvis, R., Ryerson, T. B., Sachse, G. W., and Schlager, H.:
Ozone production from the 2004 North American boreal fires, J. Geophys.
Res.-Atmos., 111, D24S07, https://doi.org/10.1029/2006jd007695, 2006.
Pöschl, U.: Atmospheric Aerosols: Composition, Transformation, Climate
and Health Effects, Angew. Chem. Int. Edit., 44, 7520–7540,
https://doi.org/10.1002/anie.200501122, 2005.
Putman, A. L., Offenberg, J. H., Fisseha, R., Kundu, S., Rahn, T. A., and
Mazzoleni, L. R.: Ultrahigh-resolution FT-ICR mass spectrometry
characterization of α-pinene ozonolysis SOA, Atmos. Env., 46,
164–172, https://doi.org/10.1016/j.atmosenv.2011.10.003, 2012.
Quinn, P. K., Collins, D. B., Grassian, V. H., Prather, K. A., and Bates, T.
S.: Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol,
Chem. Rev., 115, 4383–4399, https://doi.org/10.1021/cr500713g, 2015.
Rémillard, J., Kollias, P., Luke, E., and Wood, R.: Marine Boundary Layer
Cloud Observations in the Azores, J. Climate, 25, 7381–7398,
https://doi.org/10.1175/jcli-d-11-00610.1, 2012.
Schmitt-Koppli, P., Gelencsìr, A., Dabek-Zlotorzynsk, E., Kis, G.,
Hertkor, N., Harir, M., Hon, Y., and Gebefüg, I.: Analysis of he
Unresolved Organic Fraction in Atmospheric Aerosols with Ultrahigh-Resolution
Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy: Organosulfates
As Photochemical Smog Constituents, Anal. Chem., 82, 8017–8026,
https://doi.org/10.1021/ac101444r, 2010.
Schmitt-Kopplin, P., Liger-Belair, G., Koch, B., Flerus, R., Kattner, G.,
Harir, M., Kanawati, B., Lucio, M., Tziotis, D., Hertkorn, N., and
Gebefügi, I.: Dissolved organic matter in sea spray: a transfer study
from marine surface water to aerosols, Biogeosciences, 9, 1571–1582,
https://doi.org/10.5194/bg-9-1571-2012, 2012.
Schum, S. K. and Mazzoleni, L. R.: Ultrahigh resolution FT-ICR MS data of
long-range transported free tropospheric aerosol collected at the Pico
Mountain Observatory in the Azores, available at:
http://digitalcommons.mtu.edu/chemistry-fp/88/, last access: 26
September 2018.
Seibert, P. and Frank, A.: Source-receptor matrix calculation with a
Lagrangian particle dispersion model in backward mode, Atmos. Chem. Phys., 4,
51–63, https://doi.org/10.5194/acp-4-51-2004, 2004.
Shiraiwa, M., Ammann, M., Koop, T., and Pöschl, U.: Gas uptake and
chemical aging of semisolid organic aerosol particles, P. Natl. Acad. Sci.
USA, 108, 11003–11008, https://doi.org/10.1073/pnas.1103045108, 2011.
Shiraiwa, M., Li, Y., Tsimpidi, A., Karydis, V., Berkemeier, T., Pandis, S.,
Lelieveld, J., Koop, T., and Pöschl, U.: Global distribution of particle
phase state in atmospheric secondary organic aerosols, Nat. Commun., 8,
15002, https://doi.org/10.1038/ncomms15002, 2017.
Shrivastava, M., Lou, S., Zelenyuk, A., Easter, R., Corley, R., Thrall, B.,
Rasch, P., Fast, J., Simonich, S., Shen, H., and Tao, S.: Global long-range
transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded
by coatings of organic aerosol, P. Natl. Acad. Sci. USA, 114, 1246–1251,
https://doi.org/10.1073/pnas.1618475114, 2017.
Slade, J. H. and Knopf, D. A.: Multiphase OH oxidation kinetics of organic
aerosol: The role of particle phase state and relative humidity, Geophys.
Res. Lett., 41, 5297–5306, https://doi.org/10.1002/2014gl060582 , 2014.
Sorooshian, A., Lu, M.-L., Brechtel, F., Jonsson, H., Feingold, G., Flagan,
R., and Seinfeld, J.: On the Source of Organic Acid Aerosol Layers above
Clouds, Environ. Sci. Technol., 41, 4647–4654, https://doi.org/10.1021/es0630442, 2007.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical
note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos.
Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Tu, P., Hall, W., and Johnston, M.: Characterization of Highly Oxidized
Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol, Anal. Chem.,
88, 4495–4501, https://doi.org/10.1021/acs.analchem.6b00378, 2016.
US Air Quality: Smog Blog, available at: http://alg.umbc.edu, last
access: 9 January 2018.
Vakkari, V., Kerminen, V., Beukes, J., Tiitta, P., Zyl, P., Josipovic, M.,
Venter, A., Jaars, K., Worsnop, D., Kulmala, M., and Laakso, L.: Rapid
changes in biomass burning aerosols by atmospheric oxidation, Geophys. Res.
Lett., 41, 2644–2651, https://doi.org/10.1002/2014gl059396, 2014.
Val Martin, M., Honrath, R., Owen, R., Pfister, G., Fialho, P., and Barata,
F.: Significant enhancements of nitrogen oxides, black carbon, and ozone in
the North Atlantic lower free troposphere resulting from North American
boreal wildfires, J. Geophys. Res.-Atmos., 111, D23S60,
https://doi.org/10.1029/2006jd007530, 2006.
Val Martin, M., Honrath, R., Owen, R., and Lapina, K.: Large-scale impacts of
anthropogenic pollution and boreal wildfires on the nitrogen oxides over the
central North Atlantic region, J. Geophys. Res.-Atmos., 113, D17308,
https://doi.org/10.1029/2007jd009689, 2008a.
Val Martin, M., Honrath, R., Owen, R., and Li, Q.: Seasonal variation of
nitrogen oxides in the central North Atlantic lower free troposphere, J.
Geophys. Res.-Atmos., 113, D17307, https://doi.org/10.1029/2007jd009688, 2008b.
Val Martin, M., Logan, J. A., Kahn, R. A., Leung, F.-Y., Nelson, D. L., and
Diner, D. J.: Smoke injection heights from fires in North America: analysis
of 5 years of satellite observations, Atmos. Chem. Phys., 10, 1491–1510,
https://doi.org/10.5194/acp-10-1491-2010, 2010.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirilä, P.,
Leskinen, J., Mäkelä, J., Holopainen, J., Pöschl, U., Kulmala,
M., Worsnop, D., and Laaksonen, A.: An amorphous solid state of biogenic
secondary organic aerosol particles, Nature, 467,09455,
https://doi.org/10.1038/nature09455, 2010.
Vogel, A., Äijälä, M., Corrigan, A., Junninen, H., Ehn, M.,
Petäjä, T., Worsnop, D., Kulmala, M., Russell, L., Williams, J., and
Hoffmann, T.: In situ submicron organic aerosol characterization at a boreal
forest research station during HUMPPA-COPEC 2010 using soft and hard
ionization mass spectrometry, Atmos. Chem. Phys., 13, 10933–10950,
https://doi.org/10.5194/acp-13-10933-2013, 2013.
Volkamer, R., Jimenez, J. L., San Martini, F., Džepina, K., Zhang, Q.,
Salcedo, D., Molina, L. T., Worsnop, D. R., and Molina, M. J.: Secondary
organic aerosol formation from anthropogenic air pollution: Rapid and higher
than expected, Geophys. Res. Lett., 33, L17811, https://doi.org/10.1029/2006gl026899,
2006.
Volkamer, R., Ziemann, P., and Molina, M.: Secondary Organic Aerosol
Formation from Acetylene (C2H2): seed effect on SOA yields due to
organic photochemistry in the aerosol aqueous phase, Atmos. Chem. Phys., 9,
1907–1928, https://doi.org/10.5194/acp-9-1907-2009, 2009.
Walser, M. L., Desyaterik, Y., Laskin, J., Laskin, A., and Nizkorodov, S.:
High-resolution mass spectrometric analysis of secondary organic aerosol
produced by ozonation of limonene, Phys. Chem. Chem. Phys., 10, 1009–1022,
https://doi.org/10.1039/b712620d, 2007.
Warneck, P.: In-cloud chemistry opens pathway to the formation of oxalic acid
in the marine atmosphere, Atmos. Environ., 37, 2423–2427,
https://doi.org/10.1016/s1352-2310(03)00136-5, 2003.
Warneke, C., Bahreini, R., Brioude, J., Brock, C. A., Gouw, J., Fahey, D. W.,
Froyd, K. D., Holloway, J. S., Middlebrook, A., Miller, L., Montzka, S.,
Murphy, D. M., Peischl, J., Ryerson, T. B., Schwarz, J. P., Spackman, J. R.,
and Veres, P.: Biomass burning in Siberia and Kazakhstan as an important
source for haze over the Alaskan Arctic in April 2008, Geophys. Res. Lett.,
36, L02813, https://doi.org/10.1029/2008gl036194, 2009.
Wozniak, A. S., Willoughby, A. S., Gurganus, S. C., and Hatcher, P. G.:
Distinguishing molecular characteristics of aerosol water soluble organic
matter from the 2011 trans-North Atlantic US GEOTRACES cruise, Atmos. Chem.
Phys., 14, 8419–8434, https://doi.org/10.5194/acp-14-8419-2014, 2014.
Ye, Q., Robinson, E. S., Ding, X., Ye, P., Sullivan, R. C., and Donahue, N.
M.: Mixing of secondary organic aerosols versus relative humidity, Proc.
Natl. Acad. Sci. USA, 113, 12649–12654, https://doi.org/10.1073/pnas.1604536113, 2016.
Yu, J. Z., Huang, X., Xu, J., and Hu, M.: When Aerosol Sulfate Goes Up, So
Does Oxalate: Implication for the Formation Mechanisms of Oxalate, Environ.
Sci. Technol., 39, 128–133, https://doi.org/10.1021/es049559f, 2005.
Zelenyuk, A., Imre, D. G., Wilson, J., Bell, D. M., Suski, K. J.,
Shrivastava, M., Beránek, J., Alexander, M. L., Kramer, A. L., and
Massey-Simonich, S. L.: The effect of gas-phase polycyclic aromatic
hydrocarbons on the formation and properties of biogenic secondary organic
aerosol particles, Faraday Discuss., 200, 143–164, https://doi.org/10.1039/c7fd00032d,
2017.
Zhang, B., Owen, R. C., Perlinger, J. A., Kumar, S., Wu, S., Val Martin, M.,
Kramer, L. Helmig, D., and Honrath, R. E.: A semi-Lagrangian view of ozone
production tendency in North American outflow in the summers of 2009 and
2010, Atmos. Chem. Phys., 14, 2267–2287,
https://doi.org/10.5194/acp-14-2267-2014, 2014.
Zhang, B., Owen, R. C., Perlinger, J. A., Helmig, D., Val Martín, M.,
Kramer, L., Mazzoleni, L. R., and Mazzoleni, C.: Ten-year chemical signatures
associated with long-range transport observed in the free troposphere over
the central North Atlantic, Elem. Sci. Anth., 5, 1–20,
https://doi.org/10.1525/elementa.194, 2017.
Zhang, Q., Jimenez, J., Canagaratna, M., Allan, J., Coe, H., Ulbrich, I.,
Alfarra, M., Takami, A., Middlebrook, A., Sun, Y., Džepina, K., Dunlea,
E., Docherty, K., DeCarlo, P., Salcedo, D., Onasch, T., Jayne, J., Miyoshi,
T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J.,
Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower,
K., Bahreini, R., Cottrell, L., Griffin, R., Rautiainen, J., Sun, J., Zhang,
Y., and Worsnop, D.: Ubiquity and dominance of oxygenated species in organic
aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes,
Geophys. Res. Lett., 34, L13801, https://doi.org/10.1029/2007gl029979 , 2007.
Zhao, Y., Hallar, A. G., and Mazzoleni, L. R.: Atmospheric organic matter in
clouds: exact masses and molecular formula identification using
ultrahigh-resolution FT-ICR mass spectrometry, Atmos. Chem. Phys., 13,
12343–12362, https://doi.org/10.5194/acp-13-12343-2013, 2013.
Zobrist, B., Marcolli, C., Pedernera, D., and Koop, T.: Do atmospheric
aerosols form glasses?, Atmos. Chem. Phys., 8, 5221–5244,
https://doi.org/10.5194/acp-8-5221-2008, 2008.
Short summary
This paper presents the detailed molecular composition of free tropospheric aerosol. We studied three pollution events with different origins and residence times and observed differences in the molecular composition pertaining to the atmospheric oxidation. The results indicated that the transport pathways contributed to the observed differences and imply that emissions injected into the free troposphere are longer-lived than those in the boundary layer.
This paper presents the detailed molecular composition of free tropospheric aerosol. We studied...
Altmetrics
Final-revised paper
Preprint