Articles | Volume 18, issue 16
Atmos. Chem. Phys., 18, 12491–12510, 2018
https://doi.org/10.5194/acp-18-12491-2018
Atmos. Chem. Phys., 18, 12491–12510, 2018
https://doi.org/10.5194/acp-18-12491-2018

Research article 29 Aug 2018

Research article | 29 Aug 2018

How reliable are CMIP5 models in simulating dust optical depth?

Bing Pu and Paul Ginoux

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Bing Pu on behalf of the Authors (14 Jun 2018)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (26 Jun 2018) by Philip Stier
RR by Anonymous Referee #2 (26 Jul 2018)
ED: Publish as is (14 Aug 2018) by Philip Stier
Download
Short summary
Biases in dust modeling may result in biases in simulating energy budget and regional climate. Output of seven Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. Seasonal cycle and spatial pattern of dust optical depth (DOD) in very dusty regions are largely captured by multi-model mean. But observed connections between DOD and local controlling factors such as bareness are not well represented. Future projections by CMIP5 models and a regression model are also analyzed.
Altmetrics
Final-revised paper
Preprint