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Abstract. Dust aerosol plays an important role in the climate system by affecting the 1	
  

radiative and energy balances. Biases in dust modeling may result in biases in simulating 2	
  

global energy budget and regional climate. It is thus very important to understand how 3	
  

well dust is simulated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) 4	
  

models. Here seven CMIP5 models using interactive dust emission schemes are 5	
  

examined against satellite derived dust optical depth (DOD) during 2004-2016.  6	
  

It is found that multi-model mean can largely capture the global spatial pattern 7	
  

and zonal mean of DOD over land in present-day climatology in MAM and JJA. Global 8	
  

mean land DOD is underestimated by -25.2% in MAM to -6.4% in DJF. While seasonal 9	
  

cycle, magnitude, and spatial pattern are generally captured by multi-model mean over 10	
  

major dust source regions such as North Africa and the Middle East, these variables are 11	
  

not so well represented by most of the models in South Africa and Australia. Interannual 12	
  

variations of DOD are neither captured by most of the models nor by multi-model mean. 13	
  

Models also do not capture the observed connections between DOD and local controlling 14	
  

factors such as surface wind speed, bareness, and precipitation. The constraints from 15	
  

surface bareness are largely underestimated while the influences of surface wind and 16	
  

precipitation are overestimated.  17	
  

Projections of DOD change in the late half of the 21st century under the 18	
  

Representative Concentration Pathways 8.5 scenario by multi-model mean is compared 19	
  

with those projected by a regression model. Despite the uncertainties associated with both 20	
  

projections, results show some similarities between the two, e.g., DOD pattern over 21	
  

North Africa in DJF and JJA, an increase of DOD in the central Arabian Peninsula in all 22	
  

seasons, and a decrease over northern China from MAM to SON. 23	
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1. Introduction 24	
  

Dust is the second most abundant aerosols by mass in the atmosphere after sea 25	
  

salt. It absorbs and scatters both shortwave and longwave radiation and thus modifies 26	
  

local radiative budget and consequently vertical temperature profile, influencing global 27	
  

and regional climate. For instance, studies found dust influences the strength of the West 28	
  

African monsoon  (e.g., Miller and Tegen, 1998; Miller et al., 2004; Mahowald et al., 29	
  

2010; Strong et al., 2015) and Indian monsoonal rainfall (e.g., Vinoj et al., 2014; Jin et 30	
  

al., 2014, 2015, 2016;  Solmon et al., 2015; Kim et al., 2016; Sharma and Miller, 2017). 31	
  

Dust aerosols are also found to amplify droughts during the U.S. Dust Bowl and 32	
  

Medieval Climate Anomaly (Cook et al., 2008, 2009, 2013), and affect Atlantic tropical 33	
  

cyclones (e.g., Dunion and Velden, 2004; Wong and Dessler, 2005; Evan et al., 2006; 34	
  

Sun et al., 2008; Strong et al., 2018). Dust particles can also serve as ice cloud nuclei and 35	
  

influence the properties of the cloud (e.g., Levin et al., 1996; Rosenfield et al., 1997; 36	
  

Wurzler et al., 2000; Nakajima et al., 2001; Bangert et al., 2012) and affect regional 37	
  

radiative balance and hydrological cycle. When deposited in the oceans, iron-enriched 38	
  

dust also provides nutrients for phytoplankton, affecting ocean productivity and therefore 39	
  

carbon and nitrogen cycles and ocean albedo (e.g., Fung et al., 2000; Jickells et al., 2005; 40	
  

Shao et al., 2011). 41	
  

Globally, the estimated radiative forcing from dust aerosol is 0.10 (-0.30 to +0.10) 42	
  

W m-2, a magnitude about one fourth of the radiative forcing of sulfate aerosol or black 43	
  

carbon from fossil fuel and biofuel (Myhre et al., 2013; their Table 8.4). Biases in dust 44	
  

simulation may potentially affect global energy budgets and regional climate simulation. 45	
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Thus, it is very important to examine the capability of current state-of-the-art climate 46	
  

models in simulating dust.  47	
  

Only a few studies examined the Coupled Model Intercomparison Project Phase 5 48	
  

(CMIP5) model output of dust and most of them are regional evaluations. For instance, 49	
  

Evan et al. (2014) examined model output for Africa, but mainly focused on an area over 50	
  

the northeastern Atlantic (10°–20°N and 20°–30°W) where a long-term proxy of dust 51	
  

optical depth data over Cape Verde islands is available	
  (Evan and Mukhopadhyay, 2010).  52	
  

They found models underestimated dust emission and mass path and failed to capture the 53	
  

interannual variations from 1960 to 2004, as models did not capture the negative 54	
  

connection between dust mass path and precipitation over the Sahel.  55	
  

Another work examined CMIP5 aerosol optical depth (AOD) is by Sanap et al. 56	
  

(2014) for India. They compared dust distribution in the models with Earth Probe total 57	
  

ozone monitoring system (EPTOMS)/ Ozone monitoring Instrument (OMI) aerosol index 58	
  

(AI) from 2000 to 2005. They found most of CMIP5 models, except two HadGEM2 59	
  

models, underestimated dust load over Indo-Gangetic Plains, and suggested the biases are 60	
  

due to a misrepresentation of 850 hPa winds in the models. Later, Misra et al. (2016) also 61	
  

examined CMIP5 modeled AOD for India but did not specifically focus on dust. 62	
  

Shindell et al. (2013) examined the output of 10 models from the Atmospheric 63	
  

Chemistry and Climate Model Intercomparison Project (ACCMIP) for one year (2000), 64	
  

among which eight models also participated in the CMIP5. They noticed that simulated 65	
  

dust AOD vary by more than a factor of two across models.  However, this study also did 66	
  

not focus on dust, but emphasized the radiative forcings from anthropogenic aerosols.  67	
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None of the above studies examined global dust simulation in CMIP5 models.  68	
  

What’s more, most studies focused on annual mean, not seasonal averages. It is very 69	
  

possible that models perform better in some seasons than others. AeroCom multiple-dust 70	
  

model intercomparison was performed on both global and regional scales (Huneeus et al., 71	
  

2011) but only focused on one year, thus models’ capability of simulating interannual or 72	
  

long-term variability of dust is not clear. A comprehensive evaluation of the climatology 73	
  

and interannual variation of global dust optical depth (DOD) in CMIP5 models will 74	
  

provide insights into models’ capability of simulating the integrated aerosol extinction 75	
  

due to dust, which is one of the key variables that determine the radative forcing of dust 76	
  

to the climate system.  77	
  

Here we examine the results of seven CMIP5 models (Table 1) by comparing 78	
  

model output with DOD derived from Moderate Resolution Imaging Spectroradiometer 79	
  

(MODIS) Deep Blue aerosol products. Projections on changes of DOD in the late half of 80	
  

the 21st century by CMIP5 models and also by a regression model (Pu and Ginoux, 2017) 81	
  

are examined and analyzed. The following section introduces data and methods used in 82	
  

this study. Results are presented in section 3, including examinations on the climatology 83	
  

and interannual variations of CMIP5 DOD and future projections. Discussion and major 84	
  

conclusions are presented in sections 4 and 5, respectively. 85	
  

 86	
  

2. Data and Methodology 87	
  

2.1 DOD from MODIS  88	
  

DOD is a widely used variable that describes optical depth due to the extinction 89	
  

by mineral particles. It is one of the key factors (single scattering albedo and asymmetry 90	
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factor being the two others) controlling dust interaction with radiation. Monthly DOD are 91	
  

derived from MODIS aerosol products retrieved using the Deep Blue (MDB2) algorithm, 92	
  

which employs radiance from the blue channels to detect aerosols globally over land even 93	
  

over bright surfaces, such as desert (Hsu et al., 2004, 2006). Ginoux et al. (2012b) used 94	
  

collection 5.1 level 2 aerosol products from MODIS aboard the Aqua satellite to derive 95	
  

DOD. Here, both MODIS aerosol products (collection 6, level 2; Hsu et al., 2013) from 96	
  

the Aqua and Terra platforms are used. Aerosol products such as AOD (550 nm), single 97	
  

scattering albedo, and the Ångström exponent are first interpolated to a regular 0.1° by 98	
  

0.1° grid using the algorithm described by Ginoux et al. (2010). The DOD is then derived 99	
  

from AOD following the methods of Ginoux et al. (2012b) with adaptions for the newly 100	
  

released MODIS collection 6 aerosol products (Pu and Ginoux, 2016).  To separate dust 101	
  

from other aerosols, we use the Ångström exponent (α) and single scattering albedo (ω). 102	
  

Ångström exponent has been shown to be highly sensitive to particle size (Eck et al., 103	
  

1999). A continuous function relating the Ångström exponent to fine-mode aerosol 104	
  

optical depth established by Anderson et al. (2005; their Eq. 5) based on ground-based 105	
  

data is used to separate dust from fine particles. We also screen the data by setting single 106	
  

scattering albedo at 470 nm to be less than one for dust due to its absorption of solar 107	
  

radiation. This separates dust from scattering aerosols such as sea salt, which is purely 108	
  

scattering.  The formula can be summarized as the following:  109	
  

              DOD = AOD × (0.98-0.5089α +0.0512α2)     if (ω < 1)        .            (1) 110	
  
  111	
  

Note that DOD represents the coarse mode fraction of dust only. It is estimated that the 112	
  

fine mode dust at emission is less than 10% (Kok et al., 2017).   113	
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Aqua and Terra DOD have previously been used to study global dust sources 114	
  

(Ginoux et al., 2012b), and their geomorphological signature (Baddock et al., 2016), dust 115	
  

variations in the Middle East (Pu and Ginoux, 2016) and the U.S. (Pu and Ginoux, 2017), 116	
  

and have been validated with Aerosol Robotic NETwork (AERONET) stations over the 117	
  

U.S. (Pu and Ginoux, 2017). Here we compare Aqua and Terra DOD against AERONET 118	
  

stations globally (Section 1 and Figures. S1-2 in the Supplement). Both Aqua and Terra 119	
  

DOD is slightly underestimated, with respective errors of	
   0.08+0.52DOD and 120	
  

0.10+0.48DOD.  121	
  

Daily DOD from Aqua and Terra are averaged to monthly data and interpolated to 122	
  

a 1° by 1° grid. Terra passes the Equator from north to south around 10:30 local time 123	
  

while Aqua passes the Equator from south to north around 13:30 local time. To reduce 124	
  

missing data and also to combine the information from both morning and afternoon 125	
  

hours, a combined monthly DOD (here after MODIS DOD) is derived by averaging Aqua 126	
  

and Terra DOD when both products exist or using either Aqua or Terra DOD when only 127	
  

one product is available. As shown in Figure S3 in the Supplement, the mean available 128	
  

days in each season and also spatial coverage are enhanced in combined DOD than using 129	
  

Aqua or Terra (not shown) DOD alone. This combined DOD is available from January 130	
  

2003 to December 2016. 131	
  

We also compared MODIS DOD climatology with both AERONET observation 132	
  

and DOD retrieved from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP; 133	
  

Winker et al., 2004; 2007) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder 134	
  

Satellite Observation (CALIPSO) satellite. AERONET stations provide cloud-screened	
  135	
  

and	
  quality assured (level 2) coarse mode aerosol optical depth (COD) at 500 nm, which 136	
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is processed by the Spectral Deconvolution Algorithm (O'Neill et al., 2003). Only nine 137	
  

sites have long-term COD records during 2003-2016, and the climatological mean of 138	
  

MODIS DOD generally compares well with these sites (Figure S4 in the Supplement).  139	
  

CALIOP measures backscattered radiances attenuated by the presence of aerosols 140	
  

and clouds and retrieves corresponding microphysical and optical properties of aerosols. 141	
  

Monthly dust AOD (or DOD) on a 2° latitude by 5° longitude grid are available since 142	
  

June 2006. The climatology of CALIOP DOD during 2007-2016 is similar to that of 143	
  

MODIS DOD during the same period (Figure S5 in the Supplement). The global mean 144	
  

(over land) MODIS DOD is slightly higher than that from CALIOP, probably due to the 145	
  

lower horizontal resolution of the latter. The pattern correlations (e.g., Pu et al., 2016) 146	
  

between the two products range from 0.83 in boreal spring and summer to 0.63 in boreal 147	
  

winter (Figure S5 in the Supplement). Due to higher spatial resolution (compared with 148	
  

CALIOP) and coverage (compared with AERONET sites), MODIS DOD is chosen as the 149	
  

primary product to validate CMIP5 model output. Nine regions (Table 2) are selected to 150	
  

study the DOD magnitude, spatial pattern, and variations. These regions cover major dust 151	
  

source regions previously identified (Ginoux et al. 2012).  152	
  

Given the analysis above (Figs. S3-5), there are some uncertainties associated 153	
  

with DOD in a few regions in some seasons: (1) relatively low coverage (<30 days per 154	
  

season) over northern China and southeastern Asia in JJA; (2) DOD is slightly higher 155	
  

than COD from AERONET over the Arabian Peninsula in DJF and SON; (3) DOD is 156	
  

lower than CALIOP over northern India in MAM. We will consider these uncertainties in 157	
  

the following analysis wherever is relevant.  158	
  

 159	
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2.2 Reanalysis and observation datasets 160	
  

Previous study found that the variations of dust event frequency over the U.S. in 161	
  

the recent decade could be largely represented by the variations of three local controlling 162	
  

factors: seasonal mean surface wind speed, bareness, and precipitation (Pu and Ginoux, 163	
  

2017). These factors have previously been found to constrain dust emission or variability 164	
  

on multiple time scales (e.g., Gillette and Passi, 1988; Fecan et al., 1999; Zender and 165	
  

Kwon, 2005). While surface wind is positively related to the emission and transport of 166	
  

dust, vegetation is an important non-erodible element that prevents wind erosion. 167	
  

Precipitation is generally negatively related to dust emission and transport processes. 168	
  

While the scavenging effect of precipitation on small dust particles only lasts a few hours 169	
  

or days, influences of precipitation on soil moisture lasts longer. 170	
  

To examine the interannual variations of DOD and its connection with local 171	
  

controlling factors such as surface wind speed, bareness, and precipitation, monthly data 172	
  

of 10 m wind speed from the ERA-Interim (Dee et al., 2011), leaf area index (LAI) data 173	
  

from Advanced Very High Resolution Radiometer (AVHRR; Claverie et al., 2014, 174	
  

2016), and precipitation from the Precipitation Reconstruction over Land (PRECL; Chen 175	
  

et al., 2002) are used. 176	
  

ERA-Interim is a global reanalysis from the European Centre for Medium-Range 177	
  

Weather Forecasts (ECMWF). Its horizontal resolution is T255 (about 0.75° or 80 km). 178	
  

We choose this analysis because of its relatively high spatial resolution. The monthly data 179	
  

are available from 1979 to present day. 180	
  

Monthly LAI derived from the version 4 of Climate Data Record (CDR) of 181	
  

AVHRR is used to calculate surface bareness.  The data are produced by the National 182	
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Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) 183	
  

and the University of Maryland. Monthly gridded data on a horizontal resolution of 0.05° 184	
  

by 0.05° degree are available from 1981 to present. This product is selected due to its 185	
  

high spatial resolution and long temporal coverage. Surface bareness is calculated from 186	
  

seasonal mean LAI (Pu and Ginoux, 2017) as the following, 187	
  

                               Bareness = exp (-LAI)                                      .              (2) 188	
  

Bareness is originally defined as exp (-LAI-SAI), where SAI is stem area index (Evans et 189	
  

al. 2016). Since satellite does not retrieve brownish SAI, we only use LAI to calculate 190	
  

bareness.  191	
  

PRECL precipitation from the National Oceanic and Atmospheric Administration 192	
  

(NOAA) is a global analysis available monthly from 1948 to present at a 1° by 1° 193	
  

resolution. The dataset is derived from gauge observations from the Global Historical 194	
  

Climatology Network (GHCN), version 2, and the Climate Anomaly Monitoring System 195	
  

(CAMS) datasets. Its long coverage and spatial resolution is suitable to study the 196	
  

connections between DOD and precipitation. 197	
  

 198	
  

2.3 CMIP5 model output 199	
  

 Among CMIP5 models we selected seven models (Table 1) that used interactive 200	
  

dust emission schemes, in which dust emission varied in response to changes of climate. 201	
  

The output of 10 m wind speed, precipitation, and LAI are also available from these 202	
  

models. In models that dust is simulated offline, i.e., dust emission did not interactively 203	
  

respond to meteorological and climate changes, the connections between DOD and 204	
  

modeled controlling factors are lost. Other models (to our best knowledge) either used 205	
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offline dust as an input or did not write out the variables needed for this analysis.  206	
  

 Both historical run from 1861 to 2005 and future run under the Representative 207	
  

Concentration Pathways 8.5 (RCP 8.5) scenario (Riahi et al., 2011) from 2006 to 2100 208	
  

are used. Here the RCP 8.5 scenario is chosen because it represents the upper limit of the 209	
  

projected greenhouse gas change in the twenty-first century and thus likely is the worst-210	
  

case scenario for future DOD variation under climate change. Also, studies found that 211	
  

observed CO2 emission pathway during 2005-2014 matches RCP 8.5 scenario better than 212	
  

other scenarios (e.g., Fuss et al., 2014), which makes the RCP8.5 output suitable to 213	
  

examine present-day DOD variations after 2005. 214	
  

Monthly model output of dust load, surface 10 m wind speed, precipitation, and 215	
  

LAI are used. Historical output from 2003 to 2005 and RCP 8.5 output from 2006 to 216	
  

2016 are combined to form time series and climatology during 2003-2016 to compare 217	
  

with MODIS DOD during the same time period.  218	
  

 219	
  

2.3.1 DOD derived from modeled dust load 220	
  

Most CMIP5 models did not save DOD, so we used monthly dust load and 221	
  

converted them to DOD using the relationship derived by Ginoux et al. (2012a) as the 222	
  

following 223	
  

                                               𝜏 = 𝑀×  𝑒  ,                                                          (3) 224	
  

where τ is DOD at 500 nm, M is the load of dust in unit of (g m−2), and e = 0.6 m2 g−1 is 225	
  

the mass extinction efficiency. Dust load from different models is first interpolated to a 226	
  

2° by 2.5° grid and then converted to DOD. The same method was used by Pu and 227	
  

Ginoux (2017) for the U.S.  Applying the same mass extinction efficiency everywhere 228	
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and to all the CMIP5 model output used here is a simplification, as different models may 229	
  

have quite different mass extinction efficiency. For instance, e can range from 0.25 to 230	
  

1.28 m2 g−1 in AEROCOM models, with a multi-model medium of 0.72 m2 g−1 (Huneeus 231	
  

et al., 2011). Here, we compare the derived DOD with modeled DOD from one historical 232	
  

simulation of GFDL-CM3 model (Donner et al., 2011) as an example. A full validation 233	
  

of this method will require modeled DOD from all the other CMIP5 models, which are 234	
  

currently not available. The pattern correlation of the climatology (1861-2005) between 235	
  

the derived DOD and modeled DOD in GFDL-CM3 are very high, all above 0.99 for four 236	
  

seasons (not shown).  The percentage differences between derived DOD and modeled 237	
  

DOD averaged over global land range from -3.6% in DJF and SON to 1.3% in MAM and 238	
  

JJA. 239	
  

 240	
  

2.4 A linear regression model 241	
  

2.4.1 Multiple linear regression  242	
  

 In order to examine the relative contribution of each local controlling factor to 243	
  

DOD variations, multiple linear regression is applied by regressing MODIS DOD onto 244	
  

standardized seasonal mean ERA-Interim surface wind speed, AVHRR bareness, and 245	
  

PRECL precipitation at each grid point. All the data are re-gridded to a 1° by 1° grid 246	
  

before the calculation. Over regions where values are missing for any of the explanatory 247	
  

variables (i.e., precipitation, bareness, and surface wind speed) or DOD, the regression 248	
  

coefficients are set to missing values. The collinearity among these explanatory variables 249	
  

is examined by calculating variance inflation factor (VIF) (e.g., O'Brien, 2007; Abudu et 250	
  

al., 2011), and in most regions the VIF is below 2 (not shown), indicating a low 251	
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collinearity (5–10 is usually considered high). Bootstrap resampling is used to test the 252	
  

significance of the regression coefficients, following the method used by Pu and Ginoux 253	
  

(2017).  254	
  

 Multiple linear regression is also applied to CMIP5 model derived DOD and 255	
  

output of surface wind speed, bareness, and precipitation to obtain regression coefficients 256	
  

from the models from 2004 to 2016.  All variables are interpolated to a 2° by 2.5° grid 257	
  

before regression. The results are compared with regression coefficients derived from 258	
  

observational datasets.  259	
  

 260	
  

2.4.2 DOD reconstruction and future projection 261	
  

 Using regression coefficients obtained from observations and observed variations 262	
  

of precipitation, bareness, and surface wind speed from 2004 to 2016, we can reconstruct 263	
  

DOD in the present day and compare it with MODIS DOD (see discussion in section 3.2).  264	
  

Similar to the method used by Pu and Ginoux (2017), the regression coefficients 265	
  

derived from MODIS DOD and observed controlling factors and CMIP5 model output of 266	
  

surface wind speed, bareness, and precipitation are used to project variations of future 267	
  

DOD. The regression coefficients are interpolated from the 1° by 1° grid to a 2° by 2.5° 268	
  

grid to be consistent with model output. Such an interpolation may smooth out some 269	
  

spatial characteristics from observations. Here we tried two groups of CMIP5 output for 270	
  

these controlling factors. One group used seven models with interactive dust emission 271	
  

scheme (Table 1), and the other used 16 CMIP5 models (see Supplementary Table S1 of 272	
  

Pu and Ginoux, 2017) that include the seven models with interactive dust emission 273	
  

scheme. The reason to test the latter is to include as much model output of the controlling 274	
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factors as possible. The differences between the historical run (1861–2005 average) and 275	
  

that of the RCP 8.5 run for the late half of the twenty-first century (2051–2100) are 276	
  

standardized by the standard deviation of the historical run for each explanatory variable. 277	
  

The projected change reveals how DOD will vary with reference to the historical 278	
  

conditions (mean and standard deviation). 279	
  

 280	
  

3. Results 281	
  

3.1 Climatology (2004-2016) 282	
  

Figure 1 shows the climatology of MODIS DOD (top panel) in four seasons 283	
  

during 2004-2016 and that from the CMIP5 multi-model mean (bottom). Globally, the 284	
  

dustiest regions are largely located over the northern hemisphere (NH) over North Africa, 285	
  

the Middle East, and East Asia (Figs. 1a-d). In these regions, DOD is higher in boreal 286	
  

spring and summer than fall and winter. Modeled global DOD over land is generally 287	
  

lower than that from MODIS DOD, ranging from -0.028 (-25.2%) in MAM to -0.005 (-288	
  

6.4%) in DJF. The global spatial pattern is better captured in MAM and JJA, with pattern 289	
  

correlations of 0.74 and 0.85, respectively (Figs. 1f-g). In DJF, DOD is overestimated 290	
  

over central Africa and Australia, but underestimated over the Middle East and Asia (Fig. 291	
  

1e), while in SON there is a similar overestimation in Australia and an underestimation in 292	
  

the Middle East (Fig. 1h).  293	
  

Figure 2 shows the zonal mean of CMIP5 DOD from individual models (thin 294	
  

colorful lines) and multi-model ensemble mean (thick black), in comparison with MODIS 295	
  

DOD (thick red). In DJF, DOD is underestimated in the NH from 15° N to 50°N but 296	
  

overestimated over the tropics and southern hemisphere (SH) (Fig. 2a). While the 297	
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overestimation in the SH is largely contributed by three models, the underestimation in 298	
  

the NH appears in all the seven models. The overestimation of DOD in HadGEM2-ES 299	
  

has also been identified in a previous study (Bellouin et al., 2011) and will be discussed 300	
  

later. In MAM, a similar overestimation of DOD in the tropics and SH also occurs in 301	
  

some models, and the multi-model mean slightly overestimates DOD around 20°-30°S 302	
  

(Fig. 2b). In NH, there is a weak underestimation too, but the overall gradient is largely 303	
  

captured. In JJA, the multi-model mean resembles MODIS DOD very well (Fig. 2c), 304	
  

consistent with the highest pattern correlation in this season shown in Fig. 1. The peak 305	
  

around 19° N in North Africa and Middle East is well captured by the multi-model mean, 306	
  

although the magnitude is slightly underestimated. In SON, different from MODIS DOD 307	
  

that peaks around 19°N, the multi-model mean has two peaks around 15°N and 28°S, 308	
  

respectively, a pattern somewhat similar to that in DJF (Fig. 2d). Consequently, DOD in 309	
  

CMIP5 multi-model mean is overestimated at 15°-40°S and 0°-15°N but underestimated 310	
  

at 15°S -0° and 15°-40°N. 311	
  

Seasonal cycles of CMIP5 DOD are compared with MODIS DOD in nine regions 312	
  

in Figure 3. The annual means of DOD in each region from multi-model mean (black) 313	
  

and MODIS (red) are also listed in each plot. The spread of DOD among individual 314	
  

models is greater during boreal spring and summer for regions in the NH and during 315	
  

austral spring and summer for regions in the SH. Seasonal cycles over North Africa, the 316	
  

Middle East, North America, and India are generally captured by multi-model mean, with 317	
  

modeled DOD peaking during the same seasons as MODIS DOD (Figs. 3a-b, d-e). While 318	
  

some models overestimate the seasonal peaks over the Middle East, North America, and 319	
  

India (e.g., CanESM2, HadGEM2-ES, and HadGEM2-CC), a few models have very 320	
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weak seasonal cycles and underestimate DOD over North America and India (e.g., 321	
  

GFDL-CM3, NorESM1-M, MIROC-ESM, and MIROC-ESM-CHEM). Note that 322	
  

MODIS DOD is slightly lower than CALIOP DOD over India in MAM (Fig. S5), 323	
  

therefore for these models the underestimation may be larger than shown in Fig. 3e.   324	
  

Since the temporal coverage of MODIS DOD over northern China and 325	
  

southeastern Asia is relatively low in JJA compared with other regions (Fig. S3), we also 326	
  

examined the seasonal cycle of CALIOP DOD (not shown) and results are similar but 327	
  

with weaker magnitude. Over northern China, MODIS DOD peaks in spring (Fig. 3c), 328	
  

consistent with previous studies (e.g., Zhao et al., 2006; Laurent et al., 2006; Ginoux et 329	
  

al., 2012b), while multi-model mean peaks later in May-June. Individual models have 330	
  

quite different seasonal cycles, with GFDL-CM3 model having a peak (in April) closer to 331	
  

the timing of MODIS maximum.  Similar misrepresentation occurs over the southeastern 332	
  

Asia (Fig. 3f).  333	
  

In South Africa and South America the observed maxima in early austral spring 334	
  

(i.e., September) are also not captured by the multi-model mean (Figs. 3g-h).  Note that 335	
  

CanESM2 largely captures the seasonal cycle of DOD over South America, although the 336	
  

magnitude is overestimated (Fig. 3h). In Australia, DOD is largely overestimated and the 337	
  

peak from November to January in MODIS DOD is shifted about one month earlier in 338	
  

the multi-model mean (Fig. 3i). Similar to the finding here, Bellouin et al. (2011) also 339	
  

found that HadGEM2-ES model overestimated DOD over Australia and Thar desert 340	
  

region in northwestern India and suggested that these overestimations were likely due to 341	
  

model’s overestimation of bare soil fraction and underestimation of soil moisture. Despite 342	
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overestimation, the seasonal cycle in HadGEM2-CC model is more similar to MODIS 343	
  

DOD than other models (Fig. 3i).  344	
  

We further examine the magnitudes and spatial patterns of CMIP5 DOD in these 345	
  

regions. Figure 4 shows the ratio of pattern standard deviations (standard deviations of 346	
  

values within the domain) and pattern correlation between CMIP5 DOD and MODIS 347	
  

DOD climatology (2004-2016) in each region for four seasons. While the former reveals 348	
  

the magnitude differences, the latter demonstrates the spatial resemblance.    349	
  

Over North Africa, the Middle East, and India, the ratio of CMIP5 DOD from 350	
  

individual models and multi-model mean versus MODIS DOD are all within ± one 351	
  

order of magnitude (Fig. 4). Most models underestimate DOD in northern China, 352	
  

although the magnitudes are largely within the range of -one order of magnitude to one. 353	
  

Over North America, South Africa, and Australia, some models underestimate the DOD 354	
  

by more than two orders of magnitudes, while over Australia three models overestimate 355	
  

DOD by more than one order of magnitude. In general, magnitudes of multi-model mean 356	
  

are closer to satellite DOD than most individual models and are largely within ± one 357	
  

order of magnitude of MODIS DOD. 358	
  

The spatial patterns are better captured over North Africa and the Middle East 359	
  

than other regions (Fig. 4), with pattern correlations above 0.6 in most models (with 360	
  

highest pattern correlation of 0.92 and 0.83, respectively). Pattern correlations from 361	
  

multi-model mean are also high, reaching 0.87 (0.78) over North Africa and 0.75 (0.73) 362	
  

over the Middle East in JJA (MAM). Nonetheless, some models show negative pattern 363	
  

correlations over North Africa, northern China, North America, southeastern Asia, South 364	
  

17



	
  

Africa, South America, and Australia. Overall, spatial patterns are less well represented 365	
  

in regions over the SH than over the NH in CMIP5 models.  366	
  

In short, in terms of both magnitudes and spatial pattern, DOD climatology is best 367	
  

represented over North Africa and the Middle East among the nine regions.  The multi-368	
  

model mean shows that DOD over North Africa is slightly better simulated than over the 369	
  

Middle East, somewhat similar to the finding of AeroCom multi-model analysis 370	
  

(Huneeus et al. 2011). 371	
  

 372	
  

3.2 Interannual variations 373	
  

An important aspect of dust activity is its long-term variability, including 374	
  

interannual and decadal variations. Dust emission in North Africa is known to have 375	
  

strong decadal variations (e.g., Prospero and Nees, 1986; Prospero and Lamb, 2003; 376	
  

Mahowald et al., 2010; Evan et al., 2014, 2016), while over Australia, strong interannual 377	
  

variations have been related to El Niño–Southern Oscillation (e.g., Marx et al., 2009; 378	
  

Evans et al., 2016). Due to the short time coverage of high quality satellite products, we 379	
  

focus on interannual variations of DOD from 2004 to 2016. 380	
  

Figure 5 shows the correlations of regional mean time series of DOD between 381	
  

MODIS and CMIP5 models and multi-model mean for each season in nine regions. We 382	
  

also show correlations between the reconstructed DOD (see section 2.4.2 for details) and 383	
  

MODIS DOD for reference (Table S1 in the Supplement). The reconstructed DOD is  384	
  

calculated using observed regression coefficients and time-varying controlling factors 385	
  

from observations (i.e., surface wind speed, bareness, and precipitation).  386	
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 The interannual variations of DOD are in general not well captured by CMIP5 387	
  

models. This is consistent with previous study by Evan et al. (2014) who found dust 388	
  

variability downwind of North Africa over the northeastern Atlantic was misrepresented 389	
  

in CMIP5 models. In most regions, only one or two models show significant positive 390	
  

correlation with MODIS DOD in some seasons, and negative correlations exist in all 391	
  

regions (Fig. 5). North Africa, the Middle East, southeastern Asia, South America, and 392	
  

Australia show less negative correlations than other dusty regions. On the other hand, 393	
  

reconstructed DOD shows significant positive correlations with MODIS DOD over most 394	
  

regions in all seasons (Table S1 in the Supplement). This suggests that the interannual 395	
  

variations of DOD can be largely attributed to the variations of these controlling factors, 396	
  

and models may misrepresent these relationships, in addition to their incapacity of 397	
  

capturing the interannual variations of individual controlling factors in general (not 398	
  

shown), which is not uncommon for coupled models.  399	
  

We further examine the connection between those controlling factors and DOD in 400	
  

CMIP5 models. Figure 6 shows the dominant controlling factors among the three (surface 401	
  

wind speed, bareness, and precipitation) on DOD variations in four seasons from MODIS 402	
  

(left column) and from CMIP5 multi-model mean (right column), respectively. To 403	
  

highlight factors controlling DOD variations near the dust source regions, a mask of 404	
  

AVHRR LAI≤ 0.5 is applied to both coefficients.  405	
  

Bareness plays the most important role in many dusty regions in observations, 406	
  

e.g., over Australia, central U.S., and South America (Figs. 6a-d). Note that while 407	
  

bareness plays an important role over the Sahel during DJF and MAM, it also shows 408	
  

strong signal over some areas in the northern North Africa (Figs. 6a-b). The reliability of 409	
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this information is limited by the accuracy of LAI retrieval in these areas. The value of 410	
  

bareness in this region is actually quite high (as LAI is very low), but still has weak 411	
  

interannual variability (Figures S6 in the Supplement). Over some areas of North and 412	
  

South Africa, the Middle East, and East Asia, surface wind and precipitation are also 413	
  

quite important.  414	
  

The role of bareness is largely underestimated in CMIP5 models, while surface 415	
  

wind and precipitation become the dominant factors (Figs. 6e-h). The misrepresentation 416	
  

of the connection between DOD and these controlling factors may cause the 417	
  

misrepresentation of the dust load and its variability. Taking Australia for an example, 418	
  

the overestimation of DOD magnitudes may be related to an overestimation of the 419	
  

influence of surface wind on DOD and a lack of constraints from surface bareness. 420	
  

Despite the large differences between the observed and modeled connections 421	
  

between DOD and the controlling factors, some regions show similarities. For instance, 422	
  

over North Africa in DJF, both show an important influence from surface winds (Figs. 423	
  

6a, e), although the locations of surface wind-dominant areas are not exactly the same. 424	
  

Evan et al. (2016) also found a dominant role of surface wind on African dust variability, 425	
  

but they focused on monthly means, not seasonal averages. In MAM, precipitation starts 426	
  

to play a role in some parts of North Africa, while surface wind still dominates in some 427	
  

areas (Fig. 6b). Same increasing influence of precipitation is shown in the multi-model 428	
  

mean, but such an influence seems overestimated (Fig. 6f).  In JJA, the influences of 429	
  

precipitation and bareness over the eastern Arabian Peninsula in the multi-model mean 430	
  

(Fig. 6g) also show some similarity to observation (Fig. 6c), although an underestimation 431	
  

of the influence from bareness and an overestimation of precipitation are still there.  432	
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Also, note that in CMIP5 models, due to lack of constraints from low surface 433	
  

temperature (e.g., over frozen land) and snow cover on dust emission or 434	
  

misrepresentations of dust transport, DOD and also the regression coefficients still exist 435	
  

over NH high latitudes in boreal winter and spring in the multi-model mean (Figs. 6e-f).  436	
  

 437	
  

3.3 Future projections 438	
  

How will DOD change in response to increasing greenhouse gases? The results 439	
  

from CMIP5 multi-model mean are shown in Figure 7. We compare the DOD during the 440	
  

late half of the 21st century under the RCP 8.5 scenario with that in the historical level 441	
  

(1861-2005 average).  442	
  

Over land, CMIP5 model projects a decrease of global mean DOD in all seasons 443	
  

except JJA (Figs. 7a-d). The inter-model standard deviation is much greater than the 444	
  

multi-model mean, suggesting large discrepancies among individual models. The 445	
  

projected decrease is largely over northern North America, southern North Africa, eastern 446	
  

central Africa, and East Asia, while the increase is largely over northern North Africa, the 447	
  

Middle East, southern North America, South Africa, South America, and southern 448	
  

Australia (Fig. 7).  Regional means of DOD change (in percentage) with reference to 449	
  

CMIP5 historical run are summarized in Table 3.  450	
  

What might be the causes of DOD change? Figure 8 shows the projected change 451	
  

of precipitation, bareness, and surface wind speed from CMIP5 multi-model mean. These 452	
  

factors play important role in DOD variations in the present day, although models tend to 453	
  

underestimate the role of bareness and overestimate the influences of precipitation and 454	
  

surface wind (Fig. 6). Increases in precipitation can increase soil moisture and remove 455	
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airborne dust, thus usually favors a decrease of DOD.  As shown in Figs. 8a-d, the 456	
  

increases of precipitation in northern Eurasia, northern North America, the Congo basin 457	
  

in Africa, and Australia (DJF and MAM) may contribute to the decrease of DOD in these 458	
  

regions, while the decreases of precipitation over northern North Africa and the Middle 459	
  

East (DJF and MAM), South Africa, and South America may contribute to the increase of 460	
  

DOD (DJF-SON). Also note that in JJA both precipitation and DOD increase over 461	
  

northern North Africa and the Middle East (Fig. 8c), suggesting other factors dominate 462	
  

the variation of DOD in the multi-model mean.  463	
  

A decrease (increase) of bareness indicates a growth (decay) of vegetation and is 464	
  

usually associated with a decrease (increase) of DOD. In general, except regions such as 465	
  

southern North America, South America, South Africa, part of northern Eurasia, and 466	
  

central Sahel, the pattern of bareness change does not resemble DOD change (Figs. 8e-h). 467	
  

This is probably due to the fact that the overall influence of bareness on DOD variation is 468	
  

underestimated in CMIP5 models (Fig. 6). 469	
  

Increases in surface wind can enhance dust emission and transport, and vise versa. 470	
  

The changes of surface wind in DJF and MAM are similar and likely to contribute to the 471	
  

increase of DOD over northern North Africa, the Middle East, eastern South America, 472	
  

southern South Africa, and southern Australia (Figs. 8i-j). The decrease of DOD over 473	
  

northwestern North America, the Sahel, and northern Australia may also relate to the 474	
  

decrease of surface wind there, in addition to an increase of precipitation and a reduction 475	
  

of bareness. In JJA and SON (Figs. 8k-l), the increases of surface wind in South America, 476	
  

South Africa, central Australia and the decreases of wind in northwestern North America, 477	
  

northern Eurasia, and the central Sahel are also consistent with patterns of DOD change. 478	
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In short, variations of CMIP5 DOD in the late half of the 21st century are more 479	
  

consistent with changes of precipitation and surface wind speed than with surface 480	
  

bareness, consistent with the analysis above regarding to the present-day condition.  481	
  

Here we also present the projected change of DOD from the regression model in 482	
  

Figure 9. The regression model (see section 2.4 for details) is developed based on 483	
  

observed relationships between MODIS DOD and local controlling factors and can 484	
  

largely capture the interannual variations of DOD in the present-day climate (Table S1 in 485	
  

the Supplement). Assuming that the observed connection between DOD and these 486	
  

controlling factors do not change dramatically in the future, we can use this regression 487	
  

model and CMIP5-model projected change of controlling factors to project DOD 488	
  

variations. Compared to DOD projection from CMIP5 models, this approach utilizes 489	
  

additionally observational constrains and is likely to provide a more reliable future 490	
  

projection. We use projected changes of precipitation, bareness, and surface wind speed 491	
  

from seven CMIP5 models with interactive dust emission scheme (see methodology). A 492	
  

similar method is applied to the model output from 16 CMIP5 models, and results are 493	
  

similar (Figure S7 in the Supplement). A mask of present-day LAI ≤ 0.5 is also applied to 494	
  

highlight the changes of DOD near dust source regions. By doing this, we assume the 495	
  

location of major dust sources will not change much at the late half of the 21st century. 496	
  

The unmasked figure is presented in the supplementary file (Figure S8 in the 497	
  

Supplement). The reason we did not use the projected future LAI as a mask is that 498	
  

there’re large uncertainties associated with LAI projection, especially over northern 499	
  

hemisphere subtropical regions (e.g., Figs. 8e-h).   500	
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In DJF, regression model projected change of DOD over Mexico, North Africa, 501	
  

the Middle East and part of northern China (Fig. 9a) are similar to those projected by 502	
  

CMIP5 models over those dust source regions (Fig. 7a), but with a greater magnitude. In 503	
  

MAM, a decrease of DOD is projected over large area of North Africa (Fig. 9b), which is 504	
  

different from the pattern projected from the CMIP5 multi-model mean (Fig. 7b). The 505	
  

decrease of DOD over northern central U.S. is also different from the overall increase 506	
  

projected by CMIP5 DOD. However, the increase of DOD over the Middle East and the 507	
  

decrease of DOD over northern China are similar to that of CMIP5 DOD. During JJA and 508	
  

SON, DOD decreases over the Sahel and northern China but increases over a belt to the 509	
  

north of central Sahel and parts of the Middle East (Figs. 9c-d).  The weak increase of 510	
  

DOD over the southern corner of South Africa in JJA and a slight decrease in SON also 511	
  

has high agreement among the regression projections (dotted areas in Figs. 9c-d). 512	
  

Changes of DOD over Australia are very small in all seasons and show little consistency 513	
  

among the  regression projections.   514	
  

The regression model projection using 16-model output shows very similar 515	
  

patterns (Figure S7 in the Supplement), largely because the projected changes of 516	
  

precipitation, surface wind speed, and bareness from 16-model ensemble mean are 517	
  

similar to those from 7-model ensemble mean in dusty regions (Figure S9 in the 518	
  

Supplement). But there are also some discrepancies in terms of magnitude and pattern 519	
  

that are revealed in the projected DOD patterns, e.g., the projected reduction of DOD is 520	
  

greater and more widespread over the northern Asia in MAM if using 16-model output 521	
  

and the increase of DOD along the southern edge of the Sahara is weaker in JJA and 522	
  

SON (Fig. S7 in the Supplement vs. Fig. 9).  523	
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The contribution of each controlling factor to the total DOD change is shown in 524	
  

Figure 10. While changes of bareness over North Africa and northern China play an 525	
  

important role in DOD change, changes of precipitation, e.g. over northwestern China in 526	
  

MAM, and surface wind, e.g., over northern North Africa and the Middle East in DJF and 527	
  

MAM, also play vital roles.  528	
  

Both projections from the CMIP5 models and that from the regression model have 529	
  

some uncertainties. The reliability of future projection by CMIP5 models is limited by 530	
  

models’ capability of capturing present-day climatology and observed connection 531	
  

between DOD and local controlling factors. As discussed earlier, the overall performance 532	
  

of models is better in those very dusty regions in the NH, such as North Africa and the 533	
  

Middle East, than other regions. Multi-model mean also overestimates the connection 534	
  

between DOD and precipitation and surface wind and underestimates the influence of 535	
  

bareness in the present-day (Fig. 6), which can cast doubts on the projected variation of 536	
  

DOD in response to climate change.  537	
  

The uncertainties associated with regression model are two folds. First, there’re 538	
  

uncertainties associated with the regression model itself. Since the regression coefficients 539	
  

are derived from observed relationships between DOD and controlling factors in a 540	
  

relatively short time period, factors controlling the low frequency variation of DOD (e.g., 541	
  

decadal variations) may not be included. Other meteorological factors that could play an 542	
  

important role in regional dust variability, e.g., nocturnal low-level jets (e.g., Todd et al., 543	
  

2008; Fiedler et al., 2013; Fiedler et al., 2016) and haboobs over Africa (e.g., Ashpole 544	
  

and Washington, 2013), are not directly considered in the model. The influences of 545	
  

anthropogenic land use/land cover change are also not included in the regression model. 546	
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Anthropogenic land use/land cover change has been found to have played an important 547	
  

role in long-term dust variability in some regions (e.g., Neff et al., 2005; 2008; Moulin 548	
  

and Chiapello, 2006; McConnell et al., 2007), although previous modeling study found 549	
  

its influences on future dust emission was minor compared to climate change (Tegen et 550	
  

al., 2004). So the projection made by the regression model only reveals the change of 551	
  

DOD in association with climate change. Second, uncertainties associated with model  552	
  

projected change of controlling factors, such as bareness in U.S. in JJA as pointed by Pu 553	
  

and Ginoux (2017), also limit the accuracy of the results. 554	
  

Despite these uncertainties, both methods make similar projections particularly in 555	
  

some dusty regions. For instance, the DOD pattern over North Africa in DJF and JJA, an 556	
  

increase of DOD in the central Arabian Peninsula in all seasons, and a decrease of DOD 557	
  

over northern China from MAM to SON (Figs. 7, 9). 558	
  

 559	
  

4. Discussion 560	
  

We examined DOD in seven CMIP5 models with interactive dust emission 561	
  

schemes. Other important variables that influence the radiative property of dust, such as 562	
  

Angström exponent and single scattering albedo, are also worth further examination, if 563	
  

these variables are archived.  A better quantification of the radiative forcing of dust may 564	
  

also require an examination on the size distribution of dust particles, as studies (e.g., Kok 565	
  

et al., 2017) found in current AeroCom models fraction of coarse dust particles were 566	
  

underestimated and so was the warming effect of dust. Whether this is the case in the 567	
  

CMIP5 models is not clear.   568	
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Also note that since DOD is an integrated variable, it does not reflect the vertical 569	
  

distribution of dust aerosols. As pointed by Huneeus et al., (2016), dust models with 570	
  

similar performance in simulating aerosol optical depth may have quite large differences 571	
  

in simulating vertical distribution, emission, deposition, and surface concentration of 572	
  

dust. An overall evaluation of dust modeling capability will require detailed examination 573	
  

of these variables and the life cycle of dust in CMIP5 models in addition to DOD. 574	
  

Early studies on future dust projection used offline dust models driven by climate 575	
  

model output under different scenarios.  For instance, Mahowald and Luo (2003) used an 576	
  

offline dust model and output from National Center of Atmospheric Research’s coupled 577	
  

Climate System Model (CSM) 1.0 (Boville and Gent, 1998) under A1 scenario 578	
  

(Houghton et al., 2001) and projected a decrease of dust emission by the end of the 21st 579	
  

century by -20% to -63%, depending on different scenarios. In general, when they 580	
  

included vegetation change, the projected dust reduction became greater, but including 581	
  

land use change slightly weakened such reduction.  Similarly, Tegen et al. (2004) used 582	
  

output from ECHAM4 and HadCM3 and a dust model (Tegen et al., 2002) to examine 583	
  

the change of dust emission by 2040-2050 and 2070-2080 and found results were model 584	
  

and scenario dependent, from -26% to 10%. However, including anthropogenic 585	
  

cultivation practices tended to increase dust emission in both models. They also pointed 586	
  

out that such an influence from anthropogenic land-use was not big enough to overcome 587	
  

the effect of climate change.   588	
  

The interactive dust emission schemes and new generations of climate models 589	
  

used in CMIP5 are likely to provide more reliable projections, but this may also depend 590	
  

on how changes of dust and its radiative forcing are fed back to the climate system in the 591	
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models. While these projections are largely model-dependent, based on our analysis on 592	
  

the DOD climatology in CMIP5 models, the multi-model mean has a better chance to 593	
  

provide a more reliable projection than individual models.  594	
  

Here a regression model combined with MODIS DOD is used to identify key 595	
  

local factors that control the variation of DOD on the interannual time scale. The results 596	
  

are then compared with model output to examine models’ capability of capturing 597	
  

observed connections between DOD and controlling factors. This method may be applied 598	
  

to other dust model intercomparison projects as well, such as AeroCom (Huneeus et al. 599	
  

2011), to help examine model performance. 600	
  

 601	
  

5. Conclusion 602	
  

Dust aerosol plays an important role in the climate system by directly scattering 603	
  

and absorbing solar and longwave radiation and indirectly affecting the formation and 604	
  

radiative properties of cloud. It is thus very important to understand how well dust is 605	
  

simulated in the state-of-the-art climate models. While many features and variables are 606	
  

systematically examined in the CMIP5 multi-model output, we found that to our best 607	
  

knowledge an evaluation of global dust modeling in CMIP5 models is still in blank. In 608	
  

this study we examined a key variable associated with dust radiative effect, dust optical 609	
  

depth (DOD), using seven CMIP5 models with interactive dust emission schemes and 610	
  

DOD retrieved from MODIS Deep Blue aerosol products.  611	
  

We found that the global spatial pattern and magnitude are largely captured by 612	
  

CMIP5 models in the 2004-2016 climatology, with an underestimation of global DOD 613	
  

(over land) by -25.2% in MAM to -6.4% in DJF. The spatial pattern is better captured in 614	
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boreal dusty seasons during MAM and JJA. In JJA, the simulated zonal mean DOD from 615	
  

multi-model mean largely resembles MODIS DOD. 616	
  

The magnitudes of multi-model mean are closer to MODIS climatology than most 617	
  

individual models and are largely within ± one order of magnitude of MODIS DOD in 618	
  

the nine regions examined here (North Africa, the Middle East, northern China, North 619	
  

America, India, southeastern Asia, South Africa, South America, and Australia; see Fig. 1 620	
  

and Table 2 for domains). While some models underestimate DOD in North America and 621	
  

South America by more than two orders of magnitude, a few also overestimate DOD in 622	
  

Australia by more than one order of magnitude. Both the magnitude and spatial patterns 623	
  

of DOD are better captured over North Africa and the Middle East than other regions. 624	
  

The multi-model mean also largely captures the seasonal cycle of DOD in some 625	
  

very dusty regions, such as North Africa and the Middle East. Seasonal variations in 626	
  

North America and India are also generally captured by the multi-model mean, with the 627	
  

modeled DOD peaking at approximately the same season as in MODIS DOD, but not so 628	
  

in northern China and southeastern Asia. Seasonal cycles in those dusty regions in the 629	
  

southern hemisphere is generally not well captured, with modeled DOD over South 630	
  

Africa and South America peaking later than that in MODIS DOD but earlier in 631	
  

Australia.  632	
  

The interannual variations of DOD are not captured by most of the CMIP5 633	
  

models during 2004-2016. Models also underestimate the constraints from surface 634	
  

bareness on the variations of DOD and overestimate the influences from surface wind 635	
  

speed and precipitation in those major dust source regions. CMIP5 model projected 636	
  

change of DOD in the late half of the 21st century (under the RCP 8.5 scenario) with 637	
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reference to historical condition (1861-2005) also shows greater influence from 638	
  

precipitation and surface wind change than from surface bareness. Overall, multi-model 639	
  

mean projects a change of DOD over land from -3.8% in SON to 3.3% in JJA.   640	
  

We also provide a projection of future DOD change using a regression model 641	
  

based on local controlling factors such as surface wind, bareness, and precipitation (Pu 642	
  

and Ginoux, 2017). This model can largely capture the interannual variations of MODIS 643	
  

DOD in 2004-2016. The regression model projects a reduction of DOD in the Sahel in all 644	
  

seasons in the late half of the 21st century under the RCP 8.5 scenario, largely due to a 645	
  

decrease of surface bareness. DOD is projected to increase over the southern edge of the 646	
  

Sahara in association with surface wind and precipitation changes except in MAM, when 647	
  

a reduction of DOD over most part of North Africa is projected.  DOD is also projected 648	
  

to increase over the central Arabian Peninsula in all seasons and to decrease over 649	
  

northern China from MAM to SON.  650	
  

Despite large uncertainties associated with both projections, we find some 651	
  

similarities between the two, which adds to the confidence of projected DOD change in 652	
  

these regions, for instance, changes of DOD over North Africa in DJF and JJA, an 653	
  

increase of DOD in the central Arabian Peninsula in all seasons, and a decrease of DOD 654	
  

over northern China from MAM to SON. 655	
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Table 1 CMIP5 models used in this study. Models tagged with plus signs (+) included 1000	
  

anthropogenic land use/land cover change in their vegetation prediction. 1001	
  

 1002	
  

Table 2 List of regions selected to compare model output with MODIS DOD. Locations 1003	
  

of these regions are also plotted in Fig. 1b. Acronyms are used for some regions for short, 1004	
  

and are listed in the brackets in the first column. Note that the region names such as 1005	
  

Northern China and India are not exactly the same as their geographical definitions but 1006	
  

also covers some areas from nearby countries. 1007	
  

 1008	
  

Table 3 Changes of DOD in the late half of the 21st century (2051-2100; RCP 8.5 1009	
  

scenario) from the historical condition (1861-2005) projected by CMIP5 multi-model 1010	
  

mean (second to fifth columns) and the regression model (sixth to ninth columns) in the 1011	
  

nine regions. Changes of DOD are shown in percentage with reference to CMIP5 multi-1012	
  

model historical run. Note that in some regions the projected change by the regression 1013	
  

model is quite large (i.e., greater than ± 100%), largely due to the underestimation of 1014	
  

CMIP5 historical run in these regions.  1015	
  

 1016	
  

 1017	
  

 1018	
  

 1019	
  

 1020	
  

 1021	
  

 1022	
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Figure 1.  Figure 1.  Climatology (2004-2016) of Aqua and Terra combined DOD (i.e., 1023	
  

MODIS DOD; top panel) and multi-model mean of CMIP5 DOD (bottom) for four 1024	
  

seasons. The pattern correlation (centered; calculated after interpolating MODIS DOD to 1025	
  

CMIP5 DOD grids) between CMIP5 and MODIS DOD are shown in pink in the bottom 1026	
  

panel. Blue numbers denote global mean DOD over land. For CMIP5 model results, ± 1027	
  

one standard deviation among seven CMIP5 models is also shown. Black boxes in (b) 1028	
  

denote nine averaging regions (Table 2). Here we only added these boxes in (b) instead of 1029	
  

every plot to keep the figure clean.  Note that CMIP5 multi-model mean is masked by 1030	
  

MODIS DOD for comparison. Dotted area in (e)-(h) shows where multi-model mean is 1031	
  

greater than one inter-model standard deviation. 1032	
  

 1033	
  

Figure 2. Zonal mean DOD from MODIS (thick red), CMIP5 multi-model mean (thick 1034	
  

black), and each individual model (other colorful lines). 1035	
  

 1036	
  

Figure 3. Seasonal cycle of DOD in nine regions (Table 2) averaged over 2004-2016. 1037	
  

Thick red lines denote MODIS DOD, thick black lines denote CMIP5 multi-model mean, 1038	
  

and other colorful lines denote individual model output. The annual means from MODIS 1039	
  

DOD (Obs; red) and multi-model mean (Ens; black) are shown in each panel. Note that in 1040	
  

(i) MODIS DOD (red line) is scaled ten times to better display the season cycle. 1041	
  

 1042	
  

Figure 4. Spatial statistics comparing DOD from CMIP5 models with that from MODIS 1043	
  

in nine regions. Label on the X-axis shows individual models (1-7) and multi-model 1044	
  

mean (8). Y-axis shows the ratio of pattern standard deviations between model 1045	
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climatology (2004-2016) and that of MODIS, which reveals the relative amplitude of the 1046	
  

simulated DOD versus satellite DOD. The color denotes pattern correlation (centered) 1047	
  

between each model and MODIS DOD in each region. 1048	
  

 1049	
  

Figure 5. Correlations (color) between regional averaged time series from CMIP5 DOD 1050	
  

and MODIS DOD from 2004 to 2016 for four seasons. Numbers in the X-axis denotes 1051	
  

each model (1-7) and multi-model mean (8). Correlations significant at the 90% 1052	
  

confidence level are marked by a star and significance at the 95% confidence level by 1053	
  

two stars. 1054	
  

 1055	
  

Figure 6. Regression coefficients calculated by regressing DOD in each season onto 1056	
  

standardized precipitation (purple), bareness (orange), and surface wind speed (green) 1057	
  

from 2004 to 2016. Coefficients obtained using MODIS DOD and observed controlling 1058	
  

factors (interpolated to a 2° by 2.5° grid) and those using CMIP5 multi-model mean DOD 1059	
  

and controlling factors are shown in the left and right columns, respectively. The color of 1060	
  

the shading denotes the largest coefficient in absolute value among the three, while the 1061	
  

saturation of the color shows the magnitude of the coefficient (from 0 to 0.02). Only 1062	
  

regression coefficients significant at the 90% confidence level (Bootstrap test) are shown. 1063	
  

Missing values are shaded in grey. To highlight coefficients near the source regions, a 1064	
  

mask of LAI ≤ 0.5 is applied. 1065	
  

 1066	
  

Figure 7. Projected changes of DOD in the late half of the 21st century (under the RCP 1067	
  

8.5 scenario) from that in the historical level (1861-2005) by CMIP5 multi-model mean 1068	
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for four seasons. The percentage change of global mean (over land) DOD ± one inter-1069	
  

model standard deviation is shown at the bottom of each plot. Areas with sign agreement 1070	
  

among the models reaches 71.4% (i.e., at least five out of seven models have the same 1071	
  

sign as the multi-model mean) are dotted.  1072	
  

 1073	
  

Figure 8. Projected difference of (a)-(d) precipitation (mm day-1), (e)-(h) bareness, and 1074	
  

(i)-(l) 10 m wind (m s-1) between the late half of the 21st century (2051-2100; RCP 8.5 1075	
  

scenario) and historical level (1861-2005) from multi-model mean of seven CMIP5 1076	
  

models. Areas with sign agreement among the models reaches 71.4% (i.e., at least five 1077	
  

out of seven models have the same sign as the multi-model mean) are dotted.     1078	
  

 1079	
  

Figure 9. Projected change of DOD in the late half of the 21st century under the RCP 8.5 1080	
  

scenario by the regression model. The results are calculated using the regression 1081	
  

coefficients obtained from observations during 2004-2016 (see methodology) and 1082	
  

projected changes of precipitation, bareness, and surface wind from seven CMIP5 1083	
  

models.  Dotted areas are regions with sign agreement among the regression projections 1084	
  

(using output of each of the seven models) above 71.4% (i.e., at least five out of seven 1085	
  

regression projections have the same sign as the multi-model mean projection). To 1086	
  

highlight DOD variations near the source regions, a mask of LAI ≤ 0.5 (from present-day 1087	
  

climatology) is applied. 1088	
  

 1089	
  

Figure 10. (a)-(d) Projected change of DOD in the late half of the 21st century under the 1090	
  

RCP 8.5 scenario by the regression model and output from seven CMIP5 models (same 1091	
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as Fig. 9), and contributions from each component, (e)-(h) precipitation, (j)-(i) bareness, 1092	
  

and (m)-(p) surface wind speed. Dotted areas are regions with sign agreement among the 1093	
  

models above 71.4%. To highlight DOD variations near the source regions, a mask of 1094	
  

LAI ≤ 0.5 (from present-day climatology) is applied. 1095	
  

 1096	
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 1115	
  
Table 1 CMIP5 models used in this study. Models tagged with plus signs (+) included 1116	
  

anthropogenic land use/land cover change in their vegetation prediction. 1117	
  
 1118	
  

Model lat/lon 
resolution 

Dust emission 
implementation 

Dynamic 
Vegetation 

Model reference 

CanESM2 2.8°×2.8° Reader et al. (1999); 
Croft et al. (2005)  

N+ Arora et al. (2011)  

GFDL-CM3 2.0°×2.5° Ginoux et al. (2001)  Y+ Donner et al. (2011)  
HadGEM2-CC 1.2°×1.8° Marticorena and 

Bergametti (1995)  
Y+ Collins et al. (2011)  

HadGEM2-ES 1.2°×1.8° Marticorena and 
Bergametti (1995) 

Y+ Collins et al. (2011)  

MIROC-ESM 2.8°×2.8° Takemura et al. (2000)  Y+ Watanabe et al. (2011)  
MIROC-ESM-CHEM 2.8°×2.8° Takemura et al. (2000) Y+ Watanabe et al. (2011)  
NorESM1-M 1.9°×2.5° Seland et al. (2008)  N+ Bentsen et al. (2013)  

 1119	
  
 1120	
  

 1121	
  
 1122	
  

 1123	
  
 1124	
  
 1125	
  
 1126	
  
 1127	
  
 1128	
  
 1129	
  
 1130	
  
 1131	
  
 1132	
  
 1133	
  
 1134	
  
 1135	
  
 1136	
  
 1137	
  
 1138	
  
 1139	
  
 1140	
  
 1141	
  
 1142	
  
 1143	
  
 1144	
  
 1145	
  
 1146	
  
 1147	
  
 1148	
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 1149	
  
Table 2 List of regions selected to compare model output with MODIS DOD. Locations 1150	
  

of these regions are also plotted in Fig. 1b. Acronyms are used for some regions for short, 1151	
  
and are listed in the brackets in the first column. Note that the region names such as 1152	
  

northern China and India are not exactly the same as their geographical definitions but 1153	
  
also cover some areas from nearby countries.  1154	
  

 1155	
  
Region Domain 

North Africa (N. Africa) 5°-50°N, 18°W-35°E 
Middle East 12°-50°N, 35°-60°E  

Northern China (N. China) 35°-50°N, 70°-110°E 
North America (N. America) 25°-50°N, 95°-125°W 

India 5°-35°N, 60°-90°E 
Southeastern Asia (SE. Asia) 9°-35°N, 90°-121°E 

South Africa (S. Africa) 15°-35°S, 10°-50°N 
South America (S. America) 0°-55°S, 60°-83°W 

Australia 10°-40°S, 112°-155°E 
 1156	
  
 1157	
  
 1158	
  
 1159	
  
 1160	
  
 1161	
  
 1162	
  
 1163	
  
 1164	
  
 1165	
  
 1166	
  
 1167	
  
 1168	
  
 1169	
  
 1170	
  
 1171	
  
 1172	
  
 1173	
  
 1174	
  
 1175	
  
 1176	
  
 1177	
  
 1178	
  
 1179	
  
 1180	
  
 1181	
  
 1182	
  
 1183	
  
 1184	
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 1185	
  
Table 3 Changes of DOD in the late half of the 21st century (2051-2100; RCP 8.5 1186	
  

scenario) from the historical condition (1861-2005) projected by CMIP5 multi-model 1187	
  
mean (second to fifth columns) and the regression model (sixth to ninth columns) in nine 1188	
  
regions. Changes of DOD are shown in percentage with reference to CMIP5 multi-model 1189	
  
historical run. Note that in some regions the projected change by the regression model is 1190	
  

quite large (i.e., greater than ± 100%), largely due to the underestimation of CMIP5 1191	
  
historical run in these regions.  1192	
  

 1193	
  

Region CMIP5 Regression model 
DJF MAM JJA SON DJF MAM JJA SON 

N. Africa -3.8 -3.6 2.4 -16.3 -0.8 -17.7 11.1 -10.3 
Middle East 7.8 4.5 6.4 1.5 9.8 -16.0 -5.4 -8.4 

N. China -33.5 -11.4 -9.8 -14.4 312.3 -238.6 -51.2 -30.0 
N. America 42.6 26.8 13.2 -6.4 -38.5 -90.0 9.3 -42.4 

India -5.1 0.2 -1.0 -9.9 -27.6 -8.2 -2.9 -32.3 
SE. Asia -45.7 -16.5 -13.5 -17.1 -34.8 1.6 4.2 96.3 
S. Africa 24.0 6.1 38.5 54.4 22.3 59.3 231.8 78.3 

S. America 35.7 27.4 51.8 36.0 14.8 56.1 78.3 154.6 
Australia -3.2 -3.2 15.3 17.0 2.7 0.4 0.7 3.7 

 1194	
  
 1195	
  
 1196	
  
 1197	
  
 1198	
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 1199	
  
Figure 1.  Climatology (2004-2016) of Aqua and Terra combined DOD (i.e., MODIS 1200	
  
DOD; top panel) and multi-model mean of CMIP5 DOD (bottom) for four seasons. The 1201	
  
pattern correlation (centered; calculated after interpolating MODIS DOD to CMIP5 DOD 1202	
  
grids) between CMIP5 and MODIS DOD are shown in pink in the bottom panel. Blue 1203	
  
numbers denote global mean DOD over land. For CMIP5 model results, ±	
 one standard 1204	
  
deviation among seven CMIP5 models is also shown. Black boxes in (b) denote nine 1205	
  
averaging regions (Table 2). Here we only added these boxes in (b) instead of every plot 1206	
  
to keep the figure clean.  Note that CMIP5 multi-model mean is masked by MODIS DOD 1207	
  
for comparison. Dotted area in (e)-(h) shows where multi-model mean is greater than one 1208	
  
inter-model standard deviation.  1209	
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 1210	
  
Figure 2. Zonal mean DOD from MODIS (thick red), CMIP5 multi-model mean (thick 1211	
  
black), and each individual model (other colorful lines). 1212	
  
 1213	
  
 1214	
  
 1215	
  
 1216	
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 1221	
  
 1222	
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 1234	
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 1235	
  
Figure 3. Seasonal cycle of DOD in nine regions (Table 2) averaged over 2004-2016. 1236	
  
Thick red lines denote MODIS DOD, thick black lines denote CMIP5 multi-model mean, 1237	
  
and other colorful lines denote individual model output. The annual means from MODIS 1238	
  
DOD (Obs; red) and multi-model mean (Ens; black) are also listed in each panel. Note 1239	
  
that in (i) MODIS DOD (red line) is scaled ten times to better display the season cycle. 1240	
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 1260	
  
Figure 4. Spatial statistics comparing DOD from CMIP5 models with that from MODIS 1261	
  
in nine regions. Label on the X-axis shows individual models (1-7) and multi-model 1262	
  
mean (8). Y-axis shows the ratio of pattern standard deviations between model 1263	
  
climatology (2004-2016) and that of MODIS, which reveals the relative amplitude of the 1264	
  
simulated DOD versus satellite DOD. The color denotes pattern correlation (centered) 1265	
  
between each model and MODIS DOD in each region.  1266	
  
 1267	
  
 1268	
  
 1269	
  
 1270	
  
 1271	
  
 1272	
  
 1273	
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 1275	
  
Figure 5. Correlations (color) between regional averaged time series from CMIP5 DOD 1276	
  
and MODIS DOD from 2004 to 2016 for four seasons. Numbers in the X-axis denotes 1277	
  
each model (1-7) and multi-model mean (8). Correlations significant at the 90% 1278	
  
confidence level are marked by a star and significance at the 95% confidence level by 1279	
  
two stars.  1280	
  
 1281	
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 1284	
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 1286	
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 1295	
  
Figure 6. Regression coefficients calculated by regressing DOD in each season onto 1296	
  
standardized precipitation (purple), bareness (orange), and surface wind speed (green) 1297	
  
from 2004 to 2016. Coefficients obtained using MODIS DOD and observed controlling 1298	
  
factors (interpolated to a 2° by 2.5° grid) and those using CMIP5 multi-model mean DOD 1299	
  
and controlling factors are shown in the left and right columns, respectively. The color of 1300	
  
the shading denotes the largest coefficient in absolute value among the three, while the 1301	
  
saturation of the color shows the magnitude of the coefficient (from 0 to 0.04). Only 1302	
  
regression coefficients significant at the 90% confidence level (Bootstrap test) are shown. 1303	
  
Missing values are shaded in grey. To highlight coefficients near dust source regions, a 1304	
  
mask of LAI ≤ 0.5 is applied. 1305	
  
 1306	
  
 1307	
  
 1308	
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Figure 7. Projected changes of DOD in the late half of the 21st century (under the RCP 1310	
  
8.5 scenario) from that in the historical level (1861-2005) by CMIP5 multi-model mean 1311	
  
for four seasons. The percentage change of global mean (over land) DOD ± one inter-1312	
  
model standard deviation is shown at the bottom of each plot. Areas with sign agreement 1313	
  
among the models reaches 71.4% (i.e., at least five out of seven models have the same 1314	
  
sign as the multi-model mean) are dotted.  1315	
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Figure 8. Projected difference of (a)-(d) precipitation (mm day-1), (e)-(h) bareness, and 1338	
  
(i)-(l) 10 m wind (m s-1) between the late half of the 21st century (2051-2100; RCP 8.5 1339	
  
scenario) and historical level (1861-2005) from multi-model mean of seven CMIP5 1340	
  
models. Areas with sign agreement among the models reaches 71.4% (i.e., at least five 1341	
  
out of seven models have the same sign as the multi-model mean) are dotted.     1342	
  
 1343	
  
 1344	
  
 1345	
  
 1346	
  
 1347	
  
 1348	
  
 1349	
  
 1350	
  
 1351	
  
 1352	
  
 1353	
  
 1354	
  
 1355	
  
 1356	
  
 1357	
  
 1358	
  
 1359	
  
 1360	
  

62



	
  

 
 1361	
  
Figure 9. Projected change of DOD in the late half of the 21st century under the RCP 8.5 1362	
  
scenario by the regression model. The results are calculated using the regression 1363	
  
coefficients obtained from observations during 2004-2016 (see methodology) and 1364	
  
projected changes of precipitation, bareness, and surface wind from seven CMIP5 1365	
  
models.  Dotted areas are regions with sign agreement among the regression projections 1366	
  
(using output of each of the seven models) above 71.4% (i.e., at least five out of seven 1367	
  
regression projections have the same sign as the multi-model mean projection). To 1368	
  
highlight DOD variations near the source regions, a mask of LAI ≤ 0.5 (from present-day 1369	
  
climatology) is applied. 1370	
  
 1371	
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 1391	
  
Figure 10. (a)-(d) Projected change of DOD in the late half of the 21st century under the 1392	
  
RCP 8.5 scenario by the regression model and output from seven CMIP5 models (same 1393	
  
as Fig. 9), and contributions from each component, (e)-(h) precipitation, (j)-(i) bareness, 1394	
  
and (m)-(p) surface wind speed. Dotted areas are regions with sign agreement among the 1395	
  
projections above 71.4%. To highlight DOD variations near the source regions, a mask of 1396	
  
LAI ≤ 0.5 (from present-day climatology) is applied. 1397	
  
 1398	
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