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Interactive comment on “How reliable are CMIP5 models in simulating dust optical 
depth?” by Bing Pu and Paul Ginoux 
Anonymous Referee #1 
 

We thank the reviewer for very helpful comments. We reply to your comment (in 
Italic) below.  
 
This work examines the performance of seven CMIP5 climate models with interactive 
dust emissions schemes against dust optical depth (DOD) from MODIS Deep Blue 
aerosol products. The performance assessment to reproduce magnitude, spatial pattern 
and variations of observed DOD is conducted in nine regions, namely North Africa, 
Middle East, Northern China, North America, India, Southeastern Asia, South Africa, 
South America and Australia. Furthermore, interannual variations of DOD are also 
examined together with the impact on it of controlling factors such as 10 m surface wind, 
precipitation and surface bareness derived from leaf are index (LAI) data. In order to 
examine the relative contribution of these controlling factors to DOD multiple linear 
regression is applied on both, observations and models. Calculated regression 
coefficients in addition to observed and simulated controlling factors are then used to 
project DOD to the future (both observations and models). 
The authors show that although the models can reproduce the global distribution of DOD 
over land under present conditions, with a better representation over northern than 
southern hemisphere, the interannual variability of DOD is all in all not well captured by 
CMIP5 models. Furthermore, models also do not reproduce the observed relations 
between the DOD and the examined controlling factors. Projected changes of CMIP5 
model mean under the RCP8.5 scenario are presented and compared to projections of a 
regression model. 
The research presented is interesting and the paper is well written. As the authors 
mention in their introduction, performance of CMIP5 models to simulate dust has 
received little attention and this work is a good first step to change this. I recommend this 
paper to be published in ACP after some comments have been addressed. 
 
General Comments: 
1. The authors highlight the importance of examining the performance of current climate 
models in simulating dust and they choose to assess this performance by evaluating 
simulated DOD. In fact, in lines 73-75 the authors claim that evaluating DOD in 
“CMIP5 models will provide a clear picture of model capability of dust simulation”. 
Although optical depth is a very common variable when it comes to validate models with 
respect to aerosols (be it dust or any other species), it is an integrated variable and 
therefore it does not provide any insight into the performance to reproduce the vertical 
distribution of aerosols. It has been shown that regional and global dust models can 
present similar performance in simulating AOD but present large diversity in emissions, 
deposition, surface concentration and vertical distribution (Huneeus et al., 2016). 
Although that study refers to forecast application, it is consistent with the findings in 
Huneeus et al. (2011). The authors should acknowledge this limitation in the discussion 
or conclusions, that although this evaluation is informative and necessary, it does not 
provide a full picture of current climate models to simulate dust. This similar 
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performance in optical depth compared to large diversity in other parameters such as 
emissions, deposition and surface concentration might be linked to the practice to use 
AOD to tune dust simulations. Is this a practice that is also used in climate models? 

We thank the reviewer for pointing out that DOD cannot provide a full picture of 
dust modeling skill by CMIP5 models. We modified lines 75-77: “A comprehensive 
evaluation of the climatology and interannual variation of global dust optical depth 
(DOD) in CMIP5 models will provide insights into models’ capability of simulating the 
integrated aerosol extinction due to dust, which is one of the key variables that determine 
radative forcing of dust to the climate system.” and lines 604-609: “Since DOD is an 
integrated variable, it does not reflect the vertical distribution of dust aerosols. As pointed 
by Huneeus et al., (2016), dust models with similar performance in simulating aerosol 
optical depth may have quite large differences in simulating vertical distribution, 
emission, deposition, and surface concentration of dust. An overall evaluation of dust 
modeling capability will require detailed examination of these variables and the life cycle 
of dust in CMIP5 models in addition to DOD.” to better address this issue.  

We agree with the reviewer that the similar performance of models in simulating 
DOD versus their discrepancies in simulating variables such as surface concentration, 
emission, and deposition may be due to the fact that DOD or AOD is used to tune dust 
models. Same tuning method may be used in the climate models, too, and thus adds to the 
need to examine other variables related to dust life cycle in the CMIP5 models.  
 
 
2. In addition to examining the DOD projections from CMIP5 models, the authors also 
project DOD using calculated regression coefficients and compare these results to the 
simulated ones. I have to admit that I have difficulties in seeing the usefulness of this 
exercise. What is the point of it?  

The reason to provide a future DOD projection by the regression model in 
addition to CMIP5 models’ projection was not clearly addressed in the previous version. 
We added lines 513-522 to better explain the purpose of this analysis: “Here we also 
present the projected change of DOD from the regression model in Figure 9. The 
regression model (see section 2.4 for details) is developed based on observed 
relationships between MODIS DOD and local controlling factors and can largely capture 
the interannual variations of DOD in the present-day climate (Table S1 in the 
Supplement). Assuming that the observed connection between DOD and these 
controlling factors do not change dramatically in the future, we can use this regression 
model and CMIP5-model projected change of controlling factors to project DOD 
variations. Compared to DOD projection from CMIP5 models, this approach utilizes 
additionally observational constrains and is likely to provide a more reliable future 
projection.”  
 
The authors state that similarities are found between both projections “which may be 
informative” without specifying for what they might me informative. What do differences 
and similarities of both projections tell us? 

We removed “which may be informative”, and modified the sentence to:	  “we find 
some similarities between the two, which adds to the confidence of projected DOD 
change in these regions...” (lines 690-691). Although CMIP5 models overestimate the 
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influence of surface wind and precipitation and underestimate the role of bareness, there 
are some similarities between model and observations over regions such as North Africa 
in DJF and parts of the Arabian Peninsula in JJA (Fig. 6; lines 450-462), which indicate 
that models partially capture the connection between the DOD and these controlling 
factors in some regions. Therefore, the projection of DOD from CMIP5 models (Fig. 7) is 
not completely unreliable.  The similarity between CMIP5 projection and the projection 
from the regression model thus adds to the confidence of projected change of DOD over 
North Africa, the Arabian Peninsula, and northern China in some seasons.  
 
 
3. The authors could improve the description of the methodology applied in the study. 
Regression coefficients are computed by regressing DOD from MODIS onto the observed 
controlling factors, the same procedure is repeated with model outputs to obtain 
“model” regression factors. Now when the interannual variability is examined, in line 
320 it is unclear whether the reconstructed DOD using model regression factors or the 
one based on observations. I would have thought the former but then lines 332-335 refer 
to the observations making me doubt what reconstruction is then used in the analysis.  

The regression coefficients are derived from observations. We modified section 
2.4 in the methodology section and lines 412-414 to improve the clarity. 
 
Furthermore, regression analysis on observations is done at 1_x1_ resolution (lines 207-
208) while for model outputs the regression analysis is done at 2_x2.5_ resolution. But at 
what resolution are the reconstructed projections done? at the observation or the model 
resolution? Potential impacts on the regression coefficients due to different resolution 
should also briefly be discussed. 

For future projection, the regression coefficient is interpolated to a 2° by 2.5° grid 
to be consistent with model output. So the projected DOD is also on a 2° by 2.5° grid. We 
modified lines 282-284 to clarify this and discuss potential impacts of the interpolation: 
“The regression coefficients are interpolated from the 1° by 1° grid to a 2° by 2.5° grid to 
be consistent with model output. Such an interpolation may smooth out some spatial 
characteristics from observations.” 
 
 
4. I find it confusing that the paper is build around the seven CMIP5 models with 
interactive dust emissions to examine their performance to simulate DOD. But when 
presenting and describing the projections, the reconstructed ones based on the 16 models 
are considered. I understand and agree with the authors in the reasons to include more 
models, but then I would have expected that when examining the model performance 
(both climatology and interannual variability) these reconstruction (from the 16 models) 
also would be considered in order to be able to draw any conclusion from their 
projections. How good do these reconstructed projections (16 models) perform when 
compared with observations in present conditions? Sure, outputs of figure 9 and S8 are 
similar, but are they for the same reasons? Unfortunately analysis in figure 6 cannot be 
reproduced for the 16 models. Maybe it would make more sense to base results with 
respect to reconstructed projections in section 3.3 on figure S8 and move current figure 9 
to the supplement (basically swaooing as it is now) and then build on how these results 
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are also seen (or not) in the 16 models. 
We use seven CMIP5 model with interactive dust emission scheme because we 

would like to examine the relationship between DOD variations and local controlling 
factors, while in models with offline dust these connections are lost. We added lines 210-
212 to better explain this. The purpose of using variables from 16 CMIP5 models for the 
future projection is to include as much information (i.e., more model output) about 
projected change of the controlling factors as possible.  

We agree with the reviewer that it is better to show the future projection by the 
regression model and output from seven CMIP5 models in Figure 9 first and then discuss 
results from 16-model output later in Figure S7 in the Supplement. We followed the 
advice to switch the figures and modified text accordingly (lines 522-527, 549-557). 

Here we also examine the climatology and interannual variations of reconstructed 
DOD (using 7-model output). The following figure shows the pattern correlation between 
MODIS DOD and reconstructed DOD using 7-model output and regression coefficients 
from observations.  Figure R1a shows the pattern correlations between the climatologist 
of reconstructed DOD (regDOD) and MODIS DOD for 2004-2016 over 9 regions. The 
pattern correlations are very high, because the constant value in the regression model 
(i.e., d in the equation regDOD = a × Precipitation+ b × Wind + c × Bareness + d) 
contains information from MODIS DOD, i.e., has a pattern similar to observed 
climatology.   

We also show the anomalies of the reconstructed DOD where the influence of the 
constant value is largely removed. Figs. R1b-c show pattern correlations between 
MODIS DOD and regDOD for the differences of DOD between 2010-2016 and 1861-
2005 (Fig. R1b) and between 2010-2016 and 2004-2016 (Fig. R1c).  The latter (Fig. R1c) 
shows slightly better pattern correlations than the former (less green boxes) since the 
historical condition (1861-2005) is not exactly comparable with the 2004-2016 
climatology. Fig. R1d shows the pattern correlation of MODIS and regDOD for the 
differences of DOD between 2010-2016 and 2004-2009. The pattern correlations are 
similar to Fig. R1c because relatively short time periods are used (7 years for the 2010-
2016 mean and 6 years for the 2004-2009 mean) and values can be largely influenced by 
interannual variations of the controlling factors in the CMIP5 models.  
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Figure R1. Pattern correlations between MODIS DOD and reconstructed DOD (regDOD) 
that used output from seven CMIP5 models and observed regression coefficients for (a) 
2004-2016 DOD climatology, the differences of DOD (b) between 2010-2016 and 
historical run, (c) between 2010-2016 and 2004-2016, (d) between 2010-2016 and 2004-
2009 over nine regions. MODIS DOD anomaly during 2010-2016 (with reference to the 
2004-2016 climatology) is used in calculating pattern correlations in both (b) and (c). 
 
 
 

 
 
Figure R2. Correlations of regional averaged time series over nine regions between 
MODIS DOD and reconstructed DOD that used output from seven CMIP5 models and 
observed regression coefficients. Correlations significant at the 90% confidence level are 
marked by a star and significance at the 95% confidence level by two stars.  
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The correlations of regional averaged time series (2004-2016) between MODIS 
DOD and reconstructed DOD that used 7-model output and regression coefficients from 
observations are shown in Figure R2. As we mentioned in the paper, CMIP5 models are 
not expected to capture the interannual variations of the controlling factors, so we would 
not expect that the reconstructed DOD using CMIP5 output to capture the interannual 
variations of DOD, either. However, the variations of DOD over Africa in MAM, the 
Middle East in SON, India in MAM, and Australia in SON are to some extent captured 
by the regression model (Fig. R2). When we use observed controlling factors to 
reconstruct DOD (section 2.4.2), interannual variations during the present day is largely 
captured (Table S1). 

The outputs of old Figs. 9 (from 16 models) and S8 (from 7 models) are similar 
because the projected changes of precipitation, surface wind speed, and bareness from 
16-model ensemble mean (Fig. R3) show some features similar to 7-model ensemble 
mean (Fig. 8).  We clarified this in the updated text (lines 549-557) and also added Fig. 
R3 to the supplement.  

 
 

 
 
Figure R3. Projected difference of (a)-(d) precipitation (mm day-1), (e)-(h) bareness, and 
(i)-(l) 10 m wind (m s-1) between the late half of the 21st century (2051-2100; RCP 8.5 
scenario) and historical level (1861-2005) from multi-model mean of 16 CMIP5 models. 
Areas with sign agreement among the models reaches 62.5% (i.e., at least ten out of 16 
models have the same sign as the multi-model mean) are dotted.     
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Specific Comments: 
Page 5, lines 73-75: See general comment above, I would suggest reformulating the 
statement. 

We modified those lines to: “A comprehensive evaluation of the climatology and 
interannual variation of global dust optical depth (DOD) in CMIP5 models will provide 
insights into models’ capability of simulating the integrated aerosol extinction due to 
dust. DOD is also one of the key variables that determine radative forcing of dust to the 
climate system.”.  And also added discussion in lines 604-609 to acknowledge that DOD 
dose not reflect the vertical distribution of dust aerosols and more variables (such as 
surface dust concentration, emission, deposition, vertical distributions) are need to 
provide a whole picture of dust simulation in CMIP5 models. 
 
Page 6, lines 98-100: Given the importance of DOD in this study I suggest you briefly 
describe the method how DOD was derived from AOD and specify the modifications you 
applied to adapt the method to collection 6. 

Lines 102-114 are added to describe how DOD is derived and adapted to 
collection 6.  

 
Page 7, line 134: Table 2 is referenced without any reference to Table 1. At present Table 
1 corresponds to information on the models used in this study which is addressed in 
section 2.3. Tables should be arranged according to the order they are referenced in the 
text. 

We actually referred Table 1 in line 78 when introducing the seven models used 
in this study.   
 
Page 8, lines 138-143: Surface wind speed, bareness and precipitation are defined as 
controlling factors without providing any evidence or explanation why these parameters. 
However in lines 321-331 the authors explain why these parameters have been selected. I 
suggest moving these lines forward to section 2.2. 

We follow the advice to move lines 321-331 to section 2.2 (now lines 167-176). 
 
Page 8, line 156: Remove PRECL. 

Here we refer to the precipitation data from PRECL and so will keep “PRECL 
precipitation”. 
 
Page 9, lines 164-182: A reference to (current) Table 1 should be made in this section. 
In addition, information on the 16 models used in the future projections needs to be 
provided. 

We added “Table 1” in line 207. We also modified lines 286-288 to clarify that 
information of 16 CMIP5 models can be found from the Supplementary Table S1 of Pu 
and Ginoux (2017). 
 
Page 10, line 188: Provide a reference for the mass extinction efficiency used. 

The mass extinction efficiency used here is from Ginoux et al. (2012a) as 
mentioned in line 231. We also added discussion on this variable in lines 237-241. 
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Page 10, lines 191-201: The authors illustrate the difference between the derived DOD 
and simulated one from one of the seven CMIP5 models with interactive dust emissions. 
It seems arbitrary why this model is used and not any other of the seven models? Is the 
intention of these lines to validate the derived DOD and therefore the chosen method? If 
that’s the case then a more thorough validation should be done such as comparing the 
derived model mean DOD from all 16 models to the model mean from the seven CMIP5 
models. Otherwise I don’t see the point of having these analysis. 

In these lines we compare the derived DOD versus model calculated DOD in 
GFDL-CM3 to valid the method we used to derive DOD (i.e., Eq. e). We did not use this 
analysis to select models. We chose seven models with interactive dust emission schemes 
to examine DOD climatology and interannual variations because DOD in these models 
are influenced by environmental factors and the can be compared with observations, 
while in models with offline dust, these connections do not exist in the models.  

We used GFDL-CM3 as an example to validate the DOD derivation because it’s 
the only model among the seven that we can access model calculated DOD. We modified 
lines 241-253 to better present the analysis. 
 
Page 11, lines 216-220: What period is considered in this analysis, same as observations, 
ie 2004-2016? 

Yes. We modified line 271 to clarify this. 
 
Page 11, line 226: Please provide some information on these 16 models, which models 
are they? Are the seven model with interactive dust emission part of these 16 models? Do 
they have prescribed emissions? A similar table as Table 1 should be included with 
relevant information of these 16 models. 

Seven models are part of these 16 models. We modified line 286-288 to clarify 
that models information and dust emission schemes can be found from Supplementary 
Table S1 of Pu and Ginoux (2017).  
 
Page 13, lines 258-260: How do the authors explain the shift to the north in the DOD by 
HadGEM2? 

In lines 258-260 (original version) we referred the multi-model mean shown in 
Fig. 2b: “The peak around 19° N in North Africa and Middle East is well captured by the 
multi-model mean, although the magnitude is slightly underestimated.” The 
overestimation of DOD around 28° N in the HadGeM2 model may be caused by its 
overestimation of DOD over the Middle East and India in summer (Figs. 3b, e).  
 
Page 13, line 269: remove “than other seasons”. 

Done.  
 
Page 13, line 270: add “by the model mean” after “captured”. 

Done.  
 
Page 13, lines 269-271: Since individual models are illustrated, authors should not only 
focus on the multi model mean but also on the individual models and their differences 
with respect to the multi model mean and the observations. For instance, MIROC and 
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GFDL do not present the observed variability, in particular over N. America and India 
and they also present a different variability than the other models over northern China, 
with the peak closer to the observed one. 

We revised lines 334-337, 345-347, 358-359 to add discussion on a few models’ 
performance over North America, northern China, and Australia.  
 
Page 14, lines 276-277: The MODIS DOD peak in Australia is hardly seen. 

We have scaled MODIS DOD over Australia ten times in Fig. 3 and modified 
figure caption accordingly to better display the seasonal cycle of DOD.  
 
Page 15-16, lines 319-321: Which reconstructed DOD is used here? is it the one 
considering observed regression coefficients and simulated controlling factors? Or is it 
the one using simulated regression coefficients derived from model DOD and model 
controlling factors? Also, are only the seven CMIP5 models with interactive dust 
emission considered? The authors should be more specific which reconstruction they 
refer. Also, couldn’t the correlation based on reconstructed DOD be integrated in the 
figure as an additional column? 

The reconstructed DOD used observed regression coefficients and observed 
controlling factors. We modified lines 398, 412-414 to clarify this.  We actually 
considered adding a column to Fig. 5 to show the correlations between MODIS DOD and 
reconstructed DOD (see Fig. R4 below) in the early version of the paper. However, since 
the reconstructed DOD here used observed controlling factors, which make it slightly 
“unfair” to compare the results with those from CMIP5 DOD, we decide to present the 
results separately in Table 2. 

    

 
 
Figure R4. Correlations (color) between regional averaged time series from CMIP5 DOD 
and MODIS DOD from 2004 to 2016 for four seasons. Numbers in the X-axis denotes 
each model (1-7), multi-model mean (8), reconstructed DOD (9). Correlations significant 
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at the 90% confidence level are marked by a star and significance at the 95% confidence 
level by two stars.  
 
Page 16, lines 321-332: move these lines to section 2. See general comment. 

Done. 
 
Page 18, lines 378-380: I have difficulties seeing the similarities in North Africa and the 
Middle east between the MODIS and CMIP5 regression coefficients pointed out by the 
authors. I actually see more the differences between both regressions in both regions. I 
would suggest the authors review the analysis in these lines. 

Lines 458-462 are modified clarity this: “In JJA, the influences of precipitation 
and bareness over the eastern Arabian Peninsula in the multi-model mean (Fig. 6g) also 
show some similarity to observation (Fig. 6c), although an underestimation of the 
influence from bareness and an overestimation of precipitation are still there. “ 
 
Page 22, lines 470-473: On which results are the authors basing this statement. I suggest 
specifying. 

We added “in the present-day (Fig. 6)” after “Multi-model mean also 
overestimates the connection between DOD and precipitation and surface wind and 
underestimates the influence of bareness” to specify this argument. In section 3.2 we 
compared the multiple linear regression coefficients from CMIP5 models with those from 
the observations (Fig. 6) and found multi-model mean overestimates the connection 
between DOD and precipitation and surface wind while underestimates the influence of 
bareness. 
 
Pages 22-23, lines 465-490: These lines would fit better in the discussion section. 

We prefer to discuss the uncertainties of CMIP5 and regression model projections 
right after showing the results of the two methods (Figs. 7-10) in section 3.3. In section 4, 
more general issues such as including other variables from CMIP5 models to examine 
model performance, studies on future dust projection, and the implication of the 
regression model, are discussed.   
 
Page 24, line 522-524: The statement seems something that would fit better in the 
conclusion section. Consider moving it. 

This is not the key conclusion of the paper, so we prefer to keep it in the 
discussion. 
 
Page 25, line 546: Suggest replacing “quite well” with something more academic. 

We modified the line to: “In JJA, the simulated zonal mean DOD from multi-
model mean largely resembles MODIS DOD”. 
 
Page 27, line 583: In which way are similarities between both projections 
“informative”? What information do they provide. 

See our detailed reply to Comment #2.  We removed “which may be informative”, 
and modified the sentence to:	  “we find some similarities between the two, which adds to 
the confidence of projected DOD change in these regions, for instance...” 
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Interactive comment on “How reliable are CMIP5 models in simulating dust optical 
depth?” by Bing Pu and Paul Ginoux 
Anonymous Referee #2 
 

We thank the reviewer for very helpful comments. We reply to your comment (in 
Italic) below.  
 
The article presents an in-depth analysis of the CMIP5 models ability to reproduce the 
dust optical depth (DOD), considering both seasonal and inter-annual variability, as well 
as the driving factors behind those DOD levels. The observational data used are DOD 
over land derived from MODIS Terra-aqua data; bareness derived from AVHRR; 10m 
wind speed from ERA-Interim reanalysis; and precipitation from PRECL. The analysis of 
the driving factors is performed by regressing the observed DOD from MODIS over land 
to the observed/reanalyzed driving factors. The analysis is then extended to future 
climate scenarios (RCP8.5) using both the CMIP5 models’ dust outputs and the 
regression based on present day observed relationships between DOD and the driving 
factors. 
The main results/conclusions are: 1) Models behave better over the NH large dust 
sources. 2) Models do not reproduce interannual variability. 3) The constraints from 
bareness in models are underestimated and the influences of wind speed and 
precipitation are overestimated. 4) A corrected projection of DOD based on the 
regression model is proposed. There are some similarities between the projections and 
the corrected projections. 
The paper is very interesting, includes novelties and deserves publication. However, I 
have several doubts and comments that need clarification and further discussion. 
 
General comments 
1) DOD from MODIS: It is not clear what the DOD derived from MODIS refers to. Is it 
total dust optical depth or coarse dust optical depth? I understand that it refers to the 
total dust optical depth (fine and coarse) but I was confused when the product was 
compared to the coarse (O’Neill) product from AERONET. Can you please explain better 
the derivation of DOD from AOD in the paper? Given the importance of the dataset for 
the paper I feel it is not enough to refer the reader to other publications. Also, can you 
provide an estimation of the uncertainty of this product? 

We added lines 102-114 to better explain how DOD is derived. It is coarse dust 
optical depth.  The formula is derived from the work of Anderson et al. (2005).  
Uncertainty of this product is added to the supplementary information as shown below. 
We also modified lines 119-122 to include these information. 

Figures R1-2 compares aerosol optical depth (AOD) between MODIS and 
AErosol RObotic NETwork (AERONET) sites data (top), and between MODIS DOD 
and AERONET coarse mode aerosol optical depth (COD; bottom). AERONET COD is 
processed by the Spectral Deconvolution Algorithm (O'Neill et al., 2003). We used an 
evaluation method following Levy et al. (2003; their Fig. 11) for AOD and COD errors. 
The AERONET Level 2 (quality assured) 10 minutes AOD and COD (500 nm) are 
extracted for Aqua equatorial crossing time (1:30 PM) and Terra equatorial crossing time 
(10:30 AM) plus or minus 30 minutes, and are considered if there is at least 2 
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measurements per day and there should be at least 100 days with data. We select 
AERONET sites within a spatial radius of 15 km of MODIS measurement. 883 
AERONET sites are used. Total number of valid data is about 35,747. In box-whisker 
plots (e.g., Fig. R1), all collocated MODIS and AERONET data are grouped into bins of 
500 measurements. The last bin will contain a larger number of values corresponding to 
the remaining of the division.  

As shown in Fig. R1, MODIS slightly underestimated Aqua AOD and DOD for 
most of the AOD and DOD ranges. Compared to AERONET station data, Aqua AOD is 
underestimated, and DOD largely inherits this error. For Aqua DOD around 0.50, the 
median error is around 0.08, with estimated errors ranging from -0.29 to 0.16. Terra DOD 
is better than Aqua DOD in terms of the median of errors (Fig. R2 bottom vs. Fig R1 
bottom).  The median error for Terra DOD around 0.50 is very close to zero, with 
estimated errors ranging from -0.23 to 0.25. 
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Figure R1. Comparison between grouped Aqua AOD error (i.e., the differences between 
MODIS AOD and AERONET AOD versus AERONET AOD, top), and grouped coarse 
mode aerosol optical depth (COD) error (i.e., the differences between MODIS DOD and 
AERONET COD versus AERONET COD, bottom). For each box-whisker, its width is 
1σ of the AOD (COD) bin, while its height, whiskers, middle line and red dots are the 1σ, 
2σ, mean, and median of AOD (COD) error, respectively. The envelope of estimated 
errors are blue and the one-one line (zero error) is dashed black. 
 
 

 

 
 
Figure R2. Same as Fig. R1 but for Terra DOD. 
 
The confidence of satellite data over the different regions is assessed by comparison with 
AERONET (few stations, low spatial coverage), CALIOP, and considering the number of 
days with available DOD per season. Results show that while in Africa, South America, 
Middle East and some Asian regions confidence seems to be high, for some regions in 
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Asia/North America it largely depends on the season. In my view, the strength or 
confidence on the DOD data by region should be considered when discussing: the 
modelled DOD evaluation at the regional level, the regression method projections and 
discrepancies with CMIP5 models. 

Major uncertainties we found in terms of days of coverage and comparison with 
AERONET and CALIOP are: 1) low coverage over northern China and Southeastern 
Asia in JJA; 2) DOD is slightly higher than COD from AERONET over Arabian 
Peninsula in DJF and SON; 3) DOD is lower than CALIOP COD over northern India in 
MAM. We added lines 159-164, 338-343 to discuss the uncertainties associated with 
DOD. 
 
 
2) DOD from CMIP5 models: The authors compare the DOD derived from the selected 
CMIP5 models using Eq. (2). Using a value of 0.6 everywhere and for every model is an 
important simplification as it depends on model-dependent assumptions on size 
distribution and other issues such as the size range considered. While 0.6 may be a 
reasonable value for GFDL-CM3, how can we be sure it is ok for other models? Is there 
any other model for which you could compare this assumption in addition to GFDL-
CM3. 

We agree that using 0.6 for all models is a simplification and adds uncertainties to 
our analysis. We modified text to address this issue, e.g., added lines 237-241: “Applying 
the same mass extinction efficiency everywhere and to all the CMIP5 model output used 
here is a simplification, as different models may have quite different mass extinction 
efficiency. For instance, e can range from 0.25 to 1.28 m2 g−1 in AEROCOM models, 
with a multi-model medium of 0.72 m2 g−1 (Huneeus et al., 2011).” and lines 243-244: 
“A full validation of this method will require modeled DOD from all the other CMIP5 
models, which are currently not available.”  
 
 
3) Clear sky vs all sky values: While the authors have made an effort to gather the largest 
possible amount of DOD data by using both Aqua and Terra, the results of the 
comparison between MODIS DOD and model DOD may be quite affected by the use of 
all sky values from the models instead of clear sky values. Can you at least quantify this 
effect by for example using clear sky DOD from GFDL-CM3? How large is this effect? 
This may be potentially important in areas with seasonal clouds and precipitation. Could 
this be one of the reasons for the strong disagreement in some regions? 

As the reviewer pointed out, MODIS AOD removed pixels contaminated by 
cloud, and therefore AOD (and DOD) is retrieved toward a clear-sky condition. On the 
other hand, the derived (or modeled) DOD in CMIP5 models does not have any cloud-
screening process and therefore is under an all-sky condition. The inconsistence between 
the two may add some uncertainties in regions with more cloud coverage/amount, such as 
the central U.S., northern China, southeastern Asia, and northern South America, but less 
so over North Africa, South Africa, the middle East, Australia, India (except JJA), and 
Australia (Figure R3).  
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Figure R3. Total cloud amount (%) from the International Satellite Cloud Climatology 
Project (ISCCP) averaged over 1991-2012. Black boxes denote the nine averaging 
regions. 

 
  In GFDL-CM3 model, DOD at each grid point is calculated under all-sky 

condition and model does not have output of clear-sky DOD. We compared DOD from 
CALIOP level 3 data under all-sky condition and cloud-free (i.e., clear sky) condition 
(Figure R4).  The differences of global mean DOD over land under all-sky and clear-sky 
conditions range from -0.003 in MAM to 0.001 in DJF. The differences are larger (> 
±0.05) over cloudy regions in MAM and JJA, particularly over Guinea coast in West 
Africa, northern China, southeastern Asia, India (Fig. R4, bottom). The differences are 
largely due to the fact that much less samples are collected to produce cloud-free DOD 
over these cloudy regions (not shown). The disagreement between MODIS DOD and 
CMIP5 DOD in the above regions (i.e., Guinea coast in West Africa, northern China, 
southeastern Asia, India) is not particularly higher than other regions (e.g., Fig. 4).  
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Figure R4. Climatology (2007-2016) of CALIOP DOD under all-sky condition (top) and 
the differences between all-sky and cloud-free conditions (bottom). Blue numbers denote 
global mean DOD over land. 
  
 
4) Interannual variability: One of the findings of this study is that the interannual DOD 
variation is not very well captured by the CMIP5 models. It is stated that “models 
probably misrepresented these [controlling factor] relationships, in addition to their 
incapacity of capturing the interannual variations of individual controlling factors”. 
Because of their nature, CMIP5 models cannot (and are not meant to) represent year-to-
year variations of the driving factors in such a short time period. Therefore, the first part 
of the statement is just speculative, i.e., one cannot know whether the relationships are 
misrepresented from that analysis alone. I strongly believe that this part should be better 
discussed both in the results section and the conclusions. I also believe that the 
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comparison between CMIP5 model output and observations in Figures S4 to S6 is not 
needed. Isn’t it obvious that CMIP5 models cannot represent year-to-year variations of 
each season in a 12-year period? 
 The reviewer questioned our argument “...models probably misrepresented these 
relationships...” following the discussion on Figure 5 and Table S1. We did not intend to 
make any conclusion at that line, but to bring up a question. Later in Figure 6 we 
examined the connections between CMIP5 DOD and controlling factors. We revised line 
425 to avoid misunderstanding: “... models may misrepresent these relationships, in 
addition to their incapacity of capturing the interannual variations of individual 
controlling factors in general”.  We also followed reviewer’s suggestion to remove 
Figures S4-6 and modified text accordingly (line 427, lines 669-674).  
 
 
5) The role of surface bareness: one of the important conclusions of the study is that 
“constraints from surface bareness are largely underestimated while the influences of 
surface wind and precipitations are overestimated”. I have a few doubts/comments on 
this: 
a. How can you know that the constraint from surface bareness is largely 
underestimated? Given your methodology, couldn’t it be that the constraint of surface 
bareness is correct in absolute terms but the effect of precipitation (through soil 
humidity) is overestimated? This should be clarified.  

It is possible that the magnitude of one controlling factor in the model is closer to 
the observation while the others are systematically underestimated/overestimated. So we 
standardized each controlling factor before regression. Therefore, the differences due to 
their absolute values are removed. The regression coefficients thus reflect how the 
interannual variations of each factor may contribute to the variations of DOD. 
 
b. While I think that the methodology is sound, it is not clear to me how year-to-year 
variations of around 2-3 % in LAI (Figure S7) can have such an impact in the 
interannual variability of dust in Northern Africa. Because this conclusion has important 
implications, could you further discuss this point? What would be the physical 
mechanisms that could explain this?  

First of all, we’d like to clarify that Fig. S7 shows bareness instead of LAI. Year-
to-year variations of LAI are above 10% over the Sahel and parts of North Africa (Figure 
R5, right column).  Bareness, or LAI, is a key non-erodible factor that can prevent wind 
erosion. The reason bareness shows a stronger influence on the interannual variations of 
DOD than the other two factors (precipitation and surface wind speed) is because its 
variations are more consistent with DOD changes. Here we show an example. We select 
an area over the Sahel (10°-16°N, 0°-25°E) where bareness is the dominant controlling 
factor in MAM based on multiple liner regression (Figure R6a).  As shown in Figure 
R6b, the interannual variation of bareness (orange) is more consistent with DOD (black) 
variations than surface wind speed (green) or precipitation (purple) in the region. The 
correlation between DOD and standardized bareness is 0.61 (p=0.03), also higher than 
the correlations between DOD and precipitation (-0.46) or between DOD and surface 
wind (0.55).  
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We also examined multiple-linear regression using LAI from GLASS during 
2004-2014 (Xiao et al. 2014). GLASS LAI is derived from MODIS products for years 
after 2001. The results using GLASS LAI are very similar to what we obtained from 
AVHRR LAI (Figure R7).  

 
 

 
 
Figure R5. Seasonal mean of LAI averaged over 2004-2016 (m2/m2; left) and ratio (%) of 
standard deviation of LAI to seasonal mean LAI (right) over North Africa and the 
Arabian Peninsula from AVHRR during 2004-2016. 
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Figure R6. (a) Same as Fig. 6b but on a 1° by 1° grid for North Africa and the Middle 
East. Black box indicate an averaging area between 10°-16°N and 0°-25°E. (b) Time 
series of standardized controlling factors of bareness (orange), surface wind (green), 
precipitation (purple) and MODIS DOD (black) averaged over the area shown in (a). 

 
 
 

(a) 

(b) 
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Figure R7. Regression coefficients calculated by regressing DOD in each season onto 
standardized precipitation (purple), bareness (orange), and surface wind speed (green) 
from 2004 to 2014. Coefficients obtained using MODIS DOD and observed controlling 
factors. Plots in the left used LAI from the GLASS, while on the right used LAI from the 
AVHRR. All the other variables are the same. The color of the shading denotes the 
largest coefficient in absolute value among the three, while the saturation of the color 
shows the magnitude of the coefficient (from 0 to 0.04). All regression coefficients 
regardless of their statistical significance are shown. Missing values are shaded in grey. 
To highlight coefficients near dust source regions, a mask of LAI ≤ 0.5 is applied. 
 
 
Can you provide the same figure (S7) but for the model derived bareness (both present 
day and future projections)? How well do the models compare with the observed range of 
variability of the LAI in arid regions (the Sahara for example)? 

Modeled climatology of bareness is higher over North Africa (Figure R8) than 
that in the AVHRR, and the standard deviation is lower over northern North Africa but 
much higher over the Sahel.  
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Figure R8. Seasonal mean (left) and standard deviation (right) of bareness over North 
Africa and the Arabian Peninsula from CMIP5 7-model ensemble mean during 2004-
2016. 

 
 
6) Regression method projections vs. CMIP5 projections: The regression method used to 
derive DOD in future scenarios is based upon 16 CMIP5 model variables (surface wind 
speed, bareness and precipitation) and compared to dynamical projections of only 7 
CMIP5 models (those with online dust schemes). Partly, differences in future trends 
might come by differences in driving variables. You state [line 439] that projected DOD 
changes using the full sample or only 7 models are very similar. If so, why not using the 
same 7 model outputs as drivers? This would enhance consistency. Finally, why the 
similarities between the two approaches in some regions may be informative? 

The purpose of using variables from 16 CMIP5 models for the future projection is 
to include as much information (i.e., more model output) about projected change of the 
controlling factors as possible. As the reviewer pointed that, different number of CMIP5 
models used for the regression model may add to the differences between CMIP5 model 
projected DOD and regression model projected DOD. So we follow the suggestion to 
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show regression model projected DOD change using 7-model output in Figure 9 to keep 
the consistency and show results from 16-model in Figure S7. 

We removed “which may be informative”, and modified the sentence to:	  “we find 
some similarities between the two, which adds to the confidence of projected DOD 
change in these regions, for instance...”. We also modified lines 513-522 to better explain 
approach of future projection using the regression model: “Here we also present the 
projected change of DOD from the regression model in Figure 9. The regression model is 
developed based on observed relationships between DOD and local controlling factors 
and can largely capture the interannual variations of DOD in the present-day climate 
(Table S1 in the Supplement). Assuming that the observed connection between DOD and 
these controlling factors do not change dramatically in the future, we can use this 
regression model and CMIP5-model projected change of controlling factors to project 
DOD variations. Compared to DOD projection from CMIP5 models, this approach 
utilizes additionally observational constrains and is likely to provide a more reliable 
future projection.”  Although CMIP5 models overestimate the influence of surface wind 
and precipitation and underestimate the role of bareness, there are some similarities 
between model and observations (Fig. 6; lines 450-462), which indicate that models 
partially capture the connection between the DOD and these controlling factors in some 
regions. Therefore, the projection of DOD from CMIP5 models is not completely 
unreliable.  The similarity between CMIP5 projection and the projection from the 
regression model thus adds to the confidence of projected change of DOD over North 
Africa, the Arabian Peninsula, and northern China in some seasons. 

 
 
Minor comments: 
- I suggest to list multiple references to the same topic chronologically, unless there are 
reason to order them differently, e.g. in the introduction. 

Done. 
 
- I think the column heading “Dust emission scheme” is somewhat misleading as the 
given references describe the implementation of a dust emission scheme, not the scheme 
itself. Perhaps rewording to “Dust emission implementation” or similar would help. 
 We follow the suggestion to change column head to “Dust emission 
implementation”. 
 
- I suggest changing Eq. (1) to Bareness = exp(-LAI). Also, is there a reference for this 
equation? 
 We change Eq. (1) following the comment and added a reference.  
 
- L. 146-147: I would normally not consider a resolution of 80km “very suitable to study 
the influence of wind speed on dust emission and transport on small scales”. I 
understand the intent of this statement, but I suggest rephrasing this to avoid 
misunderstanding. 
 Thanks for the suggestion. We modified lines 185 to “We choose this analysis 
because of its relatively high spatial resolution”. 
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- L. 160: I suggest to delete “relatively high” as well as “quite” 
 Done. 
 
- L. 192: GFLD-CM3 should be GFDL-CM3 

Done. 
 
- Line 205: clarify which DOD is regressed onto observed values, i.e. satellite derived 
DOD 
 We changed the sentence to “by regressing MODIS DOD onto...” 
 
- Fig. 3i: It is very hard to see the MODIS DOD pattern for Australia. Can this be 
improved? 
 We re-plotted the figure to better display MODIS DOD for Australia.  
 
- Fig. 4 is ok, but quite dense 
 We updated the figure to make it look better. 
 
- L. 311: variability instead of variations 
 Done. 
 
- L. 328: wind erosion instead of “soil erosion from wind” 
 Done (now line 173). 
 
- Line 431: centaury should be century 
 Done. 
 
- L. 457 ff: Sometimes it is not clear if “models” refers to the CMIP5 models or 
projection ‘models’. 
 We changed “models” to “regression projections” to avoid confusion. 
 
 
- Figure 6. It is difficult to sort out the different elements, e.g. the strength of the 
regression depending on the shading intensity is not visible. I would suggest: to make a 
zoom per region, or to display dependencies from the 3 variables in independent maps, 
and to use the same resolution for MODIS and CMIP5 maps to make easier a direct 
comparison. 
 We updated Figures 6 by interpolating results from MOIDS and observed 
controlling factors to model grids (2° by 2.5°, Figs. 6a-d) and changed color scale from 
0~0.02 to 0~0.04 to better show the shading intensity. We also zoomed in and plotted a 
few figures for different regions (Figures R9-R13) here.  The patterns in new Fig. 6 are 
very similar to the old one. The connection between DOD and bareness is underestimated 
on the interannual time scale in CMIP5 models. On the other hand, DOD’s connection 
with precipitation and surface wind speed are overestimated.  
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Figure R9. Same as Fig. 6 but for Africa and the Middle East.  Black boxes denote the 
averaging regions defined in Table 2: North Africa, South Africa, and the Middle East. 
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Figure R10. Same as Fig. 6 but for Asia.  Black boxes denote the averaging regions 
defined in Table 2:  northern China, India, and southeastern Asia. 
 



	   16	  

 
 
Figure R11. Same as Fig. 6 but for North America.  Black boxes denote the averaging 
regions defined in Table 2: North America. 
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Figure R12. Same as Fig. 6 but for Australia. 
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Figure R13. Same as Fig. 6 but for South America.  Black boxes denote the averaging 
regions defined in Table 2: South America. 
 
 
 
 
Reference: 
Xiao ZQ, Liang SL, Wang JD, Chen P, Yin XJ, Zhang LQ, et al. Use of general 
regression neural networks for generating the GLASS leaf area index product from time-
series MODIS surface reflectance. IEEE T. Geosci. Remote 52, 209-223 (2014) 
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Abstract. Dust aerosol plays an important role in the climate system by affecting the 1	  

radiative and energy balances. Biases in dust modeling may result in biases in simulating 2	  

global energy budget and regional climate. It is thus very important to understand how 3	  

well dust is simulated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) 4	  

models. Here seven CMIP5 models using interactive dust emission schemes are 5	  

examined against satellite derived dust optical depth (DOD) during 2004-2016.  6	  

It is found that multi-model mean can largely capture the global spatial pattern 7	  

and zonal mean of DOD over land in present-day climatology in MAM and JJA. Global 8	  

mean land DOD is underestimated by -25.2% in MAM to -6.4% in DJF. While seasonal 9	  

cycle, magnitude, and spatial pattern are generally captured by multi-model mean over 10	  

major dust source regions such as North Africa and the Middle East, these variables are 11	  

not so well represented by most of the models in South Africa and Australia. Interannual 12	  

variations of DOD are neither captured by most of the models nor by multi-model mean. 13	  

Models also do not capture the observed connections between DOD and local controlling 14	  

factors such as surface wind speed, bareness, and precipitation. The constraints from 15	  

surface bareness are largely underestimated while the influences of surface wind and 16	  

precipitation are overestimated.  17	  

Projections of DOD change in the late half of the 21st century under the 18	  

Representative Concentration Pathways 8.5 scenario by multi-model mean is compared 19	  

with those projected by a regression model. Despite the uncertainties associated with both 20	  

projections, results show some similarities between the two, e.g., DOD pattern over 21	  

North Africa in DJF and JJA, an increase of DOD in the central Arabian Peninsula in all 22	  

seasons, and a decrease over northern China from MAM to SON. 23	  
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1. Introduction 24	  

Dust is the second most abundant aerosols by mass in the atmosphere after sea 25	  

salt. It absorbs and scatters both shortwave and longwave radiation and thus modifies 26	  

local radiative budget and consequently vertical temperature profile, influencing global 27	  

and regional climate. For instance, studies found dust influences the strength of the West 28	  

African monsoon  (e.g., Miller and Tegen, 1998; Miller et al., 2004; Mahowald et al., 29	  

2010; Strong et al., 2015) and Indian monsoonal rainfall (e.g., Vinoj et al., 2014; Jin et 30	  

al., 2014, 2015, 2016;  Solmon et al., 2015; Kim et al., 2016; Sharma and Miller, 2017). 31	  

Dust aerosols are also found to amplify droughts during the U.S. Dust Bowl and 32	  

Medieval Climate Anomaly (Cook et al., 2008, 2009, 2013), and affect Atlantic tropical 33	  

cyclones (e.g., Dunion and Velden, 2004; Wong and Dessler, 2005; Evan et al., 2006; 34	  

Sun et al., 2008; Strong et al., 2018). Dust particles can also serve as ice cloud nuclei and 35	  

influence the properties of the cloud (e.g., Levin et al., 1996; Rosenfield et al., 1997; 36	  

Wurzler et al., 2000; Nakajima et al., 2001; Bangert et al., 2012) and affect regional 37	  

radiative balance and hydrological cycle. When deposited in the oceans, iron-enriched 38	  

dust also provides nutrients for phytoplankton, affecting ocean productivity and therefore 39	  

carbon and nitrogen cycles and ocean albedo (e.g., Fung et al., 2000; Jickells et al., 2005; 40	  

Shao et al., 2011; Jickells et al., 2005). 41	  

Globally, the estimated radiative forcing from dust aerosol is 0.10 (-0.30 to +0.10) 42	  

W m-2, a magnitude about one fourth of the radiative forcing of sulfate aerosol or black 43	  

carbon from fossil fuel and biofuel (Myhre et al., 2013; their Table 8.4). Biases in dust 44	  

simulation may potentially affect global energy budgets and regional climate simulation. 45	  
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Thus, it is very important to examine the capability of current state-of-the-art climate 46	  

models in simulating dust.  47	  

Only a few studies examined the Coupled Model Intercomparison Project Phase 5 48	  

(CMIP5) model output of dust and most of them are regional evaluations. For instance, 49	  

Evan et al. (2014) examined model output for Africa, but mainly focused on an area over 50	  

the northeastern Atlantic (10°–20°N and 20°–30°W) where a long-term proxy of dust 51	  

optical depth data over Cape Verde islands is available	  (Evan and Mukhopadhyay, 2010).  52	  

They found models underestimated dust emission and mass path and failed to capture the 53	  

interannual variations from 1960 to 2004, as models did not capture the negative 54	  

connection between dust mass path and precipitation over the Sahel.  55	  

Another work examined CMIP5 aerosol optical depth (AOD) is by Sanap et al. 56	  

(2014) for India. They compared dust distribution in the models with Earth Probe total 57	  

ozone monitoring system (EPTOMS)/ Ozone monitoring Instrument (OMI) aerosol index 58	  

(AI) from 2000 to 2005. They found most of CMIP5 models, except two HadGEM2 59	  

models, underestimated dust load over Indo-Gangetic Plains, and suggested the biases are 60	  

due to a misrepresentation of 850 hPa winds in the models. Later, Misra et al. (2016) also 61	  

examined CMIP5 modeled AOD for India but did not specifically focus on dust. 62	  

Shindell et al. (2013) examined the output of 10 models from the Atmospheric 63	  

Chemistry and Climate Model Intercomparison Project (ACCMIP) for one year (2000), 64	  

among which eight models also participated in the CMIP5. They noticed that simulated 65	  

dust AOD vary by more than a factor of two across models.  However, this study also did 66	  

not focus on dust, but emphasized the radiative forcings from anthropogenic aerosols.  67	  
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None of the above studies examined global dust simulation in CMIP5 models.  68	  

What’s more, most studies focused on annual mean, not seasonal averages. It is very 69	  

possible that models perform better in some seasons than others. AeroCom multiple-dust 70	  

model intercomparison was performed on both global and regional scales (Huneeus et al., 71	  

2011) but only focused on one year, thus models’ capability of simulating interannual or 72	  

long-term variability of dust is not clear. A comprehensive evaluation of the climatology 73	  

and interannual variation of global dust optical depth (DOD) in CMIP5 models will 74	  

provide a clear picture ofinsights into models’ capability of dust simulationsimulating the 75	  

integrated aerosol extinction due to dust, which is one of the key variables that determine 76	  

the radative forcing of dust to the climate system.  77	  

Here we examine the results of seven CMIP5 models (Table 1) by comparing 78	  

model output with DOD derived from Moderate Resolution Imaging Spectroradiometer 79	  

(MODIS) Deep Blue aerosol products. Projections on changes of DOD in the late half of 80	  

the 21st century by CMIP5 models and also by a regression model (Pu and Ginoux, 2017) 81	  

are examined and analyzed.  82	  

The following section introduces data and methods used in this study. Results are 83	  

presented in section 3, including examinations on the climatology and interannual 84	  

variations of modeled CMIP5 DOD and future projections. Discussion and major 85	  

conclusions are presented in sections 4 and 5, respectively. 86	  

 87	  

2. Data and Methodology 88	  

2.1 DOD from MODIS  89	  

DOD is a widely used variable that describes optical depth due to the extinction 90	  
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by mineral particles. It is one of the key factors (single scattering albedo and asymmetry 91	  

factor being the two others) controlling dust interaction with radiation. Monthly DOD are 92	  

derived from MODIS aerosol products retrieved using the Deep Blue (MDB2) algorithm, 93	  

which employs radiance from the blue channels to detect aerosols globally over land even 94	  

over bright surfaces, such as desert (Hsu et al., 2004, 2006). Ginoux et al. (2012b) used 95	  

collection 5.1 level 2 aerosol products from MODIS aboard the Aqua satellite to derive 96	  

DOD. Here, both MODIS aerosol products (collection 6, level 2; Hsu et al., 2013) from 97	  

the Aqua and Terra platforms are used. Aerosol products such as AOD (550 nm), single 98	  

scattering albedo, and the Ångström exponent are first interpolated to a regular 0.1° by 99	  

0.1° grid using the algorithm described by Ginoux et al. (2010). The DOD is then derived 100	  

from AOD following the methods of Ginoux et al. (2012b) with adaptions for the newly 101	  

released MODIS collection 6 aerosol products (Pu and Ginoux, 2016).  To separate dust 102	  

from other aerosols, we use the Ångström exponent (α) and single scattering albedo (ω). 103	  

Ångström exponent has been shown to be highly sensitive to particle size (Eck et al., 104	  

1999). A continuous function relating the Ångström exponent to fine-mode aerosol 105	  

optical depth established by Anderson et al. (2005; their Eq. 5) based on ground-based 106	  

data is used to separate dust from fine particles. We also screen the data by setting single 107	  

scattering albedo at 470 nm to be less than one for dust due to its absorption of solar 108	  

radiation. This separates dust from scattering aerosols such as sea salt, which is purely 109	  

scattering.  The formula can be summarized as the following:  110	  

              DOD = AOD × (0.98-0.5089α +0.0512α2)     if (ω < 1)        .            (1) 111	  
  112	  

Note that DOD represents the coarse mode fraction of dust only. It is estimated 113	  

that the fine mode dust at emission is less than 10% (Kok et al., 2017).   114	  
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Aqua and Terra DOD have previously been used to study global dust sources 115	  

(Ginoux et al., 2012b), and their geomorphological signature (Baddock et al., 2016), dust 116	  

variations in the Middle East (Pu and Ginoux, 2016) and the U.S. (Pu and Ginoux, 2017), 117	  

and have been validated with Aerosol Robotic NETwork (AERONET) stations over the 118	  

U.S. (Pu and Ginoux, 2017). Here we compare Aqua and Terra DOD against AERONET 119	  

stations globally (Section 1 and Figures. S1-2 in the Supplement). Both Aqua and Terra 120	  

DOD is slightly underestimated, with respective errors of	   0.08+0.52DOD and 121	  

0.10+0.48DOD.  122	  

Daily DOD is derived for bothfrom Aqua and Terra satellites and thenare 123	  

averaged to monthly data and interpolated to a 1° by 1° grid. Terra passes the Equator 124	  

from north to south around 10:30 local time while Aqua passes the Equator from south to 125	  

north around 13:30 local time. To reduce missing data and also to combine the 126	  

information from both morning and afternoon hours, a combined monthly DOD (here 127	  

after MODIS DOD) is derived by averaging Aqua and Terra DOD when both products 128	  

exist or using either Aqua or Terra DOD when only one product is available. As shown in 129	  

Figure S31 in the Supplement, the mean available days in each season and also spatial 130	  

coverage are enhanced in combined DOD than using Aqua or Terra (not shown) DOD 131	  

alone. This combined DOD is available from January 2003 to December 2016. 132	  

Aqua and Terra DOD product has previously been used to study global dust 133	  

sources (Ginoux et al., 2012b), dust variations in the Middle East (Pu and Ginoux, 2016) 134	  

and the U.S. (Pu and Ginoux, 2017), and has been validated with Aerosol Robotic 135	  

NETwork (AERONET) stations over the U.S. (Pu and Ginoux, 2017). Here we  136	  
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We also compared MODIS DOD climatology with both AERONET observation 137	  

and DOD retrieved from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP; 138	  

Winker et al., 2004; 2007) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder 139	  

Satellite Observation (CALIPSO) satellite. AERONET stations provide cloud-screened	  140	  

and	  quality assured (level 2) coarse mode aerosol optical depth (COD) at 500 nm, which 141	  

is processed by the Spectral Deconvolution Algorithm (O'Neill et al., 2003). Only nine 142	  

sites have long-term COD records during 2003-2016, and the climatological mean of 143	  

MODIS DOD generally compares well with these sites (Figure S42 in the Supplement).  144	  

CALIOP measures backscattered radiances attenuated by the presence of aerosols 145	  

and clouds and retrieves corresponding microphysical and optical properties of aerosols. 146	  

Monthly dust AOD (or DOD) on a 2° latitude by 5° longitude grid are available since 147	  

June 2006. The climatology of CALIOP DOD during 2007-2016 is similar to that of 148	  

MODIS DOD during the same period (Figure S53 in the Supplement). The global mean 149	  

(over land) MODIS DOD is slightly higher than that from CALIOP, probably due to the 150	  

lower horizontal resolution of the latter. The pattern correlations (e.g., Pu et al., 2016) 151	  

between the two products range from 0.83 in boreal spring and summer to 0.63 in boreal 152	  

winter (Figure S53 in the Supplement).  153	  

Due to higher spatial resolution (compared with CALIOP) and coverage 154	  

(compared with AERONET sites), MODIS DOD is chosen as the primary product to 155	  

validate CMIP5 model output. Nine regions (Table 2) are selected to study the DOD 156	  

magnitude, spatial pattern, and variations. These regions cover major dust source regions 157	  

previously identified (Ginoux et al. 2012).  158	  

Given the analysis above (Figs. S3-5), there are some uncertainties associated 159	  
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with DOD in a few regions in some seasons: (1) relatively low coverage (<30 days per 160	  

season) over northern China and southeastern Asia in JJA; (2) DOD is slightly higher 161	  

than COD from AERONET over the Arabian Peninsula in DJF and SON; (3) DOD is 162	  

lower than CALIOP over northern India in MAM. We will consider these uncertainties in 163	  

the following analysis wherever is relevant.  164	  

 165	  

2.2 Reanalysis and observation datasets 166	  

Previous study found that the variations of dust event frequency over the U.S. in 167	  

the recent decade could be largely represented by the variations of three local controlling 168	  

factors: seasonal mean surface wind speed, bareness, and precipitation (Pu and Ginoux, 169	  

2017). These factors have previously been found to constrain dust emission or variability 170	  

on multiple time scales (e.g., Gillette and Passi, 1988; Fecan et al., 1999; Zender and 171	  

Kwon, 2005). While surface wind is positively related to the emission and transport of 172	  

dust, vegetation is an important non-erodible element that prevents wind erosion. 173	  

Precipitation is generally negatively related to dust emission and transport processes. 174	  

While the scavenging effect of precipitation on small dust particles only lasts a few hours 175	  

or days, influences of precipitation on soil moisture lasts longer. 176	  

To examine the interannual variations of DOD and its connection with local 177	  

controlling factors such as surface wind speed, bareness, and precipitation, monthly data 178	  

of 10 m wind speed from the ERA-Interim (Dee et al., 2011), leaf area index (LAI) data 179	  

from Advanced Very High Resolution Radiometer (AVHRR; Claverie et al., 2014, 180	  

2016), and precipitation from the Precipitation Reconstruction over Land (PRECL; Chen 181	  

et al., 2002) are used. 182	  
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ERA-Interim is a global reanalysis from the European Centre for Medium-Range 183	  

Weather Forecasts (ECMWF). Its horizontal resolution is T255 (about 0.75° or 80 km), ). 184	  

We choose this analysis because of its relatively high spatial resolutionvery suitable to 185	  

study the influence of wind speed on dust emission and transport on small scales. The 186	  

monthly data are available from 1979 to present day. 187	  

Monthly LAI derived from the version 4 of Climate Data Record (CDR) of 188	  

AVHRR is used to calculate surface bareness.  The data are produced by the National 189	  

Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) 190	  

and the University of Maryland. Monthly gridded data on a horizontal resolution of 0.05° 191	  

by 0.05° degree are available from 1981 to present. This product is selected due to its 192	  

high spatial resolution and long temporal coverage. Surface bareness is calculated from 193	  

seasonal mean LAI (Pu and Ginoux, 2017) as the following, 194	  

                               Bareness = exp (-1×LAI)                                      .              (21) 195	  

Bareness is originally defined as exp (-LAI-SAI), where SAI is stem area index (Evans et 196	  

al. 2016). Since satellite does not retrieve brownish SAI, we only use LAI to calculate 197	  

bareness.  198	  

PRECL precipitation from the National Oceanic and Atmospheric Administration 199	  

(NOAA) is a global analysis available monthly from 1948 to present at a 1° by 1° 200	  

resolution. The dataset is derived from gauge observations from the Global Historical 201	  

Climatology Network (GHCN), version 2, and the Climate Anomaly Monitoring System 202	  

(CAMS) datasets. Its long coverage and relatively high spatial resolution is quite suitable 203	  

to study the connections between DOD and precipitation. 204	  

 205	  
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2.3 CMIP5 model output 206	  

 Among CMIP5 models we selected seven models (Table 1) that used interactive 207	  

dust emission schemes, in which dust emission varied in response to changes of climate. 208	  

The output of 10 m wind speed, precipitation, and LAI are also available from these 209	  

models. In models that dust is simulated offline, i.e., dust emission did not interactively 210	  

respond to meteorological and climate changes, the connections between DOD and 211	  

modeled controlling factors are lost. Other models (to our best knowledge) either used 212	  

offline dust as an input, in which dust emission did not interactively respond to 213	  

meteorological and climate changes, or did not write out the variables needed for this 214	  

analysis.  215	  

 Both historical run from 1861 to 2005 and future run under the Representative 216	  

Concentration Pathways 8.5 (RCP 8.5) scenario (Riahi et al., 2011) from 2006 to 2100 217	  

are used. Here the RCP 8.5 scenario is chosen because it represents the upper limit of the 218	  

projected greenhouse gas change in the twenty-first century and thus likely is the worst-219	  

case scenario for future DOD variation under climate change. Also, studies found that 220	  

observed CO2 emission pathway during 2005-2014 matches RCP 8.5 scenario better than 221	  

other scenarios (e.g., Fuss et al., 2014), which makes the RCP8.5 output suitable to 222	  

examine present-day DOD variations after 2005. 223	  

Monthly model output of dust load, surface 10 m wind speed, precipitation, and 224	  

LAI are used. Historical output from 2003 to 2005 and RCP 8.5 output from 2006 to 225	  

2016 are combined to form time series and climatology during 2003-2016 to compare 226	  

with MODIS DOD during the same time period.  227	  

 228	  
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2.3.1 DOD derived from modeled dust load 229	  

Most CMIP5 models did not save DOD, so we used monthly dust load and 230	  

converted them to DOD using the relationship derived by Ginoux et al. (2012a) as the 231	  

following 232	  

                                               𝜏 = 𝑀×  𝑒  ,                                                          (32) 233	  

where τ is DOD at 500 nm, M is the load of dust in unit of (g m−2), and e = 0.6 m2 g−1 is 234	  

the mass extinction efficiency. Dust load from different models is first interpolated to a 235	  

2° by 2.5° grid and then converted to DOD. The same method was used by Pu and 236	  

Ginoux (2017) for the U.S.  Applying the same mass extinction efficiency everywhere 237	  

and to all the CMIP5 model output used here is a simplification, as different models may 238	  

have quite different mass extinction efficiency. For instance, e can range from 0.25 to 239	  

1.28 m2 g−1 in AEROCOM models, with a multi-model medium of 0.72 m2 g−1 (Huneeus 240	  

et al., 2011). Here, wWe compared the derived DOD with modeled DOD from one 241	  

historical simulation of GFDLLD-CM3 model (Donner et al., 2011) as an example. A full 242	  

validation of this method will require modeled DOD from all the other CMIP5 models, 243	  

which are currently not available. The pattern correlation of the climatology (1861-2005) 244	  

between the derived DOD and modeled DOD in GFDL-CM3 are very high, all above 245	  

0.99 for four seasons (not shown).  The percentage differences between derived DOD and 246	  

modeled DOD averaged over global land range from -3.6% in DJF and SON to 1.3% in 247	  

MAM and JJA. Over Africa, DOD is slightly overestimated by 0~6.7% (regional mean), 248	  

while over the Middle East, there is a small underestimation by -1.6% in SON and up to 249	  

8.2% overestimation in JJA. Among the nine regions we focused in this analysis, three 250	  

regions (North America, South Africa, and South America) show an underestimation of 251	  
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more than 20% in some seasons and two regions (Northern China and Australia) show an 252	  

overestimation of more than 10% in some seasons.   253	  

 254	  

2.4 Multiple linear  A linear rregression model 255	  

2.4.1 Multiple linear regression  256	  

 In order to examine the relative contribution of each local controlling factor to 257	  

DOD variations, multiple linear regression is applied by regressing MODIS DOD onto 258	  

standardized seasonal mean ERA-Interim surface wind speed, AVHRR bareness, and 259	  

PRECL precipitation at each grid point. All the data are re-gridded to a 1° by 1° grid 260	  

before the calculation. Over regions where values are missing for any of the explanatory 261	  

variables (i.e., precipitation, bareness, and surface wind speed) or DOD, the regression 262	  

coefficients are set to missing values. The collinearity among these explanatory variables 263	  

is examined by calculating variance inflation factor (VIF) (e.g., O'Brien, 2007; Abudu et 264	  

al., 2011), and in most regions the VIF is below 2 (not shown), indicating a low 265	  

collinearity (5–10 is usually considered high). Bootstrap resampling is used to test the 266	  

significance of the regression coefficients, following the method used by Pu and Ginoux 267	  

(2017).  268	  

 Multiple linear regression is also applied to CMIP5 model derived DOD and 269	  

output of surface wind speed, bareness, and precipitation to obtain regression coefficients 270	  

from the models from 2004 to 2016.  All variables are interpolated to a 2° by 2.5° grid 271	  

before regression. The results are compared with regression coefficients derived from 272	  

observational datasets.  273	  

 274	  
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2.4.2 DOD reconstruction and future projection 275	  

 Using regression coefficients obtained from observations and observed variations 276	  

of precipitation, bareness, and surface wind speed from 2004 to 2016, we can reconstruct 277	  

DOD in the present day and compare it with MODIS DOD (see discussion in section 3.2).  278	  

Similar to the method used by Pu and Ginoux (2017), the regression coefficients 279	  

derived from MODIS DOD and observed controlling factors from 2004 to 2016 and 280	  

CMIP5 model output of surface wind speed, bareness, and precipitation are used to 281	  

project variations of future DOD. The regression coefficients are interpolated from the 1° 282	  

by 1° grid to a 2° by 2.5° grid to be consistent with model output. Such an interpolation 283	  

may smooth out some spatial characteristics from observations. Here we tried two groups 284	  

of CMIP5 output for these controlling factors. One group used seven models with 285	  

interactive dust emission scheme (Table 1), and the other used 16 CMIP5 models as did 286	  

by (see Supplementary Table S1 of Pu and Ginoux, (2017; their Supplementary Table S1) 287	  

that include the seven models with interactive dust emission scheme. The reason to test 288	  

the latter is to include as much model output of the controlling factors as possible. The 289	  

differences between the historical run (1861–2005 average) and that of the RCP 8.5 run 290	  

for the late half of the twenty-first century (2051–2100) are standardized by the standard 291	  

deviation of the historical run for each explanatory variable. The projected change reveals 292	  

how DOD will vary with reference to the historical conditions (mean and standard 293	  

deviation). 294	  

 295	  

3. Results 296	  

3.1 Climatology (2004-2016) 297	  
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Figure 1 shows the climatology of MODIS DOD (top panel) in four seasons 298	  

during 2004-2016 and that from the CMIP5 multi-model mean (bottom). Globally, the 299	  

dustiest regions are largely located over the northern hemisphere (NH) over North Africa, 300	  

the Middle East, and East Asia (Figs. 1a-d). In these regions, DOD is higher in boreal 301	  

spring and summer than fall and winter. Modeled global DOD over land is generally 302	  

lower than that from MODIS DOD, ranging from -0.028 (-25.2%) in MAM to -0.005 (-303	  

6.4%) in DJF. The global spatial pattern is better captured in MAM and JJA, with pattern 304	  

correlations of 0.74 and 0.85, respectively (Figs. 1f-g). In DJF, DOD is overestimated 305	  

over central Africa and Australia, but underestimated over the Middle East and Asia (Fig. 306	  

1e), while in SON there is a similar overestimation in Australia and an underestimation in 307	  

the Middle East (Fig. 1h).  308	  

Figure 2 shows the zonal mean of CMIP5 DOD from individual models (thin 309	  

colorful lines) and multi-model ensemble mean (thick black), in comparison with MODIS 310	  

DOD (thick red). In DJF, DOD is underestimated in the NH from 15° N to 50°N but 311	  

overestimated over the tropics and southern hemisphere (SH) (Fig. 2a). While the 312	  

overestimation in the SH is largely contributed by three models, the underestimation in 313	  

the NH appears in all the seven models. The overestimation of DOD in HadGEM2-ES 314	  

has also been identified in a previous study (Bellouin et al., 2011) and will be discussed 315	  

later. In MAM, a similar overestimation of DOD in the tropics and SH also occurs in 316	  

some models, and the multi-model mean slightly overestimates DOD around 20°-30°S 317	  

(Fig. 2b). In NH, there is a weak underestimation too, but the overall gradient is largely 318	  

captured. In JJA, the multi-model mean resembles MODIS DOD very well (Fig. 2c), 319	  

consistent with the highest pattern correlation in this season shown in Fig. 1. The peak 320	  
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around 19° N in North Africa and Middle East is well captured by the multi-model mean, 321	  

although the magnitude is slightly underestimated. In SON, different from MODIS DOD 322	  

that peaks around 19°N, the multi-model mean has two peaks around 15°N and 28°S, 323	  

respectively, a pattern somewhat similar to that in DJF (Fig. 2d). Consequently, DOD in 324	  

CMIP5 multi-model mean is overestimated at 15°-40°S and 0°-15°N but underestimated 325	  

at 15°S -0° and 15°-40°N. 326	  

Seasonal cycles of CMIP5 DOD are compared with MODIS DOD in nine regions 327	  

in Figure 3. The annual means of DOD in each region from multi-model mean (black) 328	  

and MODIS (red) are also listed in each plot. The spread of DOD among individual 329	  

models is greater during boreal spring and summer for regions in the NH and during 330	  

austral spring and summer for regions in the SH than other seasons. Seasonal cycles over 331	  

North Africa, the Middle East, North America, and India are generally captured by multi-332	  

model mean, with modeled DOD peaking during the same seasons as MODIS DOD 333	  

(Figs. 3a-b, d-e). While some models overestimate the seasonal peaks over the Middle 334	  

East, North America, and India (e.g., CanESM2, HadGEM2-ES, and HadGEM2-CC), a 335	  

few models have very weak seasonal cycles and underestimate DOD over North America 336	  

and India (e.g., GFDL-CM3, NorESM1-M, MIROC-ESM, and MIROC-ESM-CHEM). 337	  

Note that MODIS DOD is slightly lower than CALIOP DOD over India in MAM (Fig. 338	  

S5), therefore for these models the underestimation may be larger than shown in Fig. 3e.   339	  

Since the temporal coverage of MODIS DOD over northern China and 340	  

southeastern Asia is relatively low in JJA compared with other regions (Fig. S3), we also 341	  

examined the seasonal cycle of CALIOP DOD (not shown) and results are similar but 342	  

with weaker magnitude. Over northern China, MODIS DOD peaks in spring (Fig. 3c), 343	  
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consistent with previous studies (e.g., Zhao et al., 2006; Laurent et al., 2006; Ginoux et 344	  

al., 2012b), while multi-model mean peaks much later in May-June. Individual models 345	  

have quite different seasonal cycles, with GFDL-CM3 model having a peak (in April) 346	  

closer to the timing of MODIS maximum.  Similar misrepresentation occurs over the 347	  

southeastern Asia (Fig. 3f).  348	  

In South Africa and South America the observed maxima in early austral spring 349	  

(i.e., September) are also missednot captured by the multi-model mean (Figs. 3g-h).  Note 350	  

that CanESM2 largely captures the seasonal cycle of DOD over South America, although 351	  

the magnitude is overestimated (Fig. 3h). In Australia, DOD is largely overestimated and 352	  

the peak from November to January in MODIS DOD is also misrepresented in theshifted 353	  

about one month earlier in the multi-model mean (Fig. 3i). Similar to the finding here, 354	  

Bellouin et al. (2011) also found that HadGEM2-ES model overestimated DOD over 355	  

Australia and Thar desert region in northwestern India and suggested that these 356	  

overestimations were likely due to model’s overestimation of bare soil fraction and 357	  

underestimation of soil moisture. Despite overestimation, the seasonal cycle in 358	  

HadGEM2-CC model is more similar to MODIS DOD than other models (Fig. 3i).  359	  

We further examine the magnitudes and spatial patterns of CMIP5 DOD in these 360	  

regions. Figure 4 shows the ratio of pattern standard deviations (standard deviations of 361	  

values within the domain) and pattern correlation between CMIP5 DOD and MODIS 362	  

DOD climatology (2004-2016) in each region for four seasons. While the former reveals 363	  

the magnitude differences, the latter demonstrates the spatial resemblance.    364	  

Over North Africa, the Middle East, and India, the ratio of CMIP5 DOD from 365	  

individual models and multi-model mean versus MODIS DOD are all within ± one order 366	  
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of magnitude (Fig. 4). Most models underestimate DOD in northern China, although the 367	  

magnitudes are largely within the range of -one order of magnitude to one. Over North 368	  

America, South Africa, and Australia, some models underestimate the DOD by more than 369	  

two orders of magnitudes, while over Australia three models overestimate DOD by more 370	  

than one order of magnitude. In general, magnitudes of multi-model mean are closer to 371	  

satellite DOD than most individual models and are largely within ± one order of 372	  

magnitude of MODIS DOD. 373	  

The spatial patterns are better captured over North Africa and the Middle East 374	  

than other regions (Fig. 4), with pattern correlations above 0.6 in most models (with 375	  

highest pattern correlation of 0.92 and 0.83, respectively). Pattern correlations from 376	  

multi-model mean are also high, reaching 0.87 (0.78) over North Africa and 0.75 (0.73) 377	  

over the Middle East in JJA (MAM). Nonetheless, some models show negative pattern 378	  

correlations over North Africa, northern China, North America, southeastern Asia, South 379	  

Africa, South America, and Australia. Overall, spatial patterns are less well represented 380	  

in regions over the SH than over the NH in CMIP5 models.  381	  

In short, in terms of both magnitudes and spatial pattern, DOD climatology is best 382	  

represented over North Africa and the Middle East among the nine regions.  The multi-383	  

model mean shows that DOD over North Africa is slightly better simulated than over the 384	  

Middle East, somewhat similar to the finding of AeroCom multi-model analysis 385	  

(Huneeus et al. 2011). 386	  

 387	  

3.2 Interannual variations 388	  
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An important aspect of dust activity is its long-term variabilityvariations, 389	  

including interannual and decadal variations. Dust emission in North Africa is known to 390	  

have strong decadal variations (e.g., Prospero and Nees, 1986; Prospero and Lamb, 2003; 391	  

Mahowald et al., 2010; Evan et al., 2014, 2016), while over Australia, strong interannual 392	  

variations have been related to El Niño–Southern Oscillation (e.g., Marx et al., 2009; 393	  

Evans et al., 2016). Due to the short time coverage of high quality satellite products, we 394	  

focus on interannual variations of DOD from 2004 to 2016. 395	  

Figure 5 shows the correlations of regional mean time series of DOD between 396	  

MODIS and CMIP5 models and multi-model mean for each season in nine regions. We 397	  

also show correlations between the reconstructed DOD (see section 2.4.2 for details) and 398	  

MODIS DOD for reference (Table S1 in the Supplement). Previous study found that the 399	  

variations of dust event frequency over the U.S. in the recent decade could be largely 400	  

represented by the variations of three local controlling factors: seasonal mean surface 401	  

wind speed, bareness, and precipitation (Pu and Ginoux, 2017). These factors have 402	  

previously been found to constrain dust emission or variability on multiple time scales 403	  

(e.g., Gillette and Passi, 1988; Fecan et al., 1999; Zender and Kwon, 2005). While 404	  

surface wind is positively related to the emission and transport of dust, vegetation is an 405	  

important non-erodible element that prevents soil erosion from wind. Precipitation is 406	  

generally negatively related to dust emission and transport processes. While the 407	  

scavenging effect of precipitation on small dust particles only lasts a few hours or days, 408	  

influences of precipitation on soil moisture lasts longer. Here we extend our regression 409	  

model (Pu and Ginoux, 2017) to a global scale. Regression coefficients are obtained by 410	  

regressing MODIS DOD onto observed surface wind, bareness, and precipitation during 411	  
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2004-2016 (see methodology section for details). The reconstructed DOD is then 412	  

calculated using these observed regression coefficients and time-varying controlling 413	  

factors from observations (i.e., surface wind speed, bareness, and precipitation).  414	  

 The interannual variations of DOD are in general not well captured by CMIP5 415	  

models. This is consistent with previous study by Evan et al. (2014) who found dust 416	  

variability downwind of North Africa over the northeastern Atlantic was misrepresented 417	  

in CMIP5 models. In most regions, only one or two models show significant positive 418	  

correlation with MODIS DOD in some seasons, and negative correlations exist in all 419	  

regions (Fig. 5). North Africa, the Middle East, southeastern Asia, South America, and 420	  

Australia show less negative correlations than other dusty regions. On the other hand, 421	  

reconstructed DOD shows significant positive correlations with MODIS DOD over most 422	  

regions in all seasons (Table S1 in the Supplement). This suggests that the interannual 423	  

variations of DOD can be largely attributed to the variations of these controlling factors, 424	  

and models probably may misrepresented these relationships, in addition to their 425	  

incapacity of capturing the interannual variations of individual controlling factors in 426	  

general (Figures S4-6 in the Supplementnot shown), which is not uncommon for coupled 427	  

models.  428	  

We further examine the connection between those controlling factors and DOD in 429	  

CMIP5 models. Figure 6 shows the dominant controlling factors among the three (surface 430	  

wind speed, bareness, and precipitation) on DOD variations in four seasons from MODIS 431	  

(left column) and from CMIP5 multi-model mean (right column), respectively. To 432	  

highlight factors controlling DOD variations near the dust source regions, a mask of 433	  

AVHRR LAI≤ 0.5 is applied to both coefficients.  434	  
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Bareness plays the most important role in many dusty regions in observations, 435	  

e.g., over Australia, central U.S., and South America (Figs. 6a-d). Note that while 436	  

bareness plays an important role over the Sahel during DJF and MAM, it also shows 437	  

strong signal over some areas in the northern North Africa (Figs. 6a-b). The reliability of 438	  

this information is limited by the accuracy of LAI retrieval in these areas. The value of 439	  

bareness in this region is actually quite high (as LAI is very low), but still has weak 440	  

interannual variability (Figures S67 in the Supplement). Over some areas of North and 441	  

South Africa, the Middle East, and East Asia, surface wind and precipitation are also 442	  

quite important.  443	  

The role of bareness is largely underestimated in CMIP5 models, while surface 444	  

wind and precipitation become the dominant factors (Figs. 6e-h). The misrepresentation 445	  

of the connection between DOD and these controlling factors may cause the 446	  

misrepresentation of the dust load and its variability. Taking Australia for an example, 447	  

the overestimation of DOD magnitudes may be related to an overestimation of the 448	  

influence of surface wind on DOD and a lack of constraints from surface bareness. 449	  

Despite the large differences between the observed and modeled connections 450	  

between DOD and the controlling factors, some regions show similarities. For instance, 451	  

over North Africa in DJF, both show an important influence from surface winds (Figs. 452	  

6a, e), although the locations of surface wind-dominant areas are not exactly the same. 453	  

Evan et al. (2016) also found a dominant role of surface wind on African dust variability, 454	  

but they focused on monthly means, not seasonal averages. In MAM, precipitation starts 455	  

to play a role in some parts of North Africa, while surface wind still dominates in some 456	  

areas (Fig. 6b). Same increasing influence of precipitation is shown in the multi-model 457	  

21



21	  
	  

mean, but such an influence seems overestimated (Fig. 6f).  In JJA, the influences of 458	  

surface wind in North Africa and precipitation and bareness over the eastern Arabian 459	  

Peninsulain the Middle East in the multi-model mean (Fig. 6g) also show some similarity 460	  

to observation (Fig. 6c), although an underestimation of the influence from bareness and 461	  

an overestimation of surface windprecipitation are still there.  462	  

Also, note that in CMIP5 models, due to lack of constraints from low surface 463	  

temperature (e.g., over frozen land) and snow cover on dust emission or  464	  

misrepresentations of dust transport, DOD and also the regression coefficients still exist 465	  

over NH high latitudes in boreal winter and spring in the multi-model mean (Figs. 6e-f).  466	  

 467	  

3.3 Future projections 468	  

How will DOD change in response to increasing greenhouse gases? The results 469	  

from CMIP5 multi-model mean are shown in Figure 7. We compare the DOD during the 470	  

late half of the 21st century under the RCP 8.5 scenario with that in the historical level 471	  

(1861-2005 average).  472	  

Over land, CMIP5 model projects a decrease of global mean DOD in all seasons 473	  

except JJA (Figs. 7a-d). The inter-model standard deviation is much greater than the 474	  

multi-model mean, suggesting large discrepancies among individual models. The 475	  

projected decrease is largely over northern North America, southern North Africa, eastern 476	  

central Africa, and East Asia, while the increase is largely over northern North Africa, the 477	  

Middle East, southern North America, South Africa, South America, and southern 478	  

Australia (Fig. 7).  Regional means of DOD change (in percentage) with reference to 479	  

CMIP5 historical run are summarized in Table 3.  480	  
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What might be the causes of DOD change? Figure 8 shows the projected change 481	  

of precipitation, bareness, and surface wind speed from CMIP5 multi-model mean. These 482	  

factors play important role in DOD variations in the present day, although models tend to 483	  

underestimate the role of bareness and overestimate the influences of precipitation and 484	  

surface wind (Fig. 6). Increases in precipitation can increase soil moisture and remove 485	  

airborne dust, thus usually favors a decrease of DOD.  As shown in Figs. 8a-d, the 486	  

increases of precipitation in northern Eurasia, northern North America, the Congo basin 487	  

in Africa, and Australia (DJF and MAM) may contribute to the decrease of DOD in these 488	  

regions, while the decreases of precipitation over northern North Africa and the Middle 489	  

East (DJF and MAM), South Africa, and South America may contribute to the increase of 490	  

DOD (DJF-SON). Also note that in JJA both precipitation and DOD increase over 491	  

northern North Africa and the Middle East (Fig. 8c), suggesting other factors dominate 492	  

the variation of DOD in the multi-model mean.  493	  

A decrease (increase) of bareness indicates a growth (decay) of vegetation and is 494	  

usually associated with a decrease (increase) of DOD. In general, except regions such as 495	  

southern North America, South America, South Africa, part of northern Eurasia, and 496	  

central Sahel, the pattern of bareness change does not resemble DOD change (Figs. 8e-h). 497	  

This is probably due to the fact that the overall influence of bareness on DOD variation is 498	  

underestimated in CMIP5 models (Fig. 6). 499	  

Increases in surface wind can enhance dust emission and transport, and vise versa. 500	  

The changes of surface wind in DJF and MAM are similar and likely to contribute to the 501	  

increase of DOD over northern North Africa, the Middle East, eastern South America, 502	  

southern South Africa, and southern Australia (Figs. 8i-j). The decrease of DOD over 503	  
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northwestern North America, the Sahel, and northern Australia may also relate to the 504	  

decrease of surface wind there, in addition to an increase of precipitation and a reduction 505	  

of bareness. In JJA and SON (Figs. 8k-l), the increases of surface wind in South America, 506	  

South Africa, central Australia and the decreases of wind in northwestern North America, 507	  

northern Eurasia, and the central Sahel are also consistent with patterns of DOD change. 508	  

In short, variations of CMIP5 DOD in the late half of the 21st century centaury 509	  

are more consistent with changes of precipitation and surface wind speed than with 510	  

surface bareness, consistent with the analysis above regarding to the present-day 511	  

condition.  512	  

Here we also present tThe projected change of DOD from the regression model is 513	  

shownin Figure 9. The regression model (see section 2.4 for details) is developed based 514	  

on observed relationships between MODIS DOD and local controlling factors and can 515	  

largely capture the interannual variations of DOD in the present-day climate (Table S1 in 516	  

the Supplement). Assuming that the observed connection between DOD and these 517	  

controlling factors do not change dramatically in the future, we can use this regression 518	  

model and CMIP5-model projected change of controlling factors to project DOD 519	  

variations. Compared to DOD projection from CMIP5 models, this approach utilizes 520	  

additionally observational constrains and is likely to provide a more reliable future 521	  

projection. The results are calculated usingWe use the regression coefficients obtained 522	  

from observations during 2004-2016 and projected changes of precipitation, bareness, 523	  

and surface wind speed from seven16 CMIP5 models with interactive dust emission 524	  

scheme (see methodology). A similar method is applied to the model output from seven 525	  

16 CMIP5 models with interactive dust emission scheme, and results are similar (Figure 526	  
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S78 in the Supplement). A mask of present-day LAI ≤ 0.5 is also applied to highlight the 527	  

changes of DOD near dust source regions. By doing this, we assume the location of 528	  

major dust sources will not change much at the late half of the 21st century. The 529	  

unmasked figure is presented in the supplementary file (Figure S89 in the Supplement). 530	  

The reason we did not use the projected future LAI as a mask is that there’re large 531	  

uncertainties associated with LAI projection, especially over northern hemisphere 532	  

subtropical regions (e.g., Figs. 8e-h).   533	  

In DJF, regression model projected change of DOD over Mexico, North Africa, 534	  

the Middle East and part of northern China (Fig. 9a) are similar to those projected by 535	  

CMIP5 models over those dust source regions (Fig. 7a), but with a greater magnitude. In 536	  

MAM, a decrease of DOD is projected over large area of North Africa (Fig. 9b), which is 537	  

different from the pattern projected from the CMIP5 multi-model mean (Fig. 7b). The 538	  

decrease of DOD over northern central U.S. is also different from the overall increase 539	  

projected by CMIP5 DOD, as also noted by Pu and Ginoux (2017). However, the 540	  

increase of DOD over the Middle East and the decrease of DOD over northern China are 541	  

similar to that of CMIP5 DOD. During JJA and SON, DOD decreases over the Sahel and 542	  

northern China but increases over a belt to the north of central Sahel and parts of the 543	  

Middle East (Figs. 9c-d).  The weak increase of DOD over the southern corner of South 544	  

Africa in JJA and a slight decrease in SON also has high agreement among the 545	  

modelsregression projections (dotted areas in Figs. 9c-d). Changes of DOD over 546	  

Australia are very small in all seasons and show little consistency among the models 547	  

regression projections.   548	  
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The regression model projection using 16-model output shows very similar 549	  

patterns (Figure S7 in the Supplement), largely because the projected changes of 550	  

precipitation, surface wind speed, and bareness from 16-model ensemble mean are 551	  

similar to those from 7-model ensemble mean in dusty regions (Figure S9 in the 552	  

Supplement). But there are also some discrepancies in terms of magnitude and pattern 553	  

that are revealed in the projected DOD patterns, e.g., the projected reduction of DOD is 554	  

greater and more widespread over the northern Asia in MAM if using 16-model output 555	  

and the increase of DOD along the southern edge of the Sahara is weaker in JJA and 556	  

SON (Fig. S7 in the Supplement vs. Fig. 9).  557	  

The contribution of each controlling factor to the total DOD change is shown in 558	  

Figure 10. While changes of bareness over North Africa, northern Middle East and 559	  

northern China play an important role in DOD change, changes of precipitation, e.g. over 560	  

northwestern China in MAM, and surface wind, e.g., over northern North Africa and the 561	  

Middle East in DJF and MAM, also play vital roles.  562	  

Both projections from the CMIP5 models and that from the regression model have 563	  

large some uncertainties. The reliability of future projection by CMIP5 models is limited 564	  

by models’ capability of capturing present-day climatology and observed connection 565	  

between DOD and local controlling factors. As discussed earlier, the overall performance 566	  

of models is better in those very dusty regions in the NH, such as North Africa and the 567	  

Middle East, than other regions. Multi-model mean also overestimates the connection 568	  

between DOD and precipitation and surface wind and underestimates the influence of 569	  

bareness in the present-day (Fig. 6), which can cast doubts on the projected variation of 570	  

DOD in response to climate change.  571	  
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The uncertainties associated with regression model are two folds. First, there’re 572	  

uncertainties associated with the regression model itself. Since the regression coefficients 573	  

are derived from observed relationships between DOD and controlling factors in a 574	  

relatively short time period, factors controlling the low frequency variation of DOD (e.g., 575	  

decadal variations) may not be included. Other meteorological factors that could play an 576	  

important role in regional dust variability, e.g., nocturnal low-level jets (e.g., Todd et al., 577	  

2008; Fiedler et al., 2013; Fiedler et al., 2016) and haboobs over Africa (e.g., Ashpole 578	  

and Washington, 2013), are not directly considered in the model. The influences of 579	  

anthropogenic land use/land cover change are also not included in the regression model. 580	  

Anthropogenic land use/land cover change has been found to have played an important 581	  

role in long-term dust variability in some regions (e.g., Neff et al., 2005; 2008; Moulin 582	  

and Chiapello, 2006; McConnell et al., 2007), although previous modeling study found 583	  

its influences on future dust emission was minor compared to climate change (Tegen et 584	  

al., 2004). So the projection made by the regression model only reveals the change of 585	  

DOD in association with climate change. Second, uncertainties associated with model  586	  

projected change of controlling factors, such as bareness in U.S. in JJA as pointed by Pu 587	  

and Ginoux (2017), also limit the accuracy of the results. 588	  

Despite these uncertainties, both methods make similar projections particularly in 589	  

some dusty regions. For instance, the DOD pattern over North Africa in DJF and JJA, an 590	  

increase of DOD in the central Arabian Peninsula in all seasons, and a decrease of DOD 591	  

over northern China from MAM to SON (Figs. 7, 9). 592	  

 593	  

4. Discussion 594	  
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We examined DOD in seven CMIP5 models with interactive dust emission 595	  

schemes. Other important variables that influence the radiative property and 596	  

concentration of dust, such as Angström exponent and single scattering albedo, dust 597	  

emission, and surface concentration, are also worth further examination, if these variables 598	  

are archived.  A better quantification of the radiative forcing of dust may also require an 599	  

examination on the size distribution of dust particles, as studies (e.g., Kok et al., 2017) 600	  

found in current AeroCom models fraction of coarse dust particles were underestimated 601	  

and so was the warming effect of dust. Whether this is the case in the CMIP5 models is 602	  

not clear.   603	  

Also note that since DOD is an integrated variable, it does not reflect the vertical 604	  

distribution of dust aerosols. As pointed by Huneeus et al., (2016), dust models with 605	  

similar performance in simulating aerosol optical depth may have quite large differences 606	  

in simulating vertical distribution, emission, deposition, and surface concentration of 607	  

dust. An overall evaluation of dust modeling capability will require detailed examination 608	  

of these variables and the life cycle of dust in CMIP5 models in addition to DOD. 609	  

Early studies on future dust projection used offline dust models driven by climate 610	  

model output under different scenarios.  For instance, Mahowald and Luo (2003) used an 611	  

offline dust model and output from National Center of Atmospheric Research’s coupled 612	  

Climate System Model (CSM) 1.0 (Boville and Gent, 1998) under A1 scenario 613	  

(Houghton et al., 2001) and projected a decrease of dust emission by the end of the 21st 614	  

century by -20% to -63%, depending on different scenarios. In general, when they 615	  

included vegetation change, the projected dust reduction became greater, but including 616	  

land use change slightly weakened such reduction.  Similarly, Tegen et al. (2004) used 617	  
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output from ECHAM4 and HadCM3 and a dust model (Tegen et al., 2002) to examine 618	  

the change of dust emission by 2040-2050 and 2070-2080 and found results were model 619	  

and scenario dependent, from -26% to 10%. However, including anthropogenic 620	  

cultivation practices tended to increase dust emission in both models. They also pointed 621	  

out that such an influence from anthropogenic land-use was not big enough to overcome 622	  

the effect of climate change.   623	  

The interactive dust emission schemes and new generations of climate models 624	  

used in CMIP5 are likely to provide more reliable projections, but this may also depend 625	  

on how changes of dust and its radiative forcing are fed back to the climate system in the 626	  

models. While these projections are largely model-dependent, based on our analysis on 627	  

the DOD climatology in CMIP5 models, the multi-model mean has a better chance to 628	  

provide a more reliable projection than individual models.  629	  

Here a regression model combined with MODIS DOD is used to identify key 630	  

local factors that control the variation of DOD on the interannual time scale. The results 631	  

are then compared with model output to examine models’ capability of capturing 632	  

observed connections between DOD and controlling factors. This method may be applied 633	  

to other dust model intercomparison projects as well, such as AeroCom (Huneeus et al. 634	  

2011), to help examine model performance. 635	  

 636	  

5. Conclusion 637	  

Dust aerosol plays an important role in the climate system by directly scattering 638	  

and absorbing solar and longwave radiation and indirectly affecting the formation and 639	  

radiative properties of cloud. It is thus very important to understand how well dust is 640	  
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simulated in the state-of-the-art climate models. While many features and variables are 641	  

systematically examined in the CMIP5 multi-model output, we found that to our best 642	  

knowledge an evaluation of global dust modeling in CMIP5 models is still in blank. In 643	  

this study we examined a key variable associated with dust radiative effect, dust optical 644	  

depth (DOD), using seven CMIP5 models with interactive dust emission schemes and 645	  

DOD retrieved from MODIS Deep Blue aerosol products.  646	  

We found that the global spatial pattern and magnitude are largely captured by 647	  

CMIP5 models in the 2004-2016 climatology, with an underestimation of global DOD 648	  

(over land) by -25.2% in MAM to -6.4% in DJF. The spatial pattern is better captured in 649	  

boreal dusty seasons during MAM and JJA. In JJA, the simulated zonal mean DOD from 650	  

multi-model mean largely captures resembles MODIS DOD quite well. 651	  

The magnitudes of multi-model mean are closer to MODIS climatology than most 652	  

individual models and are largely within ± one order of magnitude of MODIS DOD in 653	  

the nine regions examined here (North Africa, the Middle East, nNorthern China, North 654	  

America, India, southeastern Asia, South Africa, South America, and Australia; see Fig. 1 655	  

and Table 2 for domains). While some models underestimate DOD in North America and 656	  

South America by more than two orders of magnitude, a few also overestimate DOD in 657	  

Australia by more than one order of magnitude. Both the magnitude and spatial patterns 658	  

of DOD are better captured over North Africa and the Middle East than other regions. 659	  

The multi-model mean also largely captures the seasonal cycle of DOD in some 660	  

very dusty regions, such as North Africa and the Middle East. Seasonal variations in 661	  

North America and India are also generally captured by the multi-model mean, with the 662	  

modeled DOD peaking at approximately the same season as in MODIS DOD, but not so 663	  
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in nNorthern China and southeastern Asia. Seasonal cycles in those dusty regions in the 664	  

southern hemisphere is generally not well captured, with modeled DOD over South 665	  

Africa and South America peaking later than that in MODIS DOD but earlier in 666	  

Australia.  667	  

The interannual variations of DOD are not captured by most of the CMIP5 668	  

models during 2004-2016. This is likely due to models’Models also underestimation 669	  

underestimate of the constraints from surface bareness on the variations of dust DOD and 670	  

overestimateion of the influences from surface wind speed and precipitation in those 671	  

major dust source regions, in addition to the fact that coupled models usually do not 672	  

capture the observed interannual variations of precipitation, surface wind, and bareness as 673	  

well. CMIP5 model projected change of DOD in the late half of the 21st century (under 674	  

the RCP 8.5 scenario) with reference to historical condition (1861-2005) also shows 675	  

greater influence from precipitation and surface wind change than from surface bareness. 676	  

Overall, multi-model mean projects a change of DOD over land from -3.8% in SON to 677	  

3.3% in JJA.   678	  

We also provide a projection of future DOD change using a regression model 679	  

based on local controlling factors such as surface wind, bareness, and precipitation (Pu 680	  

and Ginoux, 2017). This model can largely capture the interannual variations of MODIS 681	  

DOD in 2004-2016. The regression model projects a reduction of DOD in the Sahel in all 682	  

seasons in the late half of the 21st century under the RCP 8.5 scenario, largely due to a 683	  

decrease of surface bareness. DOD is projected to increase over the southern edge of the 684	  

Sahara in association with surface wind and precipitation changes except in MAM, when 685	  

a reduction of DOD over most part of North Africa is projected.  DOD is also projected 686	  
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to increase over the central Arabian Peninsula in all seasons and to decrease over 687	  

northern China from MAM to SON.  688	  

Despite large uncertainties associated with both projections, we find some 689	  

similarities between the two, which may be informative, which adds to the confidence of 690	  

projected DOD change in these regions, for instance, changes of DOD over North Africa 691	  

in DJF and JJA, an increase of DOD in the central Arabian Peninsula in all seasons, and a 692	  

decrease of DOD over northern China from MAM to SON. 693	  
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Table 2 List of regions selected to compare model output with MODIS DOD. Locations of these 1051	  

regions are also plotted in Fig. 1b. Acronyms are used for some regions for short, and are listed 1052	  

in the brackets in the first column. Note that the region names such as Northern China and India 1053	  
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nearby countries. 1055	  
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Figure 1.  Figure 1.  Climatology (2004-2016) of Aqua and Terra combined DOD (i.e., MODIS 1073	  

DOD; top panel) and multi-model mean of CMIP5 DOD (bottom) for four seasons. The pattern 1074	  

correlation (centered; calculated after interpolating MOIDS MODIS DOD to CMIP5 DOD 1075	  

grids) between CMIP5 and MODIS DOD are shown in pink in the bottom panel. Blue numbers 1076	  

denote global mean DOD over land. For CMIP5 model results, ± one standard deviation among 1077	  

seven CMIP5 models is also shown. Black boxes in (b) denote nine averaging regions (Table 2). 1078	  

Here we only added these boxes in (b) instead of every plot to keep the figure clean.  Note that 1079	  

CMIP5 multi-model mean is masked by MODIS DOD for comparison. Dotted area in (e)-(h) 1080	  

shows where multi-model mean is greater than one inter-model standard deviation. 1081	  

 1082	  

Figure 2. Zonal mean DOD from MODIS (thick red), CMIP5 multi-model mean (thick black), 1083	  

and each individual model (other colorful lines). 1084	  

 1085	  

Figure 3. Seasonal cycle of DOD in nine regions (Table 2) averaged over 2004-2016. Thick red 1086	  

lines denote MODIS DOD, thick black lines denote CMIP5 multi-model mean, and other 1087	  

colorful lines denote individual model output. The annual means from MODIS DOD (Obs; red) 1088	  

and multi-model mean (Ens; black) are shown  in each panel. Note that in (i) MODIS DOD (red 1089	  

line) is scaled ten times to better display the season cycle. 1090	  

 1091	  

Figure 4. Spatial statistics comparing DOD from CMIP5 models with that from MODIS in nine 1092	  

regions. Label on the X-axis shows individual models (1-7) and multi-model mean (8). Y-axis 1093	  

shows the ratio of pattern standard deviations between model climatology (2004-2016) and that 1094	  

of MODIS, which reveals the relative amplitude of the simulated DOD versus satellite DOD. 1095	  

The color denotes pattern correlation (centered) between each model and MODIS DOD in each 1096	  

region. 1097	  
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 1098	  

Figure 5. Correlations (color) between regional averaged time series from CMIP5 DOD and 1099	  

MODIS DOD from 2004 to 2016 for four seasons. Numbers in the X-axis denotes each model 1100	  

(1-7) and multi-model mean (8). Correlations significant at the 90% confidence level are 1101	  

marked by a star and significance at the 95% confidence level by two stars. 1102	  

 1103	  

Figure 6. Regression coefficients calculated by regressing DOD in each season onto 1104	  

standardized precipitation (purple), bareness (orange), and surface wind speed (green) from 1105	  

2004 to 2016. Coefficients obtained using MODIS DOD and observed controlling factors 1106	  

(interpolated to a 2° by 2.5° grid) and those using CMIP5 multi-model mean DOD and 1107	  

controlling factors are shown in the left and right columns, respectively. The color of the 1108	  

shading denotes the largest coefficient in absolute value among the three, while the saturation of 1109	  

the color shows the magnitude of the coefficient (from 0 to 0.02). Only regression coefficients 1110	  

significant at the 90% confidence level (Bootstrap test) are shown. Missing values are shaded in 1111	  

grey. To highlight coefficients near the source regions, a mask of LAI ≤ 0.5 is applied. 1112	  

 1113	  

Figure 7. Projected changes of DOD in the late half of the 21st century (under the RCP 8.5 1114	  

scenario) from that in the historical level (1861-2005) by CMIP5 multi-model mean for four 1115	  

seasons. The percentage change of global mean (over land) DOD ± one inter-model standard 1116	  

deviation is shown at the bottom of each plot. Areas with sign agreement among the models 1117	  

reaches 71.4% (i.e., at least five out of seven models have the same sign as the multi-model 1118	  

mean) are dotted. one inter-pamong the models reaches 71.4% (i.e., at least five out seven 1119	  

models have the same sign as the multi-model mean) are dotted.  1120	  

 1121	  

51



51	  
	  

Figure 8. Projected difference of (a)-(d) precipitation (mm day-1), (e)-(h) bareness, and (i)-(l) 10 1122	  

m wind (m s-1) between the late half of the 21st century (2051-2100; RCP 8.5 scenario) and 1123	  

historical level (1861-2005) from multi-model mean of seven CMIP5 models. Areas with sign 1124	  

agreement among the models reaches 71.4% (i.e., at least five out of seven models have the 1125	  

same sign as the multi-model mean) are dotted.     1126	  

 1127	  

Figure 9. Projected change of DOD in the late half of the 21st century under the RCP 8.5 1128	  

scenario by the regression model. The results are calculated using the regression coefficients 1129	  

obtained from observations during 2004-2016 (see methodology) and projected changes of 1130	  

precipitation, bareness, and surface wind from seven16 CMIP5 models.  Dotted areas are 1131	  

regions with sign agreement among the regression projections (using output of each of the seven 1132	  

models) above 71.4% (i.e., at least five out of seven regression projections have the same sign 1133	  

as the multi-model mean projection). Dotted areas are regions with sign agreement among the 1134	  

models above 62.5% (i.e., at least 10 out 16 models have the same sign as the multi-model 1135	  

mean). To highlight DOD variations near the source regions, a mask of LAI ≤ 0.5 (from 1136	  

present-day climatology) is applied. 1137	  

 1138	  

Figure 10. (a)-(d) Projected change of DOD in the late half of the 21st century under the RCP 1139	  

8.5 scenario by the regression model and output from seven CMIP5 models (same as Fig. 9), 1140	  

and contributions from each component, (e)-(h) precipitation, (j)-(i) bareness, and (m)-(p) 1141	  

surface wind speed. Dotted areas are regions with sign agreement among the models above 1142	  

62.571.4%. To highlight DOD variations near the source regions, a mask of LAI ≤ 0.5 (from 1143	  

present-day climatology) is applied. 1144	  

 1145	  

 1146	  
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Table 1 CMIP5 models used in this study. Models tagged with plus signs (+) considered 1147	  
included anthropogenic land use/land cover change in their vegetation prediction. 1148	  

 1149	  
Model lat/lon 

resolution 
Dust emission 
implementationscheme 

Dynamic 
Vegetation 

Model reference 

CanESM2 2.8°×2.8° Reader et al. (1999); 
Croft et al. (2005)  

N+ Arora et al. (2011)  

GFDL-CM3 2.0°×2.5° Ginoux et al. (2001)  Y+ Donner et al. (2011)  
HadGEM2-CC 1.2°×1.8° Marticorena and 

Bergametti (1995)  
Y+ Collins et al. (2011)  

HadGEM2-ES 1.2°×1.8° Marticorena and 
Bergametti (1995) 

Y+ Collins et al. (2011)  

MIROC-ESM 2.8°×2.8° Takemura et al. (2000)  Y+ Watanabe et al. (2011)  
MIROC-ESM-CHEM 2.8°×2.8° Takemura et al. (2000) Y+ Watanabe et al. (2011)  
NorESM1-M 1.9°×2.5° Seland et al. (2008)  N+ Bentsen et al. (2013)  

 1150	  
 1151	  

 1152	  
 1153	  

 1154	  
 1155	  
 1156	  
 1157	  
 1158	  
 1159	  
 1160	  
 1161	  
 1162	  
 1163	  
 1164	  
 1165	  
 1166	  
 1167	  
 1168	  
 1169	  
 1170	  
 1171	  
 1172	  
 1173	  
 1174	  
 1175	  
 1176	  
 1177	  
 1178	  
 1179	  
 1180	  
 1181	  
 1182	  
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Table 2 List of regions selected to compare model output with MODIS DOD. Locations of these 1183	  
regions are also plotted in Fig. 1b. Acronyms are used for some regions for short, and are listed 1184	  

in the brackets in the first column. Note that the region names such as nNorthern China and 1185	  
India are not exactly the same as their geographical definitions but also covers some areas from 1186	  

nearby countries.  1187	  
 1188	  

Region Domain 
North Africa (N. Africa) 5°-50°N, 18°W-35°E 

Middle East 12°-50°N, 35°-60°E  
Northern China (N. China) 35°-50°N, 70°-110°E 

North America (N. America) 25°-50°N, 95°-125°W 
India 5°-35°N, 60°-90°E 

Southeastern Asia (SE. Asia) 9°-35°N, 90°-121°E 
South Africa (S. Africa) 15°-35°S, 10°-50°N 

South America (S. America) 0°-55°S, 60°-83°W 
Australia 10°-40°S, 112°-155°E 

 1189	  
 1190	  
 1191	  
 1192	  
 1193	  
 1194	  
 1195	  
 1196	  
 1197	  
 1198	  
 1199	  
 1200	  
 1201	  
 1202	  
 1203	  
 1204	  
 1205	  
 1206	  
 1207	  
 1208	  
 1209	  
 1210	  
 1211	  
 1212	  
 1213	  
 1214	  
 1215	  
 1216	  
 1217	  
 1218	  
 1219	  
 1220	  
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Table 3 Changes of DOD in the late half of the 21st century (2051-2100; RCP 8.5 scenario) from 1221	  
the historical condition (1861-2005) projected by CMIP5 multi-model mean (second to fifth 1222	  

columns) and the regression model (sixth to ninth columns) in nine regions. Changes of DOD 1223	  
are shown in percentage with reference to CMIP5 multi-model historical run. Note that in some 1224	  
regions the projected change by the regression model is quite large (i.e., greater than ± 100%), 1225	  

largely due to the underestimation of CMIP5 historical run in these regions.  1226	  
 1227	  

Region CMIP5 Regression model 
DJF MAM JJA SON DJF MAM JJA SON 

N. Africa -3.8 -3.6 2.4 -16.3 -0.8 -17.7 11.1 -10.3 
Middle East 7.8 4.5 6.4 1.5 9.8 -16.0 -5.4 -8.4 

N. China -33.5 -11.4 -9.8 -14.4 312.3 -238.6 -51.2 -30.0 
N. America 42.6 26.8 13.2 -6.4 -38.5 -90.0 9.3 -42.4 

India -5.1 0.2 -1.0 -9.9 -27.6 -8.2 -2.9 -32.3 
SE. Asia -45.7 -16.5 -13.5 -17.1 -34.8 1.6 4.2 96.3 
S. Africa 24.0 6.1 38.5 54.4 22.3 59.3 231.8 78.3 

S. America 35.7 27.4 51.8 36.0 14.8 56.1 78.3 154.6 
Australia -3.2 -3.2 15.3 17.0 2.7 0.4 0.7 3.7 

 1228	  
 1229	  
 1230	  
 1231	  
 1232	  
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 1233	  
Figure 1.  Climatology (2004-2016) of Aqua and Terra combined DOD (i.e., MODIS DOD; top 1234	  
panel) and multi-model mean of CMIP5 DOD (bottom) for four seasons. The pattern correlation 1235	  
(centered; calculated after interpolating MOIDS MODIS DOD to CMIP5 DOD grids) between 1236	  
CMIP5 and MODIS DOD are shown in pink in the bottom panel. Blue numbers denote global 1237	  
mean DOD over land. For CMIP5 model results, ± one standard deviation among seven CMIP5 1238	  
models is also shown. Black boxes in (b) denote nine averaging regions (Table 2). Here we only 1239	  
added these boxes in (b) instead of every plot to keep the figure clean.  Note that CMIP5 multi-1240	  
model mean is masked by MODIS DOD for comparison. Dotted area in (e)-(h) shows where 1241	  
multi-model mean is greater than one inter-model standard deviation.  1242	  
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 1243	  
Figure 2. Zonal mean DOD from MODIS (thick red), CMIP5 multi-model mean (thick black), 1244	  
and each individual model (other colorful lines). 1245	  
 1246	  
 1247	  
 1248	  
 1249	  
 1250	  
 1251	  
 1252	  
 1253	  
 1254	  
 1255	  
 1256	  
 1257	  
 1258	  
 1259	  
 1260	  
 1261	  
 1262	  
 1263	  
 1264	  
 1265	  
 1266	  
 1267	  
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 1268	  
Figure 3. Seasonal cycle of DOD in nine regions (Table 2) averaged over 2004-2016. Thick red 1269	  
lines denote MODIS DOD, thick black lines denote CMIP5 multi-model mean, and other 1270	  
colorful lines denote individual model output. The annual means from MODIS DOD (Obs; red) 1271	  
and multi-model mean (Ens; black) are also listed in each panel. Note that in (i) MODIS DOD 1272	  
(red line) is scaled ten times to better display the season cycle. 1273	  
 1274	  
 1275	  
 1276	  
 1277	  
 1278	  
 1279	  
 1280	  
 1281	  
 1282	  
 1283	  
 1284	  
 1285	  
 1286	  
 1287	  
 1288	  
 1289	  
 1290	  
 1291	  
 1292	  
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 1293	  
Figure 4. Spatial statistics comparing DOD from CMIP5 models with that from MODIS in nine 1294	  
regions. Label on the X-axis shows individual models (1-7) and multi-model mean (8). Y-axis 1295	  
shows the ratio of pattern standard deviations between model climatology (2004-2016) and that 1296	  
of MODIS, which reveals the relative amplitude of the simulated DOD versus satellite DOD. 1297	  
The color denotes pattern correlation (centered) between each model and MODIS DOD in each 1298	  
region.  1299	  
 1300	  
 1301	  
 1302	  
 1303	  
 1304	  
 1305	  
 1306	  
 1307	  
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 1308	  
Figure 5. Correlations (color) between regional averaged time series from CMIP5 DOD and 1309	  
MODIS DOD from 2004 to 2016 for four seasons. Numbers in the X-axis denotes each model 1310	  
(1-7) and multi-model mean (8). Correlations significant at the 90% confidence level are 1311	  
marked by a star and significance at the 95% confidence level by two stars.  1312	  
 1313	  
 1314	  
 1315	  
 1316	  
 1317	  
 1318	  
 1319	  
 1320	  
 1321	  
 1322	  
 1323	  
 1324	  
 1325	  
 1326	  
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 1327	  
Figure 6. Regression coefficients calculated by regressing DOD in each season onto 1328	  
standardized precipitation (purple), bareness (orange), and surface wind speed (green) from 1329	  
2004 to 2016. Coefficients obtained using MODIS DOD and observed controlling factors 1330	  
(interpolated to a 2° by 2.5° grid) and those using CMIP5 multi-model mean DOD and 1331	  
controlling factors are shown in the left and right columns, respectively. The color of the 1332	  
shading denotes the largest coefficient in absolute value among the three, while the saturation of 1333	  
the color shows the magnitude of the coefficient (from 0 to 0.042). Only regression coefficients 1334	  
significant at the 90% confidence level (Bootstrap test) are shown. Missing values are shaded in 1335	  
grey. To highlight coefficients near dust source regions, a mask of LAI ≤ 0.5 is applied. 1336	  
 1337	  
 1338	  
 1339	  
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 1340	  
Figure 7. Projected changes of DOD in the late half of the 21st century (under the RCP 8.5 1341	  
scenario) from that in the historical level (1861-2005) by CMIP5 multi-model mean for four 1342	  
seasons. The percentage change of global mean (over land) DOD ± one inter-model standard 1343	  
deviation is shown at the bottom of each plot. Areas with sign agreement among the models 1344	  
reaches 71.4% (i.e., at least five out of seven models have the same sign as the multi-model 1345	  
mean) are dotted.  1346	  
 1347	  
 1348	  
 1349	  
 1350	  
 1351	  
 1352	  
 1353	  
 1354	  
 1355	  
 1356	  
 1357	  
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 1366	  
 1367	  
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 1368	  
Figure 8. Projected difference of (a)-(d) precipitation (mm day-1), (e)-(h) bareness, and (i)-(l) 10 1369	  
m wind (m s-1) between the late half of the 21st century (2051-2100; RCP 8.5 scenario) and 1370	  
historical level (1861-2005) from multi-model mean of seven CMIP5 models. Areas with sign 1371	  
agreement among the models reaches 71.4% (i.e., at least five out of seven models have the 1372	  
same sign as the multi-model mean) are dotted.     1373	  
 1374	  
 1375	  
 1376	  
 1377	  
 1378	  
 1379	  
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 1381	  
 1382	  
 1383	  
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 1385	  
 1386	  
 1387	  
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 1391	  
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 1392	  
Figure 9. Projected change of DOD in the late half of the 21st century under the RCP 8.5 1393	  
scenario by the regression model. The results are calculated using the regression coefficients 1394	  
obtained from observations during 2004-2016 (see methodology) and projected changes of 1395	  
precipitation, bareness, and surface wind from 16 seven CMIP5 models.  Dotted areas are 1396	  
regions with sign agreement among the models regression projections (using output of each of 1397	  
the seven models) above 62.571.4% (i.e., at least 10 five out of seven16 models regression 1398	  
projections have the same sign as the multi-model mean projection). To highlight DOD 1399	  
variations near the source regions, a mask of LAI ≤ 0.5 (from present-day climatology) is 1400	  
applied. 1401	  
 1402	  
 1403	  
 1404	  
 1405	  
 1406	  
 1407	  
 1408	  
 1409	  
 1410	  
 1411	  
 1412	  
 1413	  
 1414	  
 1415	  
 1416	  
 1417	  
 1418	  
 1419	  
 1420	  
 1421	  
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 1422	  
Figure 10. (a)-(d) Projected change of DOD in the late half of the 21st century under the RCP 1423	  
8.5 scenario by the regression model and output from seven CMIP5 models (same as Fig. 9), 1424	  
and contributions from each component, (e)-(h) precipitation, (j)-(i) bareness, and (m)-(p) 1425	  
surface wind speed. Dotted areas are regions with sign agreement among the models projections 1426	  
above 62.571.4%. To highlight DOD variations near the source regions, a mask of LAI ≤ 0.5 1427	  
(from present-day climatology) is applied. 1428	  
 1429	  
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