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Abstract. Dust aerosol plays an important role in the climate
system by affecting the radiative and energy balances. Biases
in dust modeling may result in biases in simulating global
energy budget and regional climate. It is thus very impor-
tant to understand how well dust is simulated in the Coupled
Model Intercomparison Project Phase 5 (CMIP5) models.
Here seven CMIP5 models using interactive dust emission
schemes are examined against satellite-derived dust optical
depth (DOD) during 2004–2016.

It is found that multi-model mean can largely capture the
global spatial pattern and zonal mean of DOD over land in
present-day climatology in MAM and JJA. Global mean land
DOD is underestimated by − 25.2 % in MAM to −6.4 % in
DJF. While seasonal cycle, magnitude, and spatial pattern
are generally captured by the multi-model mean over ma-
jor dust source regions such as North Africa and the Middle
East, these variables are not so well represented by most of
the models in South Africa and Australia. Interannual varia-
tions in DOD are not captured by most of the models or by
the multi-model mean. Models also do not capture the ob-
served connections between DOD and local controlling fac-
tors such as surface wind speed, bareness, and precipitation.
The constraints from surface bareness are largely underesti-
mated while the influences of surface wind and precipitation
are overestimated.

Projections of DOD change in the late half of the 21st cen-
tury under the Representative Concentration Pathways 8.5
scenario in which the multi-model mean is compared with
that projected by a regression model. Despite the uncertain-
ties associated with both projections, results show some simi-
larities between the two, e.g., DOD pattern over North Africa
in DJF and JJA, an increase in DOD in the central Arabian
Peninsula in all seasons, and a decrease over northern China
from MAM to SON.

1 Introduction

Dust is the second most abundant aerosol by mass in the at-
mosphere after sea salt. It absorbs and scatters both short-
wave and longwave radiation and thus modifies local radia-
tive budget and consequently vertical temperature profile, in-
fluencing global and regional climate. For instance, studies
found dust influences the strength of the West African mon-
soon (e.g., Miller and Tegen, 1998; Miller et al., 2004; Ma-
howald et al., 2010; Strong et al., 2015) and Indian mon-
soonal rainfall (e.g., Vinoj et al., 2014; Jin et al., 2014, 2015,
2016; Solmon et al., 2015; Kim et al., 2016; Sharma and
Miller, 2017). Dust aerosols were also found to have ampli-
fied droughts during the US Dust Bowl and Medieval Cli-
mate Anomaly (Cook et al., 2008, 2009, 2013), and they
affect Atlantic tropical cyclones (e.g., Dunion and Velden,
2004; Wong and Dessler, 2005; Evan et al., 2006; Sun et al.,
2008; Strong et al., 2018). Dust particles can also serve as ice
cloud nuclei and influence the properties of the cloud (e.g.,
Levin et al., 1996; Rosenfield et al., 1997; Wurzler et al.,
2000; Nakajima et al., 2001; Bangert et al., 2012) and af-
fect regional radiative balance and hydrological cycle. When
deposited in the oceans, iron-enriched dust also provides nu-
trients for phytoplankton, affecting ocean productivity and
therefore carbon and nitrogen cycles and ocean albedo (e.g.,
Fung et al., 2000; Jickells et al., 2005; Shao et al., 2011).

Globally, the estimated radiative forcing from dust aerosol
is 0.10 (−0.30 to +0.10) W m−2, a magnitude about one-
fourth of the radiative forcing of sulfate aerosol or black car-
bon from fossil fuel and biofuel (Myhre et al., 2013; their
Table 8.4). Biases in dust simulation may potentially affect
global energy budgets and regional climate simulation. Thus,
it is very important to examine the capability of current state-
of-the-art climate models in simulating dust.
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Only a few studies examined the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) model output of dust
and most of them are regional evaluations. For instance, Evan
et al. (2014) examined model output for Africa, but mainly
focused on an area over the northeastern Atlantic (10–20◦ N
and 20–30◦W) where a long-term proxy of dust optical depth
(DOD) data over Cabo Verde islands is available (Evan and
Mukhopadhyay, 2010). They found models underestimated
dust emission and mass path and failed to capture the in-
terannual variations from 1960 to 2004, as models did not
capture the negative connection between dust mass path and
precipitation over the Sahel.

Another work examining CMIP5 aerosol optical depth
(AOD) is by Sanap et al. (2014) for India. They compared
dust distribution in the models with the Earth Probe Total
Ozone Mapping Spectrometer (EPTOMS)/Ozone monitor-
ing Instrument (OMI) aerosol index (AI) from 2000 to 2005.
They found most CMIP5 models, except two HadGEM2
models, underestimated dust load over the Indo-Gangetic
Plains and suggested the biases are due to a misrepresenta-
tion of 850 hPa winds in the models. Later, Misra et al. (2016)
also examined CMIP5-modeled AOD for India but did not
specifically focus on dust.

Shindell et al. (2013) examined the output of 10 mod-
els from the Atmospheric Chemistry and Climate Model In-
tercomparison Project (ACCMIP) for 1 year (2000), among
which eight models also participated in the CMIP5. They no-
ticed that simulated dust AOD varies by more than a factor
of 2 across models. However, this study also did not focus
on dust but emphasized the radiative forcings from anthro-
pogenic aerosols.

None of the above studies examined global dust simula-
tion in CMIP5 models. What is more, most studies focused
on annual mean, not seasonal averages. It is very possible
that models perform better in some seasons than others. The
AeroCom intercomparison among multiple dust models was
performed on both global and regional scales (Huneeus et al.,
2011) but only focused on 1 year; thus the models’ capabil-
ity of simulating interannual or long-term variability in dust
is not clear. A comprehensive evaluation of the climatology
and interannual variation in global DOD in CMIP5 models
will provide insights into models’ capability of simulating
the integrated aerosol extinction due to dust, which is one of
the key variables that determine the radiative forcing of dust
to the climate system.

Here we examine the results of seven CMIP5 models (Ta-
ble 1) by comparing model output with DOD derived from
Moderate Resolution Imaging Spectroradiometer (MODIS)
Deep Blue aerosol products. Projections on changes of DOD
in the late half of the 21st century by CMIP5 models and
also by a regression model (Pu and Ginoux, 2017) are exam-
ined and analyzed. The following section introduces data and
methods used in this study. Results are presented in Sect. 3,
including examinations on the climatology and interannual
variations in CMIP5 DOD and future projections. Discus-

sion and major conclusions are presented in Sects. 4 and 5,
respectively.

2 Data and methodology

2.1 DOD from MODIS

DOD is a widely used variable that describes optical depth
due to the extinction by mineral particles. It is one of the
key factors (single-scattering albedo and asymmetry factor
being the two others) controlling dust interaction with radia-
tion. Monthly DOD values are derived from MODIS aerosol
products retrieved using the Deep Blue (MDB2) algorithm,
which employs radiance from the blue channels to detect
aerosols globally over land even over bright surfaces such
as desert (Hsu et al., 2004, 2006). Ginoux et al. (2012b)
used collection 5.1 level 2 aerosol products from MODIS
aboard the Aqua satellite to derive DOD. Here, both MODIS
aerosol products (collection 6, level 2; Hsu et al., 2013)
from the Aqua and Terra platforms are used. Aerosol prod-
ucts such as AOD (550 nm), single-scattering albedo, and the
Ångström exponent are first interpolated to a regular 0.1◦

by 0.1◦ grid using the algorithm described by Ginoux et
al. (2010). The DOD is then derived from AOD following
the methods of Ginoux et al. (2012b) with adaptions for the
newly released MODIS collection 6 aerosol products (Pu and
Ginoux, 2016). To separate dust from other aerosols, we use
the Ångström exponent (α) and single-scattering albedo (ω).
The Ångström exponent has been shown to be highly sen-
sitive to particle size (Eck et al., 1999). A continuous func-
tion relating the Ångström exponent to fine-mode AOD es-
tablished by Anderson et al. (2005; their Eq. 5) based on
ground-based data is used to separate dust from fine particles.
We also screen the data by setting single-scattering albedo at
470 nm to be less than 1 for dust due to its absorption of
solar radiation. This separates dust from scattering aerosols
such as sea salt, which is purely scattering. The formula can
be summarized as follows:

DOD= AOD× (0.98− 0.5089α+ 0.0512α2) (1)
if (ω < 1).

Note that DOD represents the coarse-mode fraction of dust
only. It is estimated that the fine-mode dust at emission is less
than 10 % (Kok et al., 2017).

Aqua and Terra DOD values have previously been used
to study global dust sources (Ginoux et al., 2012b) and their
geomorphological signature (Baddock et al., 2016) as well as
dust variations in the Middle East (Pu and Ginoux, 2016) and
the US (Pu and Ginoux, 2017), and they have been validated
with AErosol RObotic NETwork (AERONET) stations over
the US (Pu and Ginoux, 2017). Here we compare Aqua and
Terra DOD against AERONET stations globally (Sect. S1
and Figs. S1, S2 in the Supplement). Both Aqua and Terra
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Table 1. CMIP5 models used in this study. Models tagged with plus signs (+) included anthropogenic land use and land cover change in
their vegetation prediction.

Model Lat/long Dust emission Dynamic Model
resolution implementation vegetation reference

CanESM2 2.8◦× 2.8◦ Reader et al. (1999); Croft et al. (2005) N+ Arora et al. (2011)
GFDL-CM3 2.0◦× 2.5◦ Ginoux et al. (2001) Y+ Donner et al. (2011)
HadGEM2-CC 1.2◦× 1.8◦ Marticorena and Bergametti (1995) Y+ Collins et al. (2011)
HadGEM2-ES 1.2◦× 1.8◦ Marticorena and Bergametti (1995) Y+ Collins et al. (2011)
MIROC-ESM 2.8◦× 2.8◦ Takemura et al. (2000) Y+ Watanabe et al. (2011)
MIROC-ESM-CHEM 2.8◦× 2.8◦ Takemura et al. (2000) Y+ Watanabe et al. (2011)
NorESM1-M 1.9◦× 2.5◦ Seland et al. (2008) N+ Bentsen et al. (2013)

DOD values are slightly underestimated, with respective er-
rors of 0.08+ 0.52 DOD and 0.10+ 0.48 DOD.

Daily DOD from Aqua and Terra is averaged to monthly
data and interpolated to a 1◦ by 1◦ grid. Terra passes the
Equator from north to south around 10:30 LT while Aqua
passes the Equator from south to north around 13:30 LT. To
reduce missing data and also to combine the information
from both morning and afternoon hours, a combined monthly
DOD (here after MODIS DOD) is derived by averaging Aqua
and Terra DOD when both products are available or using ei-
ther Aqua or Terra DOD when only one product is available.
As shown in Fig. S3, the mean available days in each sea-
son and also spatial coverage are more enhanced in combined
DOD than using Aqua or Terra (not shown) DOD alone. This
combined DOD is available from January 2003 to December
2016.

We also compared MODIS DOD climatology with both
AERONET observation and DOD retrieved from Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP;
Winker et al., 2004, 2007) aboard the Cloud-Aerosol Li-
dar and Infrared Pathfinder Satellite Observation (CALIPSO)
satellite. AERONET stations provide cloud-screened and
quality assured (level 2) coarse-mode aerosol optical depth
(COD) at 500 nm, which is processed using the spectral de-
convolution algorithm (O’Neill et al., 2003). Only nine sites
have long-term COD records during 2003–2016, and the cli-
matological mean of MODIS DOD generally compares well
with these sites (Fig. S4).

CALIOP measures backscattered radiances attenuated by
the presence of aerosols and clouds and retrieves corre-
sponding microphysical and optical properties of aerosols.
Monthly dust AOD (or DOD) measurements on a 2◦ lati-
tude by 5◦ longitude grid are available since June 2006. The
climatology of CALIOP DOD during 2007–2016 is similar
to that of MODIS DOD during the same period (Fig. S5).
The global mean (over land) MODIS DOD is slightly higher
than that from CALIOP, probably due to the lower horizon-
tal resolution of the latter. The pattern correlations (e.g., Pu
et al., 2016) between the two products range from 0.83 in
boreal spring and summer to 0.63 in boreal winter (Fig. S5).
Due to higher spatial resolution (compared with CALIOP)

Table 2. List of regions selected to compare model output with
MODIS DOD. Locations of these regions are also plotted in Fig. 1b.
Acronyms are used for some regions for short, and are listed in the
brackets in the first column. Note that the region names such as
northern China and India are not exactly the same as their geograph-
ical definitions but also cover some areas from nearby countries.

Region Domain

North Africa (N. Africa) 5–50◦ N, 18◦W–35◦ E
Middle East 12–50◦ N, 35–60◦ E
Northern China (N. China) 35–50◦ N, 70–110◦ E
North America (N. America) 25–50◦ N, 95–125◦W
India 5–35◦ N, 60–90◦ E
Southeastern Asia (SE. Asia) 9–35◦ N, 90–121◦ E
South Africa (S. Africa) 15–35◦ S, 10–50◦ E
South America (S. America) 0–55◦ S, 60–83◦W
Australia 10–40◦ S, 112–155◦ E

and coverage (compared with AERONET sites), MODIS
DOD is chosen as the primary product to validate CMIP5
model output. Nine regions (Table 2) are selected to study
the DOD magnitude, spatial pattern, and variations. These
regions cover major dust source regions previously identified
(Ginoux et al., 2012).

Given the analysis above (Figs. S3–S5), there are some
uncertainties associated with DOD in a few regions in some
seasons: (1) relatively low coverage (< 30 days per season)
over northern China and southeastern Asia in JJA, (2) DOD
slightly higher than COD from AERONET over the Ara-
bian Peninsula in DJF and SON, and (3) DOD lower than
CALIOP over northern India in MAM. We will consider
these uncertainties in the following analysis wherever they
are relevant.

2.2 Reanalysis and observation datasets

Previous studies have found that the variations in dust event
frequency over the US in the recent decade could be largely
represented by the variations in three local controlling fac-
tors: seasonal mean surface wind speed, bareness, and pre-
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cipitation (Pu and Ginoux, 2017). These factors have pre-
viously been found to constrain dust emission or variability
on multiple timescales (e.g., Gillette and Passi, 1988; Fecan
et al., 1999; Zender and Kwon, 2005). While surface wind
is positively related to the emission and transport of dust,
vegetation is an important non-erodible element that prevents
wind erosion. Precipitation is generally negatively related to
dust emission and transport processes. While the scavenging
effect of precipitation on small dust particles only lasts a few
hours or days, influences of precipitation on soil moisture
lasts longer.

To examine the interannual variations in DOD and its con-
nection with local controlling factors such as surface wind
speed, bareness, and precipitation, monthly data of 10 m
wind speed from the ERA-Interim (Dee et al., 2011), leaf
area index (LAI) data from Advanced Very High Resolution
Radiometer (AVHRR; Claverie et al., 2014, 2016) and pre-
cipitation from the Precipitation Reconstruction over Land
(PRECL; Chen et al., 2002) are used.

ERA-Interim is a global reanalysis from the European
Centre for Medium-Range Weather Forecasts (ECMWF). Its
horizontal resolution is T255 (about 0.75◦ or 80 km). We
choose this analysis because of its relatively high spatial res-
olution. The monthly data are available from 1979 to present
day.

Monthly LAI derived from version 4 of the Climate Data
Record (CDR) of AVHRR is used to calculate surface bare-
ness. The data are produced by the National Aeronautics and
Space Administration (NASA) Goddard Space Flight Center
(GSFC) and the University of Maryland. Monthly gridded
data at a horizontal resolution of 0.05◦ by 0.05◦ are available
from 1981 to present. This product is selected due to its high
spatial resolution and long temporal coverage. Surface bare-
ness is calculated from seasonal mean LAI (Pu and Ginoux,
2017) as the following:

bareness= exp(−1×LAI). (2)

Bareness is originally defined as exp (−LAI−SAI), where
SAI is stem area index (Evans et al., 2016). Since the satellite
does not retrieve brownish SAI, we only use LAI to calculate
bareness.

PRECL precipitation from the National Oceanic and At-
mospheric Administration (NOAA) is a global analysis avail-
able monthly from 1948 to present at a 1◦ by 1◦ resolu-
tion. The dataset is derived from gauge observations from the
Global Historical Climatology Network (GHCN), version
2, and the Climate Anomaly Monitoring System (CAMS)
datasets. Its long coverage and spatial resolution are suitable
to study the connections between DOD and precipitation.

2.3 CMIP5 model output

Among CMIP5 models we selected seven models (Table 1)
that used interactive dust emission schemes, in which dust
emission varied in response to changes of climate. The out-

puts of 10 m wind speed, precipitation, and LAI are also
available from these models. In models in which dust is simu-
lated offline, i.e., dust emission did not interactively respond
to meteorological and climate changes, the connections be-
tween DOD and modeled controlling factors are lost. Other
models (to the best of our knowledge) either used offline dust
as an input or did not write out the variables needed for this
analysis.

Both the historical run from 1861 to 2005 and the future
run under the Representative Concentration Pathways 8.5
(RCP8.5) scenario (Riahi et al., 2011) from 2006 to 2100 are
used. Here the RCP8.5 scenario is chosen because it repre-
sents the upper limit of the projected greenhouse gas change
in the 21st century and thus likely is the worst-case scenario
for future DOD variation under climate change. Also, stud-
ies found that the observed CO2 emission pathway during
2005–2014 matches the RCP8.5 scenario better than other
scenarios (e.g., Fuss et al., 2014), which makes the RCP8.5
output suitable to examine present-day DOD variations after
2005.

Monthly model outputs of dust load, surface 10 m wind
speed, precipitation, and LAI are used. Historical output
from 2003 to 2005 and RCP8.5 output from 2006 to 2016 are
combined to form time series and climatology during 2003–
2016 to compare with MODIS DOD during the same time
period.

2.3.1 DOD derived from modeled dust load

Most CMIP5 models did not save DOD, so we used monthly
dust load and converted it to DOD using the relationship de-
rived by Ginoux et al. (2012a) as follows:

τ =M × e, (3)

where τ is DOD at 500 nm, M is the load of dust in grams
per square meter, and e = 0.6 m2 g−1 is the mass extinc-
tion efficiency. Dust load from different models is first in-
terpolated to a 2◦ by 2.5◦ grid and then converted to DOD.
The same method was used by Pu and Ginoux (2017) for
the US. Applying the same mass extinction efficiency ev-
erywhere and to all the CMIP5 model outputs used here
is a simplification, as different models may have quite dif-
ferent mass extinction efficiency. For instance, e can range
from 0.25 to 1.28 m2 g−1 in AeroCom models, with a multi-
model medium of 0.72 m2 g−1 (Huneeus et al., 2011). Here,
we compare the derived DOD with modeled DOD from one
historical simulation of the GFDL-CM3 model (Donner et
al., 2011) as an example. A full validation of this method
will require modeled DOD from all the other CMIP5 models,
which are currently not available. The pattern correlations of
the climatology (1861–2005) between the derived DOD and
modeled DOD in GFDL-CM3 are very high, all above 0.99
for four seasons (not shown). The percentage differences be-
tween derived DOD and modeled DOD averaged over global
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land range from −3.6 % in DJF and SON to 1.3 % in MAM
and JJA.

2.4 A linear regression model

2.4.1 Multiple linear regression

In order to examine the relative contribution of each local
controlling factor to DOD variations, multiple linear regres-
sions are applied by regressing MODIS DOD onto stan-
dardized seasonal mean ERA-Interim surface wind speed,
AVHRR bareness, and PRECL precipitation at each grid
point. All the data are re-gridded to a 1◦ by 1◦ grid before the
calculation. Over regions where values are missing for any
of the explanatory variables (i.e., precipitation, bareness, and
surface wind speed) or DOD, the regression coefficients are
set to missing values. The collinearity among these explana-
tory variables is examined by calculating the variance infla-
tion factor (VIF) (e.g., O’Brien, 2007; Abudu et al., 2011),
and in most regions the VIF is below 2 (not shown), indi-
cating a low collinearity (5–10 is usually considered high).
Bootstrap resampling is used to test the significance of the
regression coefficients, following the method used by Pu and
Ginoux (2017).

Multiple linear regression is also applied to CMIP5-
model-derived DOD and outputs of surface wind speed, bare-
ness, and precipitation to obtain regression coefficients from
the models from 2004 to 2016. All variables are interpolated
to a 2◦ by 2.5◦ grid before regression. The results are com-
pared with regression coefficients derived from observational
datasets.

2.4.2 DOD reconstruction and future projection

Using regression coefficients obtained from observations and
observed variations in precipitation, bareness, and surface
wind speed from 2004 to 2016, we can reconstruct DOD in
the present day and compare it with MODIS DOD (see dis-
cussion in Sect. 3.2).

Similar to the method used by Pu and Ginoux (2017),
the regression coefficients derived from MODIS DOD and
observed controlling factors and CMIP5 model output of
surface wind speed, bareness, and precipitation are used to
project variations in future DOD. The regression coefficients
are interpolated from the 1◦ by 1◦ grid to a 2◦ by 2.5◦ grid to
be consistent with model output. Such an interpolation may
smooth out some spatial characteristics from observations.
Here we tried two groups of CMIP5 output for these control-
ling factors. One group used seven models with an interac-
tive dust emission scheme (Table 1), and the other used 16
CMIP5 models (see Supplement Table S1 of Pu and Ginoux,
2017) that include the seven models with the interactive dust
emission scheme. The reason to test the latter is to include
as much model output of the controlling factors as possible.
The differences between the historical run (1861–2005 aver-

Figure 1. Climatology (2004–2016) of Aqua and Terra combined
DOD (i.e., MODIS DOD; a–d) and multi-model mean of CMIP5
DOD (e–h) for four seasons. The pattern correlations (centered;
calculated after interpolating MODIS DOD to CMIP5 DOD grids)
between CMIP5 and MODIS DOD are shown in pink in the bot-
tom panel. Blue numbers denote global mean DOD over land. For
CMIP5 model results, ± 1 standard deviation among seven CMIP5
models is also shown. Black boxes in (b) denote nine averaging re-
gions (Table 2). Here we only added these boxes in (b) instead of
every plot to keep the figure clean. Note that CMIP5 multi-model
mean is masked by MODIS DOD for comparison. The dotted area
in (e–h) shows where multi-model mean is greater than 1 inter-
model standard deviation.

age) and that of the RCP8.5 run for the late half of the 21st
century (2051–2100) are standardized by the standard devi-
ation of the historical run for each explanatory variable. The
projected change reveals how DOD will vary with reference
to the historical conditions (mean and standard deviation).
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Figure 2. Zonal mean DOD from MODIS (thick red), CMIP5 multi-model mean (thick black), and each individual model (other colorful
lines).

3 Results

3.1 Climatology (2004–2016)

Figure 1 shows the climatology of MODIS DOD (Fig. 1a–d)
in four seasons during 2004–2016 and that from the CMIP5
multi-model mean (Fig. 1e–h). Globally, the dustiest regions
are largely located over the Northern Hemisphere (NH) over
North Africa, the Middle East, and East Asia (Fig. 1a–d).
In these regions, DOD is higher in boreal spring and sum-
mer than fall and winter. Modeled global DOD over land is
generally lower than that from MODIS DOD, ranging from
−0.028 (−25.2 %) in MAM to −0.005 (−6.4 %) in DJF.
The global spatial pattern is better captured in MAM and
JJA, with pattern correlations of 0.74 and 0.85, respectively
(Fig. 1f–g). In DJF, DOD is overestimated over central Africa
and Australia but underestimated over the Middle East and
Asia (Fig. 1e) while in SON there is a similar overestima-
tion in Australia and an underestimation in the Middle East
(Fig. 1h).

Figure 2 shows the zonal mean of CMIP5 DOD from indi-
vidual models (thin colorful lines) and multi-model ensem-
ble mean (thick black), in comparison with MODIS DOD
(thick red). In DJF, DOD is underestimated in the NH from
15 to 50◦ N but overestimated over the tropics and South-
ern Hemisphere (SH) (Fig. 2a). While the overestimation in
the SH is largely contributed by three models, the underes-
timation in the NH appears in all seven models. The overes-
timation of DOD in HadGEM2-ES has also been identified
in a previous study (Bellouin et al., 2011) and will be dis-
cussed later. In MAM, a similar overestimation of DOD in
the tropics and SH also occurs in some models, and the multi-

model mean slightly overestimates DOD around 20–30◦ S
(Fig. 2b). In the NH, there is a weak underestimation too,
but the overall gradient is largely captured. In JJA, the multi-
model mean resembles MODIS DOD very well (Fig. 2c),
consistent with the highest pattern correlation in this season
shown in Fig. 1. The peak around 19◦ N in North Africa and
the Middle East is well captured by the multi-model mean,
although the magnitude is slightly underestimated. In SON,
different from MODIS DOD that peaks around 19◦ N, the
multi-model mean has two peaks around 15◦ N and 28◦ S,
a pattern somewhat similar to that in DJF (Fig. 2d). Conse-
quently, DOD in CMIP5 multi-model mean is overestimated
at 15–40◦ S and 0–15◦ N but underestimated at 0–15◦ S and
15–40◦ N.

Seasonal cycles of CMIP5 DOD are compared with
MODIS DOD in nine regions in Fig. 3. The annual means
of DOD in each region from multi-model mean (black) and
MODIS (red) are also listed in each plot. The spread of DOD
among individual models is greater during boreal spring and
summer for regions in the NH and during austral spring
and summer for regions in the SH. Seasonal cycles over
North Africa, the Middle East, North America, and India
are generally captured by multi-model mean, with modeled
DOD peaking during the same seasons as MODIS DOD
(Fig. 3a–e). While some models overestimate the seasonal
peaks over the Middle East, North America, and India (e.g.,
CanESM2, HadGEM2-ES, and HadGEM2-CC), a few mod-
els have very weak seasonal cycles and underestimate DOD
over North America and India (e.g., GFDL-CM3, NorESM1-
M, MIROC-ESM, and MIROC-ESM-CHEM). Note that
MODIS DOD is slightly lower than CALIOP DOD over In-
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Figure 3. Seasonal cycle of DOD in nine regions (Table 2) averaged over 2004–2016. Thick red lines denote MODIS DOD, thick black lines
denote CMIP5 multi-model mean, and other colorful lines denote individual model output. The annual means from MODIS DOD (Obs; red)
and multi-model mean (Ens; black) are shown in each panel. Note that in (i) MODIS DOD (red line) is scaled 10 times to better display the
season cycle.

dia in MAM (Fig. S5); therefore for these models the under-
estimation may be larger than shown in Fig. 3e.

Since the temporal coverage of MODIS DOD over north-
ern China and southeastern Asia is relatively low in JJA com-
pared with other regions (Fig. S3), we also examined the sea-
sonal cycle of CALIOP DOD (not shown) and results are
similar but with weaker magnitude. Over northern China,
MODIS DOD peaks in spring (Fig. 3c), consistent with pre-
vious studies (e.g., Zhao et al., 2006; Laurent et al., 2006;
Ginoux et al., 2012b), while multi-model mean peaks later in
May–June. Individual models have quite different seasonal
cycles, with the GFDL-CM3 model having a peak (in April)
closer to the timing of the MODIS maximum. Similar mis-
representation occurs over the southeastern Asia (Fig. 3f).

In South Africa and South America the observed maxima
in early austral spring (i.e., September) are also not captured
by the multi-model mean (Fig. 3g–h). Note that CanESM2
largely captures the seasonal cycle of DOD over South Amer-
ica, although the magnitude is overestimated (Fig. 3h). In
Australia, DOD is largely overestimated and the peak from
November to January in MODIS DOD is shifted about 1
month earlier in the multi-model mean (Fig. 3i). Similar to
the finding here, Bellouin et al. (2011) also found that the
HadGEM2-ES model overestimated DOD over Australia and

the Thar Desert region in northwestern India and suggested
that these overestimations were likely due to the model’s
overestimation of bare soil fraction and underestimation of
soil moisture. Despite overestimation, the seasonal cycle in
the HadGEM2-CC model is more similar to MODIS DOD
than other models (Fig. 3i).

We further examine the magnitudes and spatial patterns
of CMIP5 DOD in these regions. Figure 4 shows the ratio
of pattern standard deviations (standard deviations of values
within the domain) and pattern correlation between CMIP5
DOD and MODIS DOD climatology (2004–2016) in each
region for four seasons. While the former reveals the mag-
nitude differences, the latter demonstrates the spatial resem-
blance.

Over North Africa, the Middle East, and India, the ratio of
CMIP5 DOD from individual models and multi-model mean
versus MODIS DOD are all within ± 1 order of magnitude
(Fig. 4). Most models underestimate DOD in northern China,
although the magnitudes are largely within the range of −1
order of magnitude to 1. Over North America, South Africa,
and Australia, some models underestimate the DOD by more
than 2 orders of magnitude, while over Australia three mod-
els overestimate DOD by more than 1 order of magnitude. In
general, magnitudes of multi-model mean are closer to satel-
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Figure 4. Spatial statistics comparing DOD from CMIP5 models with that from MODIS in nine regions. Label on the x axis shows individual
models (1–7) and multi-model mean (8). y axis shows the ratio of pattern standard deviations between model climatology (2004–2016) and
that of MODIS, which reveals the relative amplitude of the simulated DOD versus satellite DOD. The color denotes pattern correlation
(centered) between each model and MODIS DOD in each region.

lite DOD than most individual models and are largely within
± 1 order of magnitude of MODIS DOD.

The spatial patterns are better captured over North Africa
and the Middle East than other regions (Fig. 4), with pat-
tern correlations above 0.6 in most models (with the highest
pattern correlations of 0.92 and 0.83). Pattern correlations
from multi-model mean are also high, reaching 0.87 (0.78)
over North Africa and 0.75 (0.73) over the Middle East in
JJA (MAM). Nonetheless, some models show negative pat-
tern correlations over North Africa, northern China, North
America, southeastern Asia, South Africa, South America,
and Australia. Overall, spatial patterns are less well repre-
sented in regions over the SH than over the NH in CMIP5
models.

In short, in terms of both magnitudes and spatial pattern,
DOD climatology is best represented over North Africa and
the Middle East among the nine regions. The multi-model

mean shows that DOD over North Africa is slightly better
simulated than over the Middle East, somewhat similar to
the finding of the AeroCom multi-model analysis (Huneeus
et al., 2011).

3.2 Interannual variations

An important aspect of dust activity is its long-term variabil-
ity, including interannual and decadal variations. Dust emis-
sion in North Africa is known to have strong decadal vari-
ations (e.g., Prospero and Nees, 1986; Prospero and Lamb,
2003; Mahowald et al., 2010; Evan et al., 2014, 2016), while
over Australia, strong interannual variations have been re-
lated to El Niño–Southern Oscillation (e.g., Marx et al.,
2009; Evans et al., 2016). Due to the short time coverage of
high-quality satellite products, we focus on interannual vari-
ations in DOD from 2004 to 2016.
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Figure 5 shows the correlations of regional mean time se-
ries of DOD between MODIS and CMIP5 models and multi-
model mean for each season in nine regions. We also show
correlations between the reconstructed DOD (see Sect. 2.4.2
for details) and MODIS DOD for reference (Table S1). The
reconstructed DOD is calculated using observed regression
coefficients and time-varying controlling factors from obser-
vations (i.e., surface wind speed, bareness, and precipitation).

The interannual variations in DOD are in general not well
captured by CMIP5 models. This is consistent with a pre-
vious study by Evan et al. (2014), who found dust variabil-
ity downwind of North Africa over the northeastern Atlantic
was misrepresented in CMIP5 models. In most regions, only
one or two models show significant positive correlation with
MODIS DOD in some seasons, and negative correlations ex-
ist in all regions (Fig. 5). North Africa, the Middle East,
southeastern Asia, South America, and Australia show fewer
negative correlations than other dusty regions. Conversely,
reconstructed DOD shows significant positive correlations
with MODIS DOD over most regions in all seasons (Ta-
ble S1). This suggests that the interannual variations in DOD
can be largely attributed to the variations in these controlling
factors, and models may misrepresent these relationships, in
addition to their incapacity to capture the interannual varia-
tions in individual controlling factors in general (not shown),
which is not uncommon for coupled models.

We further examine the connection between those control-
ling factors and DOD in CMIP5 models. Figure 6 shows
the dominant controlling factors among the three (surface
wind speed, bareness, and precipitation) on DOD variations
in four seasons from MODIS (left column) and from CMIP5
multi-model mean (right column). To highlight factors con-
trolling DOD variations near the dust source regions, a mask
of AVHRR LAI ≤ 0.5 is applied to both coefficients.

Bareness plays the most important role in many dusty re-
gions in observations, e.g., over Australia, the central US,
and South America (Fig. 6a–d). Note that while bareness
plays an important role over the Sahel during DJF and MAM,
it also shows strong signal over some areas in northern North
Africa (Fig. 6a–b). The reliability of this information is lim-
ited by the accuracy of LAI retrieval in these areas. The value
of bareness in this region is actually quite high (as LAI is
very low), but still has weak interannual variability (Fig. S6).
Over some areas of North and South Africa, the Middle East,
and East Asia, surface wind and precipitation are also quite
important.

The role of bareness is largely underestimated in CMIP5
models while surface wind and precipitation become the
dominant factors (Fig. 6e–h). The misrepresentation of the
connection between DOD and these controlling factors may
cause the misrepresentation of the dust load and its variabil-
ity. Taking Australia for an example, the overestimation of
DOD magnitudes may be related to an overestimation of the
influence of surface wind on DOD and a lack of constraints
from surface bareness.

Despite the large differences between the observed and
modeled connections between DOD and the controlling fac-
tors, some regions show similarities. For instance, over North
Africa in DJF, both show an important influence from surface
winds (Fig. 6a, e), although the locations of surface-wind-
dominant areas are not exactly the same. Evan et al. (2016)
also found a dominant role of surface wind in African dust
variability, but they focused on monthly means not seasonal
averages. In MAM, precipitation starts to play a role in some
parts of North Africa while surface wind still dominates in
some areas (Fig. 6b). The same increasing influence of pre-
cipitation is shown in the multi-model mean, but such an in-
fluence seems overestimated (Fig. 6f). In JJA, the influences
of precipitation and bareness over the eastern Arabian Penin-
sula in the multi-model mean (Fig. 6g) also show some sim-
ilarity to observation (Fig. 6c), although an underestimation
of the influence from bareness and an overestimation of pre-
cipitation are still there.

Also, note that in CMIP5 models, due to a lack of con-
straints from low surface temperature (e.g., over frozen land)
and snow cover on dust emission or misrepresentations of
dust transport, DOD and also the regression coefficients still
exist over NH high latitudes in boreal winter and spring in
the multi-model mean (Fig. 6e–f).

3.3 Future projections

How will DOD change in response to increasing greenhouse
gases? The results from the CMIP5 multi-model mean are
shown in Fig. 7. We compare the DOD during the late half of
the 21st century under the RCP8.5 scenario with that in the
historical level (1861–2005 average).

Over land, the CMIP5 model projects a decrease in global
mean DOD in all seasons except JJA (Fig. 7a–d). The inter-
model standard deviation is much greater than the multi-
model mean, suggesting large discrepancies among individ-
ual models. The projected decrease is largely over north-
ern North America, southern North Africa, eastern central
Africa, and East Asia while the increase is largely over north-
ern North Africa, the Middle East, southern North Amer-
ica, South Africa, South America, and southern Australia
(Fig. 7). Regional means of DOD change (as a percentage)
with reference to the CMIP5 historical run are summarized
in Table 3.

What might be the causes of DOD change? Figure 8 shows
the projected change of precipitation, bareness, and surface
wind speed from CMIP5 multi-model mean. These factors
play an important role in DOD variations in the present
day, although models tend to underestimate the role of bare-
ness and overestimate the influences of precipitation and sur-
face wind (Fig. 6). Increases in precipitation can increase
soil moisture and remove airborne dust, thus usually favor-
ing a decrease in DOD. As shown in Fig. 8a–d, the in-
creases in precipitation in northern Eurasia, northern North
America, the Congo basin in Africa, and Australia (DJF
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Figure 5. Correlations (color) between regional averaged time series from CMIP5 DOD and MODIS DOD from 2004 to 2016 for four
seasons. Numbers on the x axis denote each model (1–7) and multi-model mean (8). Correlations significant at the 90 % confidence level are
marked by a star and significance at the 95 % confidence level by two stars.

Table 3. Changes of DOD in the late half of the 21st century (2051–2100; RCP8.5 scenario) from the historical condition (1861–2005)
projected by the CMIP5 multi-model mean (second to fifth columns) and the regression model (sixth to ninth columns) in nine regions.
Changes of DOD are shown as a percentage with reference to CMIP5 multi-model historical run. Note that in some regions the projected
change by the regression model is quite large (i.e., greater than ±100 %), largely due to the underestimation of CMIP5 historical run in these
regions.

Region CMIP5 Regression model

DJF MAM JJA SON DJF MAM JJA SON

N. Africa −3.8 −3.6 2.4 −16.3 −0.8 −17.7 11.1 −10.3
Middle East 7.8 4.5 6.4 1.5 9.8 −16.0 −5.4 −8.4
N. China −33.5 −11.4 −9.8 −14.4 312.3 −238.6 −51.2 −30.0
N. America 42.6 26.8 13.2 −6.4 −38.5 −90.0 9.3 −42.4
India −5.1 0.2 −1.0 −9.9 −27.6 −8.2 −2.9 −32.3
SE. Asia −45.7 −16.5 −13.5 −17.1 −34.8 1.6 4.2 96.3
S. Africa 24.0 6.1 38.5 54.4 22.3 59.3 231.8 78.3
S. America 35.7 27.4 51.8 36.0 14.8 56.1 78.3 154.6
Australia −3.2 −3.2 15.3 17.0 2.7 0.4 0.7 3.7

and MAM) may contribute to the decrease in DOD in these
regions, while the decreases in precipitation over northern
North Africa and the Middle East (DJF and MAM), South
Africa, and South America may contribute to the increase
in DOD (DJF-SON). Also note that in JJA both precipita-

tion and DOD increase over northern North Africa and the
Middle East (Fig. 8c), suggesting other factors dominate the
variation in DOD in the multi-model mean.

A decrease (increase) in bareness indicates a growth (de-
cay) of vegetation and is usually associated with a decrease
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Figure 6. Regression coefficients calculated by regressing DOD in each season onto standardized precipitation (purple), bareness (orange),
and surface wind speed (green) from 2004 to 2016. Coefficients obtained using MODIS DOD and observed controlling factors (interpolated
to a 2◦ by 2.5◦ grid) and those using CMIP5 multi-model mean DOD and controlling factors are shown in the left and right columns,
respectively. The color of the shading denotes the largest coefficient in absolute value among the three, while the saturation of the color
shows the magnitude of the coefficient (from 0 to 0.02). Only regression coefficients significant at the 90 % confidence level (bootstrap test)
are shown. Missing values are shaded in grey. To highlight coefficients near the source regions, a mask of LAI ≤ 0.5 is applied.

(increase) in DOD. In general, except regions such as south-
ern North America, South America, South Africa, part of
northern Eurasia, and central Sahel, the pattern of bareness
change does not resemble DOD change (Fig. 8e–h). This is
probably due to the fact that the overall influence of bare-
ness on DOD variation is underestimated in CMIP5 models
(Fig. 6).

Increases in surface wind can enhance dust emission and
transport, and vice versa. The changes of surface wind in DJF
and MAM are similar and likely to contribute to the increase
in DOD over northern North Africa, the Middle East, eastern
South America, southern South Africa, and southern Aus-

tralia (Fig. 8i–j). The decrease in DOD over northwestern
North America, the Sahel, and northern Australia may also
relate to the decrease in surface wind there, in addition to
an increase in precipitation and a reduction of bareness. In
JJA and SON (Fig. 8k–l), the increases in surface wind in
South America, South Africa, and central Australia and the
decreases in wind in northwestern North America, northern
Eurasia, and the central Sahel are also consistent with pat-
terns of DOD change.

In short, variations in CMIP5 DOD in the late half of the
21st century are more consistent with changes of precipita-
tion and surface wind speed than with surface bareness, con-
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Figure 7. Projected changes of DOD in the late half of the 21st century (under the RCP8.5 scenario) from that in the historical level (1861–
2005) by the CMIP5 multi-model mean for four seasons. The percentage change of global mean (over land) DOD ± 1 inter-model standard
deviation is shown at the bottom of each plot. Areas with sign agreement among the models reaching 71.4 % (i.e., at least five out of seven
models have the same sign as the multi-model mean) are dotted.

sistent with the analysis above regarding the present-day con-
dition.

Here we also present the projected change of DOD from
the regression model in Fig. 9. The regression model (see
Sect. 2.4 for details) is developed based on observed rela-
tionships between MODIS DOD and local controlling factors
and can largely capture the interannual variations in DOD in
the present-day climate (Table S1). Assuming that the ob-
served connection between DOD and these controlling fac-
tors does not change dramatically in the future, we can use
this regression model and CMIP5-model-projected change
of controlling factors to project DOD variations. Compared
to DOD projection from CMIP5 models, this approach ad-
ditionally utilizes observational constraints and is likely to
provide a more reliable future projection. We use projected
changes of precipitation, bareness, and surface wind speed
from seven CMIP5 models with an interactive dust emission
scheme (see methodology). A similar method is applied to
the model output from 16 CMIP5 models, and results are
similar (Fig. S7). A mask of present-day LAI ≤ 0.5 is also
applied to highlight the changes of DOD near dust source re-
gions. By doing this, we assume the location of major dust
sources will not change much in the late half of the 21st cen-
tury. The unmasked figure is presented in the Supplement
(Fig. S8). The reason we did not use the projected future LAI
as a mask is that there are large uncertainties associated with
LAI projection, especially over NH subtropical regions (e.g.,
Fig. 8e–h).

In DJF, change of DOD over Mexico, North Africa, the
Middle East and part of northern China (Fig. 9a) projected by

the regression model is similar to that projected by CMIP5
models over those dust source regions (Fig. 7a), but with a
greater magnitude. In MAM, a decrease in DOD is projected
over a large area of North Africa (Fig. 9b), which is differ-
ent from the pattern projected from the CMIP5 multi-model
mean (Fig. 7b). The decrease in DOD over the northern cen-
tral US is also different from the overall increase projected by
CMIP5 DOD. However, the increase in DOD over the Mid-
dle East and the decrease in DOD over northern China are
similar to that of CMIP5 DOD. During JJA and SON, DOD
decreases over the Sahel and northern China but increases
over a belt to the north of the central Sahel and parts of the
Middle East (Fig. 9c–d). The weak increase in DOD over the
southern corner of South Africa in JJA and a slight decrease
in SON also have high agreement among the regression pro-
jections (dotted areas in Fig. 9c–d). Changes of DOD over
Australia are very small in all seasons and show little consis-
tency among the regression projections.

The regression model projection using 16-model output
shows very similar patterns (Fig. S7), largely because the
projected changes of precipitation, surface wind speed, and
bareness from the 16-model ensemble mean are similar to
those from the seven-model ensemble mean in dusty regions
(Fig. S9). But there are also some discrepancies in terms of
magnitude and pattern that are revealed in the projected DOD
patterns, e.g., the projected reduction of DOD is greater and
more widespread over northern Asia in MAM if using the
16-model output and the increase in DOD along the south-
ern edge of the Sahara is weaker in JJA and SON (Fig. S7
vs. Fig. 9).
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Figure 8. Projected difference of (a–d) precipitation (mm d−1), (e–h) bareness, and (i–l) 10 m wind (m s−1) between the late half of the 21st
century (2051–2100; RCP8.5 scenario) and historical levels (1861–2005) from the multi-model mean of seven CMIP5 models. Areas with
sign agreement among the models reaching 71.4 % (i.e., at least five out of seven models have the same sign as the multi-model mean) are
dotted.

The contribution of each controlling factor to the total
DOD change is shown in Fig. 10. While changes of bareness
over North Africa and northern China play an important role
in DOD change, changes of precipitation, e.g., over north-
western China in MAM, and surface wind, e.g., over north-
ern North Africa and the Middle East in DJF and MAM, also
play vital roles.

Both projections from the CMIP5 models and those from
the regression model have some uncertainties. The reliability
of future projections by CMIP5 models is limited by mod-
els’ capability of capturing present-day climatology and the
observed connection between DOD and local controlling fac-
tors. As discussed earlier, the overall performance of models
is better in those very dusty regions in the NH, such as North
Africa and the Middle East, than other regions. The multi-
model mean also overestimates the connection among DOD,
precipitation, and surface wind and underestimates the in-
fluence of bareness in the present (Fig. 6), which can cast
doubts on the projected variation in DOD in response to cli-
mate change.

The uncertainties associated with the regression model are
twofold. First, there are uncertainties associated with the re-
gression model itself. Since the regression coefficients are
derived from observed relationships between DOD and con-
trolling factors in a relatively short time period, factors con-
trolling the low-frequency variation in DOD (e.g., decadal
variations) may not be included. Other meteorological fac-
tors that could play an important role in regional dust vari-
ability, e.g., nocturnal low-level jets (e.g., Todd et al., 2008;
Fiedler et al., 2013, 2016) and haboobs over Africa (e.g.,
Ashpole and Washington, 2013), are not directly considered
in the model. The influences of anthropogenic land use and
land cover change are also not included in the regression
model. Anthropogenic land use and land cover change has
been found to play an important role in long-term dust vari-
ability in some regions (e.g., Neff et al., 2005, 2008; Moulin
and Chiapello, 2006; McConnell et al., 2007), although pre-
vious modeling studies found its influences on future dust
emissions to be minor compared to climate change (Tegen et
al., 2004). Thus the projection made by the regression model
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Figure 9. Projected change of DOD in the late half of the 21st century under the RCP8.5 scenario by the regression model. The results are
calculated using the regression coefficients obtained from observations during 2004–2016 (see Sect. 2) and projected changes of precipitation,
bareness, and surface wind from seven CMIP5 models. Dotted areas are regions with sign agreement among the regression projections (using
output of each of the seven models) above 71.4 % (i.e., at least five out of seven regression projections have the same sign as the multi-model
mean projection). To highlight DOD variations near the source regions, a mask of LAI ≤ 0.5 (from present-day climatology) is applied.

Figure 10. (a–d) Projected change of DOD in the late half of the 21st century under the RCP8.5 scenario by the regression model and
output from seven CMIP5 models (same as Fig. 9), as well as contributions from each component, (e–h) precipitation, (j–i) bareness, and
(m–p) surface wind speed. Dotted areas are regions with sign agreement above 71.4 % among the models. To highlight DOD variations near
the source regions, a mask of LAI ≤ 0.5 (from present-day climatology) is applied.
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only reveals the change of DOD in association with cli-
mate change. Second, uncertainties associated with model-
projected change of controlling factors, such as bareness in
the US in JJA as pointed out by Pu and Ginoux (2017), also
limit the accuracy of the results.

Despite these uncertainties, both methods make similar
projections, particularly in some dusty regions: for instance,
the DOD pattern over North Africa in DJF and JJA, an in-
crease in DOD in the central Arabian Peninsula in all sea-
sons, and a decrease in DOD over northern China from MAM
to SON (Figs. 7, 9).

4 Discussion

We examined DOD in seven CMIP5 models with interactive
dust emission schemes. Other important variables that influ-
ence the radiative property of dust, such as the Angström ex-
ponent and single-scattering albedo, are also worth further
examination, if these variables are archived. A better quan-
tification of the radiative forcing of dust may also require an
examination of the size distribution of dust particles, as stud-
ies (e.g., Kok et al., 2017) found that in current AeroCom
models the fraction of coarse dust particles was underesti-
mated and so was the warming effect of dust. Whether this is
the case in the CMIP5 models is not clear.

Also note that since DOD is an integrated variable, it
does not reflect the vertical distribution of dust aerosols. As
pointed out by Huneeus et al. (2016), dust models with simi-
lar performance in simulating AOD may have quite large dif-
ferences in simulating vertical distribution, emission, deposi-
tion, and surface concentration of dust. An overall evaluation
of dust modeling capability will require detailed examination
of these variables and the life cycle of dust in CMIP5 models
in addition to DOD.

Early studies on future dust projection used offline dust
models driven by climate model output under different sce-
narios. For instance, Mahowald and Luo (2003) used an
offline dust model and output from the National Center
of Atmospheric Research’s coupled Climate System Model
(CSM) 1.0 (Boville and Gent, 1998) under the A1 scenario
(Houghton et al., 2001) and projected a decrease in dust
emissions by the end of the 21st century by−20 % to−63%,
depending on different scenarios. In general, when they in-
cluded vegetation change, the projected dust reduction be-
came greater, but including land use change slightly weak-
ened such reduction. Similarly, Tegen et al. (2004) used out-
put from ECHAM4, HadCM3, and a dust model (Tegen et
al., 2002) to examine the change of dust emission by 2040–
2050 and 2070–2080 and found results were model and sce-
nario dependent, from −26 % to 10 %. However, including
anthropogenic cultivation practices tended to increase dust
emission in both models. They also pointed out that such an
influence from anthropogenic land use was not big enough to
overcome the effect of climate change.

The interactive dust emission schemes and new genera-
tions of climate models used in CMIP5 are likely to provide
more reliable projections, but this may also depend on how
changes of dust and its radiative forcing are fed back to the
climate system in the models. While these projections are
largely model dependent, based on our analysis on the DOD
climatology in CMIP5 models, the multi-model mean has a
better chance to provide a more reliable projection than indi-
vidual models.

Here a regression model combined with MODIS DOD is
used to identify key local factors that control the variation
in DOD on the interannual timescale. The results are then
compared with model output to examine models’ capability
of capturing observed connections between DOD and con-
trolling factors. This method may be applied to other dust
model intercomparison projects as well, such as AeroCom
(Huneeus et al., 2011), to help examine model performance.

5 Conclusions

Dust aerosol plays an important role in the climate system by
directly scattering and absorbing solar and longwave radia-
tion and indirectly affecting the formation and radiative prop-
erties of cloud. It is thus very important to understand how
well dust is simulated in the state-of-the-art climate models.
While many features and variables are systematically exam-
ined in the CMIP5 multi-model output, we found that to the
best of our knowledge an evaluation of global dust modeling
in CMIP5 models is still missing. In this study we examined
a key variable associated with dust radiative effect, dust op-
tical depth (DOD), using seven CMIP5 models with interac-
tive dust emission schemes and DOD retrieved from MODIS
Deep Blue aerosol products.

We found that the global spatial pattern and magnitude are
largely captured by CMIP5 models in the 2004–2016 clima-
tology, with an underestimation of global DOD (over land)
by −25.2 % in MAM to −6.4 % in DJF. The spatial pattern
is better captured in boreal dusty seasons during MAM and
JJA. In JJA, the simulated zonal mean DOD from the multi-
model mean largely resembles MODIS DOD.

The magnitudes of multi-model mean are closer to
MODIS climatology than most individual models and are
largely within ± 1 order of magnitude of MODIS DOD
in the nine regions examined here (North Africa, the Mid-
dle East, northern China, North America, India, southeastern
Asia, South Africa, South America, and Australia; see Fig. 1
and Table 2 for domains). While some models underestimate
DOD in North America and South America by more than 2
orders of magnitude, a few also overestimate DOD in Aus-
tralia by more than 1 order of magnitude. Both the magnitude
and spatial patterns of DOD are better captured over North
Africa and the Middle East than other regions.

The multi-model mean also largely captures the seasonal
cycle of DOD in some very dusty regions, such as North

www.atmos-chem-phys.net/18/12491/2018/ Atmos. Chem. Phys., 18, 12491–12510, 2018



12506 B. Pu and P. Ginoux: CMIP5 models

Africa and the Middle East. Seasonal variations in North
America and India are also generally captured by the multi-
model mean, with the modeled DOD peaking at approxi-
mately the same season as in MODIS DOD but not so in
northern China and southeastern Asia. Seasonal cycles in
those dusty regions in the Southern Hemisphere are gener-
ally not well captured, with modeled DOD over South Africa
and South America peaking later than that in MODIS DOD
but earlier in Australia.

The interannual variations in DOD are not captured by
most of the CMIP5 models during 2004–2016. Models also
underestimate the constraints from surface bareness on the
variations in DOD and overestimate the influences from
surface wind speed and precipitation in those major dust
source regions. CMIP5-projected change of DOD in the late
half of the 21st century (under the RCP8.5 scenario) with
reference to historical conditions (1861–2005) also shows
greater influence from precipitation and surface wind change
than from surface bareness. Overall, the multi-model mean
projects a change of DOD over land from −3.8 % in SON to
3.3 % in JJA.

We also provide a projection of future DOD change using
a regression model based on local controlling factors such
as surface wind, bareness, and precipitation (Pu and Ginoux,
2017). This model can largely capture the interannual varia-
tions in MODIS DOD in 2004–2016. The regression model
projects a reduction of DOD in the Sahel in all seasons in
the late half of the 21st century under the RCP8.5 scenario,
largely due to a decrease in surface bareness. DOD is pro-
jected to increase over the southern edge of the Sahara in
association with surface wind and precipitation changes ex-
cept in MAM, when a reduction of DOD over most of North
Africa is projected. DOD is also projected to increase over
the central Arabian Peninsula in all seasons and to decrease
over northern China from MAM to SON.

Despite large uncertainties associated with both projec-
tions, we find some similarities between the two, which adds
to the confidence of projected DOD change in these regions,
for instance, changes of DOD over North Africa in DJF and
JJA, an increase in DOD in the central Arabian Peninsula in
all seasons, and a decrease in DOD over northern China from
MAM to SON.

Data availability. PRECL precipitation data are provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web
site at http://www.esrl.noaa.gov/psd (last access: February 2018).
The CALIOP products are downloaded from https://data.nodc.noaa.
gov/cgi-bin/iso?id=gov.noaa.ncdc:C00898 (last access: Febru-
ary 2018). ERA-Interim is downloaded from http://www.ecmwf.int/
en/research/climate-reanalysis/era-interim. The AERONET coarse-
mode aerosol optical depth data are downloaded from https://
aeronet.gsfc.nasa.gov. CMIP5 data are downloaded from https://
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(Taylor et al., 2012).
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