Articles | Volume 17, issue 7
https://doi.org/10.5194/acp-17-4711-2017
https://doi.org/10.5194/acp-17-4711-2017
Research article
 | 
11 Apr 2017
Research article |  | 11 Apr 2017

Long-term air concentrations, wet deposition, and scavenging ratios of inorganic ions, HNO3, and SO2 and assessment of aerosol and precipitation acidity at Canadian rural locations

Irene Cheng and Leiming Zhang

Related authors

Natural Surface Emissions Dominate Anthropogenic Emissions Contributions to Total Gaseous Mercury (TGM) at Canadian Rural Sites
Irene Cheng, Amanda Cole, Leiming Zhang, and Alexandra Steffen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2895,https://doi.org/10.5194/egusphere-2024-2895, 2024
Short summary
Long-term declines in atmospheric nitrogen and sulfur deposition reduce critical loads exceedances at multiple Canadian rural sites, 2000–2018
Irene Cheng, Leiming Zhang, Zhuanshi He, Hazel Cathcart, Daniel Houle, Amanda Cole, Jian Feng, Jason O'Brien, Anne Marie Macdonald, Julian Aherne, and Jeffrey Brook
Atmos. Chem. Phys., 22, 14631–14656, https://doi.org/10.5194/acp-22-14631-2022,https://doi.org/10.5194/acp-22-14631-2022, 2022
Short summary
Emissions databases for polycyclic aromatic compounds in the Canadian Athabasca oil sands region – development using current knowledge and evaluation with passive sampling and air dispersion modelling data
Xin Qiu, Irene Cheng, Fuquan Yang, Erin Horb, Leiming Zhang, and Tom Harner
Atmos. Chem. Phys., 18, 3457–3467, https://doi.org/10.5194/acp-18-3457-2018,https://doi.org/10.5194/acp-18-3457-2018, 2018
Short summary
Potential sources and processes affecting speciated atmospheric mercury at Kejimkujik National Park, Canada: comparison of receptor models and data treatment methods
Xiaohong Xu, Yanyin Liao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 17, 1381–1400, https://doi.org/10.5194/acp-17-1381-2017,https://doi.org/10.5194/acp-17-1381-2017, 2017
Short summary
Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review
Huiting Mao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 16, 12897–12924, https://doi.org/10.5194/acp-16-12897-2016,https://doi.org/10.5194/acp-16-12897-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Rapid oxidation of phenolic compounds by O3 and HO: effects of the air–water interface and mineral dust in tropospheric chemical processes
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
Atmos. Chem. Phys., 24, 12409–12423, https://doi.org/10.5194/acp-24-12409-2024,https://doi.org/10.5194/acp-24-12409-2024, 2024
Short summary
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024,https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024,https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
The co-benefits of a low-carbon future for PM2.5 and O3 air pollution in Europe
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024,https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Assessing the effectiveness of SO2, NOx, and NH3 emission reductions in mitigating winter PM2.5 in Taiwan using CMAQ
Ping-Chieh Huang, Hui-Ming Hung, Hsin-Chih Lai, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 10759–10772, https://doi.org/10.5194/acp-24-10759-2024,https://doi.org/10.5194/acp-24-10759-2024, 2024
Short summary

Cited articles

Appel, K. W., Foley, K. M., Bash, J. O., Pinder, R. W., Dennis, R. L., Allen, D. J., and Pickering, K.: A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4.7 wet deposition estimates for 2002–2006, Geosci. Model Dev., 4, 357–371, https://doi.org/10.5194/gmd-4-357-2011, 2011.
Bourcier, L., Masson, O., Laj, P., Chausse, P., Pichon, J. M., Paulat, P., Bertrand, G., and Sellegri, K.: A new method for assessing the aerosol to rain chemical composition relationships, Atmos. Res., 118, 295–303, 2012.
Cadle, S. H., VandeKopple, R., Mulawa, P. A., and Dasch, J. M.: Ambient concentrations, scavenging ratios, and source regions of acid related compounds and trace metals during winter in northern Michigan, Atmos. Environ., 24, 2981–2989, 1990.
Chang, T. Y.: Rain and snow scavenging of HNO3 vapor in the atmosphere, Atmos. Environ., 18, 191–197, 1984.
Cheng, I., Zhang, L., and Mao H.: Relative contributions of gaseous oxidized mercury and fine and coarse particle-bound mercury to mercury wet deposition at nine monitoring sites in North America, J. Geophys. Res.-Atmos., 120, 8549–8562, 2015.
Download
Short summary
Geographical and long-term (1983–2011) trends in air concentrations and wet deposition of inorganic ions and aerosol and precipitation acidity were analyzed at 31 sites in Canada. Declines in atmospheric ammonium, nitrate, and sulfate were consistent with decreasing emissions of NH3, NOx, and SO2. A decline in nitrate and sulfate wet deposition was also observed. Wet scavenging was further studied by estimating scavenging ratios and relative contributions of gases and aerosols to wet deposition.
Altmetrics
Final-revised paper
Preprint