Articles | Volume 17, issue 5
https://doi.org/10.5194/acp-17-3385-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-17-3385-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Interpreting the 13C ∕ 12C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China
Jiaping Xu
Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, China
Xuhui Lee
CORRESPONDING AUTHOR
Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, China
School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA
Wei Xiao
Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, China
Chang Cao
Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, China
Shoudong Liu
Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, China
Xuefa Wen
Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Jingzheng Xu
Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, China
Zhen Zhang
Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, China
Jiayu Zhao
Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, China
Related authors
Cheng Hu, Jiaping Xu, Cheng Liu, Yan Chen, Dong Yang, Wenjing Huang, Lichen Deng, Shoudong Liu, Timothy J. Griffis, and Xuhui Lee
Atmos. Chem. Phys., 21, 10015–10037, https://doi.org/10.5194/acp-21-10015-2021, https://doi.org/10.5194/acp-21-10015-2021, 2021
Short summary
Short summary
Seventy percent of global CO2 emissions were emitted from urban landscapes. The Yangtze River delta (YRD) ranks as one of the most densely populated regions in the world and is an anthropogenic CO2 hotspot. Besides anthropogenic factors, natural ecosystems and croplands act as significant CO2 sinks and sources. Independent quantification of the fossil and cement CO2 emission and assessment of their impact on atmospheric δ13C-CO2 have potential to improve our understanding of urban CO2 cycling.
Xuanye Zhang, Hailong Yang, Lingbing Bu, Zengchang Fan, Wei Xiao, Binglong Chen, Lu Zhang, Sihan Liu, Zhongting Wang, Jiqiao Liu, Weibiao Chen, and Xuhui Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-3152, https://doi.org/10.5194/egusphere-2024-3152, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study utilized the IPDA lidar aboard the DQ-1 satellite to monitor emissions from localized strong point sources and, for the first time, observed the diurnal variation of CO2 emissions from a high-latitude power plant, Overall, power plant CO2 emissions were largely consistent with local electricity consumption patterns, with most plants emitting less at night than during the day, and with higher emissions in winter and summer compared to spring and autumn.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Tao Tang, Drew Shindell, Yuqiang Zhang, Apostolos Voulgarakis, Jean-Francois Lamarque, Gunnar Myhre, Gregory Faluvegi, Bjørn H. Samset, Timothy Andrews, Dirk Olivié, Toshihiko Takemura, and Xuhui Lee
Atmos. Chem. Phys., 21, 13797–13809, https://doi.org/10.5194/acp-21-13797-2021, https://doi.org/10.5194/acp-21-13797-2021, 2021
Short summary
Short summary
Previous studies showed that black carbon (BC) could warm the surface with decreased incoming radiation. With climate models, we found that the surface energy redistribution plays a more crucial role in surface temperature compared with other forcing agents. Though BC could reduce the surface heating, the energy dissipates less efficiently, which is manifested by reduced convective and evaporative cooling, thereby warming the surface.
Cheng Hu, Jiaping Xu, Cheng Liu, Yan Chen, Dong Yang, Wenjing Huang, Lichen Deng, Shoudong Liu, Timothy J. Griffis, and Xuhui Lee
Atmos. Chem. Phys., 21, 10015–10037, https://doi.org/10.5194/acp-21-10015-2021, https://doi.org/10.5194/acp-21-10015-2021, 2021
Short summary
Short summary
Seventy percent of global CO2 emissions were emitted from urban landscapes. The Yangtze River delta (YRD) ranks as one of the most densely populated regions in the world and is an anthropogenic CO2 hotspot. Besides anthropogenic factors, natural ecosystems and croplands act as significant CO2 sinks and sources. Independent quantification of the fossil and cement CO2 emission and assessment of their impact on atmospheric δ13C-CO2 have potential to improve our understanding of urban CO2 cycling.
Zhen Zhang, Mi Zhang, Chang Cao, Wei Wang, Wei Xiao, Chengyu Xie, Haoran Chu, Jiao Wang, Jiayu Zhao, Lei Jia, Qiang Liu, Wenjing Huang, Wenqing Zhang, Yang Lu, Yanhong Xie, Yi Wang, Yini Pu, Yongbo Hu, Zheng Chen, Zhihao Qin, and Xuhui Lee
Earth Syst. Sci. Data, 12, 2635–2645, https://doi.org/10.5194/essd-12-2635-2020, https://doi.org/10.5194/essd-12-2635-2020, 2020
Short summary
Short summary
Inland lakes play an important role in regulating local climate. In this paper, we describe a dataset on microclimate and eddy covariance variables measured at a network of sites across Lake Taihu. The dataset, which appears to be the first of its kind for lake systems, can be used for validation of lake–air flux parameterizations, investigation of climatic controls on lake evaporation, evaluation of remote-sensing surface data products and global synthesis on lake–air interactions.
Xiaoyan Liu, Yan-Lin Zhang, Yiran Peng, Lulu Xu, Chunmao Zhu, Fang Cao, Xiaoyao Zhai, M. Mozammel Haque, Chi Yang, Yunhua Chang, Tong Huang, Zufei Xu, Mengying Bao, Wenqi Zhang, Meiyi Fan, and Xuhui Lee
Atmos. Chem. Phys., 19, 11213–11233, https://doi.org/10.5194/acp-19-11213-2019, https://doi.org/10.5194/acp-19-11213-2019, 2019
Short summary
Short summary
Although a total ban on straw burning has been enforced in eastern China, the regionally transported biomass burning emissions remarkably impacted the chemical and optical properties of carbonaceous aerosols in Nanjing, which were quantified by a calculation based on measured data and a simulation based on a model. Results showed that regionally transported biomass burning emissions significantly contributed to the carbonaceous aerosols and impacted the solar radiation balance of the atmosphere.
Yang Yang, Xinyu Zhang, Chuang Zhang, Huimin Wang, Xiaoli Fu, Fusheng Chen, Songze Wan, Xiaomin Sun, Xuefa Wen, and Jifu Wang
Biogeosciences, 15, 4481–4494, https://doi.org/10.5194/bg-15-4481-2018, https://doi.org/10.5194/bg-15-4481-2018, 2018
Short summary
Short summary
In this study, we established a long-term field experiment to assess how the soil abiotic properties, PLFAs, and enzyme activities in a Chinese fir plantation changed when the understory vegetation was removed. We found that understory vegetation plays a key role in sustaining soil carbon content, microbial biomass, and extracellular enzyme activities. We therefore proposed that, to sustain soil quality in subtropical Chinese fir plantations, understory vegetation should be maintained.
Jing Wang, Xuefa Wen, Xinyu Zhang, and Shenggong Li
Biogeosciences, 15, 4193–4203, https://doi.org/10.5194/bg-15-4193-2018, https://doi.org/10.5194/bg-15-4193-2018, 2018
Short summary
Short summary
The different contributions of gs, gm, and Vcmax to A indicated that plants utilized diverse trade-offs between CO2 supply and demand to maintain relatively high A. The iWUE was relatively low, but ranged widely, indicating that plants used a "profligate/opportunistic" water use strategy to maintain their survival, growth, and the structure of the community. These findings highlight the importance of covariation of gs, gm, and Vcmax for the adaptation of plants to the harsh karst environment.
Chuang Zhang, Xin-Yu Zhang, Hong-Tao Zou, Liang Kou, Yang Yang, Xue-Fa Wen, Sheng-Gong Li, Hui-Min Wang, and Xiao-Min Sun
Biogeosciences, 14, 4815–4827, https://doi.org/10.5194/bg-14-4815-2017, https://doi.org/10.5194/bg-14-4815-2017, 2017
Short summary
Short summary
Ammonium additions had stronger inhibition effects on soil microbial biomass of different communities than nitrate addition. However, inhibition effects of nitrate additions on P hydrolase were stronger than ammonium additions, but not on C- and N-hydrolase and oxidase. Ammonium additions decreased N-acquisition specific enzyme activities normalized by total microbial biomass, but increased P-acquisition specific enzyme activities. Different effects on soil pH may explain the different effects.
Lei Zhao, Xuhui Lee, and Natalie M. Schultz
Atmos. Chem. Phys., 17, 9067–9080, https://doi.org/10.5194/acp-17-9067-2017, https://doi.org/10.5194/acp-17-9067-2017, 2017
Short summary
Short summary
Heat stress associated with climate change is one of most severe threats to human society. The problem is further compounded in urban areas by urban heat islands (UHIs). We use an urban climate model to evaluate the cooling benefits of active urban heat mitigation strategies both individually and collectively. We show that by forming UHI mitigation wedges, these strategies have the potential to significantly reduce the UHI effect plus warming induced by greenhouse gases.
Congsheng Fu, Xuhui Lee, Timothy J. Griffis, Edward J. Dlugokencky, and Arlyn E. Andrews
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-761, https://doi.org/10.5194/acp-2016-761, 2016
Revised manuscript not accepted
Short summary
Short summary
To the best of our knowledge, no modeling studies have been published on the relationship between the spatial characteristics of agricultural N2O emissions and the atmospheric N2O mixing ratio at the regional scale. To fill this gap, we proposed a simple inverse analysis method based on tower measurements and an Eulerian model. According to our study, the N2O emissions from the U. S. Corn Belt is clearly estimated by IPCC, and such underestimate is not dependent on tower measurement location.
Jiaping Pang, Xuefa Wen, Xiaomin Sun, and Kuan Huang
Atmos. Meas. Tech., 9, 3879–3891, https://doi.org/10.5194/amt-9-3879-2016, https://doi.org/10.5194/amt-9-3879-2016, 2016
Timothy J. Griffis, Jeffrey D. Wood, John M. Baker, Xuhui Lee, Ke Xiao, Zichong Chen, Lisa R. Welp, Natalie M. Schultz, Galen Gorski, Ming Chen, and John Nieber
Atmos. Chem. Phys., 16, 5139–5157, https://doi.org/10.5194/acp-16-5139-2016, https://doi.org/10.5194/acp-16-5139-2016, 2016
Short summary
Short summary
Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle. We present the first multi-annual isotope (oxygen and deuterium) water vapor observations from a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the atmosphere. The results show a relatively high degree of summertime water recycling within the region (~30 % mean and ~60 % maximum).
W. Y. Dong, X. Y. Zhang, X. Y. Liu, X. L. Fu, F. S. Chen, H. M. Wang, X. M. Sun, and X. F. Wen
Biogeosciences, 12, 5537–5546, https://doi.org/10.5194/bg-12-5537-2015, https://doi.org/10.5194/bg-12-5537-2015, 2015
Short summary
Short summary
We examined how N and P addition influenced soil microbial community composition and enzyme activities in subtropical China. The results showed that C and N cycling enzymes were more sensitive to nutrient additions than P cycling enzymes and Gram-positive bacteria were most closely related to soil nutrient cycling enzymes. Combined additions of N and P fertilizer are recommended to promote soil fertility and microbial activity in this kind of plantation.
X. Zhang, X. Lee, T. J. Griffis, J. M. Baker, and W. Xiao
Atmos. Chem. Phys., 14, 10705–10719, https://doi.org/10.5194/acp-14-10705-2014, https://doi.org/10.5194/acp-14-10705-2014, 2014
X.-F. Wen, Y. Meng, X.-Y. Zhang, X.-M. Sun, and X. Lee
Atmos. Meas. Tech., 6, 1491–1501, https://doi.org/10.5194/amt-6-1491-2013, https://doi.org/10.5194/amt-6-1491-2013, 2013
Related subject area
Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Vehicle-based in situ observations of the water vapor isotopic composition across China: spatial and seasonal distributions and controls
Using carbon-14 and carbon-13 measurements for source attribution of atmospheric methane in the Athabasca oil sands region
Experimental investigation of the stable water isotope distribution in an Alpine lake environment (L-WAIVE)
Craig–Gordon model validation using stable isotope ratios in water vapor over the Southern Ocean
Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia
Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean
Vertical profile observations of water vapor deuterium excess in the lower troposphere
A new interpretative framework for below-cloud effects on stable water isotopes in vapour and rain
Isotopic composition of daily precipitation along the southern foothills of the Himalayas: impact of marine and continental sources of atmospheric moisture
The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights
Annual variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region
The influence of snow sublimation and meltwater evaporation on δD of water vapor in the atmospheric boundary layer of central Europe
Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau
Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer
Detecting moisture transport pathways to the subtropical North Atlantic free troposphere using paired H2O-δD in situ measurements
Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity
Isotopic signatures of production and uptake of H2 by soil
Simultaneous monitoring of stable oxygen isotope composition in water vapour and precipitation over the central Tibetan Plateau
Deuterium excess in the atmospheric water vapour of a Mediterranean coastal wetland: regional vs. local signatures
Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe
The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland
Deuterium excess as a proxy for continental moisture recycling and plant transpiration
On the variability of atmospheric 222Rn activity concentrations measured at Neumayer, coastal Antarctica
Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain
Kinetic fractionation of gases by deep air convection in polar firn
Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet
Determining water sources in the boundary layer from tall tower profiles of water vapor and surface water isotope ratios after a snowstorm in Colorado
Temporal evolution of stable water isotopologues in cloud droplets in a hill cap cloud in central Europe (HCCT-2010)
Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent
Change of the Asian dust source region deduced from the composition of anthropogenic radionuclides in surface soil in Mongolia
A map of radon flux at the Australian land surface
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Regina Gonzalez Moguel, Felix Vogel, Sébastien Ars, Hinrich Schaefer, Jocelyn C. Turnbull, and Peter M. J. Douglas
Atmos. Chem. Phys., 22, 2121–2133, https://doi.org/10.5194/acp-22-2121-2022, https://doi.org/10.5194/acp-22-2121-2022, 2022
Short summary
Short summary
Evaluating methane (CH4) sources in the Athabasca oil sands region (AOSR) is crucial to effectively mitigate CH4 emissions. We tested the use of carbon isotopes to estimate source contributions from key CH4 sources in the AOSR and found that 56 ± 18 % of CH4 emissions originated from surface mining and processing facilities, 34 ± 18 % from tailings ponds, and 10 ± < 1 % from wetlands, confirming previous findings and showing that this method can be successfully used to partition CH4 sources.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Shaakir Shabir Dar, Prosenjit Ghosh, Ankit Swaraj, and Anil Kumar
Atmos. Chem. Phys., 20, 11435–11449, https://doi.org/10.5194/acp-20-11435-2020, https://doi.org/10.5194/acp-20-11435-2020, 2020
Jean-Louis Bonne, Hanno Meyer, Melanie Behrens, Julia Boike, Sepp Kipfstuhl, Benjamin Rabe, Toni Schmidt, Lutz Schönicke, Hans Christian Steen-Larsen, and Martin Werner
Atmos. Chem. Phys., 20, 10493–10511, https://doi.org/10.5194/acp-20-10493-2020, https://doi.org/10.5194/acp-20-10493-2020, 2020
Short summary
Short summary
This study introduces 2 years of continuous near-surface in situ observations of the stable isotopic composition of water vapour in parallel with precipitation in north-eastern Siberia. We evaluate the atmospheric transport of moisture towards the region of our observations with simulations constrained by meteorological reanalyses and use this information to interpret the temporal variations of the vapour isotopic composition from seasonal to synoptic timescales.
Iris Thurnherr, Anna Kozachek, Pascal Graf, Yongbiao Weng, Dimitri Bolshiyanov, Sebastian Landwehr, Stephan Pfahl, Julia Schmale, Harald Sodemann, Hans Christian Steen-Larsen, Alessandro Toffoli, Heini Wernli, and Franziska Aemisegger
Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020, https://doi.org/10.5194/acp-20-5811-2020, 2020
Short summary
Short summary
Stable water isotopes (SWIs) are tracers of moist atmospheric processes. We analyse the impact of large- to small-scale atmospheric processes and various environmental conditions on the variability of SWIs using ship-based SWI measurement in water vapour from the Atlantic and Southern Ocean. Furthermore, simultaneous measurements of SWIs at two altitudes are used to illustrate the potential of such measurements for future research to estimate sea spray evaporation and turbulent moisture fluxes.
Olivia E. Salmon, Lisa R. Welp, Michael E. Baldwin, Kristian D. Hajny, Brian H. Stirm, and Paul B. Shepson
Atmos. Chem. Phys., 19, 11525–11543, https://doi.org/10.5194/acp-19-11525-2019, https://doi.org/10.5194/acp-19-11525-2019, 2019
Short summary
Short summary
We conducted airborne vertical profile measurements of water vapor stable isotopes to examine how boundary layer, cloud, and mixing processes influence the vertical structure of deuterium excess in the lower troposphere. We discuss reasons our observations are consistent with water vapor isotope theory on some days and not others. Deuterium excess may be useful for understanding complex processes occurring at the top of the boundary layer, including cloud formation, evaporation, and air mixing.
Pascal Graf, Heini Wernli, Stephan Pfahl, and Harald Sodemann
Atmos. Chem. Phys., 19, 747–765, https://doi.org/10.5194/acp-19-747-2019, https://doi.org/10.5194/acp-19-747-2019, 2019
Short summary
Short summary
This article studies the interaction between falling rain and vapour with stable water isotopes. In particular, rain evaporation is relevant for several atmospheric processes, but remains difficult to quantify. A novel framework is introduced to facilitate the interpretation of stable water isotope observations in near-surface vapour and rain. The usefulness of this concept is demonstrated using observations at high time resolution from a cold front. Sensitivities are tested with a simple model.
Ghulam Jeelani, Rajendrakumar D. Deshpande, Michal Galkowski, and Kazimierz Rozanski
Atmos. Chem. Phys., 18, 8789–8805, https://doi.org/10.5194/acp-18-8789-2018, https://doi.org/10.5194/acp-18-8789-2018, 2018
Short summary
Short summary
Analysis of stable isotope composition of daily precipitation collected along the southern foothills of the Himalayas was used to gain deeper insight into the mechanisms controlling isotopic composition of precipitation. The results suggested that the decrease in isotopic composition in the course of ISM evolution stems from large-scale recycling of moisture-driven monsoonal circulation. High d-excess of rainfall is attributed to moisture of continental origin released into the atmosphere.
Harald Sodemann, Franziska Aemisegger, Stephan Pfahl, Mark Bitter, Ulrich Corsmeier, Thomas Feuerle, Pascal Graf, Rolf Hankers, Gregor Hsiao, Helmut Schulz, Andreas Wieser, and Heini Wernli
Atmos. Chem. Phys., 17, 6125–6151, https://doi.org/10.5194/acp-17-6125-2017, https://doi.org/10.5194/acp-17-6125-2017, 2017
Short summary
Short summary
We report here the first survey of stable water isotope composition over the Mediterranean sea made from aircraft. The stable isotope composition of the atmospheric water vapour changed in response to evaporation conditions at the sea surface, elevation, and airmass transport history. Our data set will be valuable for testing how water is transported in weather prediction and climate models and for understanding processes in the Mediterranean water cycle.
Annie L. Putman, Xiahong Feng, Leslie J. Sonder, and Eric S. Posmentier
Atmos. Chem. Phys., 17, 4627–4639, https://doi.org/10.5194/acp-17-4627-2017, https://doi.org/10.5194/acp-17-4627-2017, 2017
Short summary
Short summary
Water vapor source and transport are linked to the stable isotopes of precipitation of 70 storms at Barrow, AK, USA. Barrow's vapor came from the North Pacific in winter and the Arctic Ocean in summer. Half the isotopic variability was explained by the size of the temperature drop from the vapor source to Barrow, the evaporation conditions, and whether the vapor traveled over mountains. Because isotopes reflect the regional meteorology they may be early indicators of Arctic hydroclimatic change.
Emanuel Christner, Martin Kohler, and Matthias Schneider
Atmos. Chem. Phys., 17, 1207–1225, https://doi.org/10.5194/acp-17-1207-2017, https://doi.org/10.5194/acp-17-1207-2017, 2017
Short summary
Short summary
Post-depositional fractionation of stable water isotopes due to fractioning surface evaporation introduces uncertainty to isotope applications such as the reconstruction of paleotemperatures, paleoaltimetry, and the investigation of ground water formation. In this paper we combine measurements of stable water isotopes in near-surface water vapor with a Lagrangian isotope model to investigate isotope fractionation during the evaporation of surface-layer snow in central Europe.
Mathieu Casado, Amaelle Landais, Valérie Masson-Delmotte, Christophe Genthon, Erik Kerstel, Samir Kassi, Laurent Arnaud, Ghislain Picard, Frederic Prie, Olivier Cattani, Hans-Christian Steen-Larsen, Etienne Vignon, and Peter Cermak
Atmos. Chem. Phys., 16, 8521–8538, https://doi.org/10.5194/acp-16-8521-2016, https://doi.org/10.5194/acp-16-8521-2016, 2016
Short summary
Short summary
Climatic conditions in Concordia are very cold (−55 °C in average) and very dry, imposing difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20 ppmv). Here we present the results results of a first campaign of measurement of isotopic composition of water vapour in Concordia, the site where the 800 000 years long ice core was drilled.
Timothy J. Griffis, Jeffrey D. Wood, John M. Baker, Xuhui Lee, Ke Xiao, Zichong Chen, Lisa R. Welp, Natalie M. Schultz, Galen Gorski, Ming Chen, and John Nieber
Atmos. Chem. Phys., 16, 5139–5157, https://doi.org/10.5194/acp-16-5139-2016, https://doi.org/10.5194/acp-16-5139-2016, 2016
Short summary
Short summary
Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle. We present the first multi-annual isotope (oxygen and deuterium) water vapor observations from a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the atmosphere. The results show a relatively high degree of summertime water recycling within the region (~30 % mean and ~60 % maximum).
Yenny González, Matthias Schneider, Christoph Dyroff, Sergio Rodríguez, Emanuel Christner, Omaira Elena García, Emilio Cuevas, Juan Jose Bustos, Ramon Ramos, Carmen Guirado-Fuentes, Sabine Barthlott, Andreas Wiegele, and Eliezer Sepúlveda
Atmos. Chem. Phys., 16, 4251–4269, https://doi.org/10.5194/acp-16-4251-2016, https://doi.org/10.5194/acp-16-4251-2016, 2016
Short summary
Short summary
Measurements of water vapour isotopologues, dust, and a back trajectory model were used to identify moisture pathways in the subtropical North Atlantic. Dry air masses, from condensation at low temperatures, are transported from high altitudes and latitudes. The humid sources are related to the mixture, with lower and more humid air during transport. Rain re-evaporation was an occasional source of moisture. In summer, an important humidity source is the strong dry convection over the Sahara.
Sally Newman, Xiaomei Xu, Kevin R. Gurney, Ying Kuang Hsu, King Fai Li, Xun Jiang, Ralph Keeling, Sha Feng, Darragh O'Keefe, Risa Patarasuk, Kam Weng Wong, Preeti Rao, Marc L. Fischer, and Yuk L. Yung
Atmos. Chem. Phys., 16, 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, https://doi.org/10.5194/acp-16-3843-2016, 2016
Short summary
Short summary
Combining 14C and 13C data from the Los Angeles, CA megacity with background data allows source attribution of CO2 emissions among biosphere, natural gas, and gasoline. The 8-year record of CO2 emissions from fossil fuel burning is consistent with "The Great Recession" of 2008–2010. The long-term trend and source attribution are consistent with government inventories. Seasonal patterns agree with the high-resolution Hestia-LA emission data product, when seasonal wind directions are considered.
Q. Chen, M. E. Popa, A. M. Batenburg, and T. Röckmann
Atmos. Chem. Phys., 15, 13003–13021, https://doi.org/10.5194/acp-15-13003-2015, https://doi.org/10.5194/acp-15-13003-2015, 2015
Short summary
Short summary
We investigated soil production and uptake of H2 and associated isotope effects. Uptake and emission of H2 occurred simultaneously at all sampling sites, with strongest emission where N2 fixing legume was present. The fractionation constant during soil uptake was about 0.945 and it did not show positive correlation with deposition velocity. The isotopic composition of H2 emitted from soil with legume was about -530‰, which is less deuterium-depleted than isotope equilibrium between H2O and H2.
W. Yu, L. Tian, Y. Ma, B. Xu, and D. Qu
Atmos. Chem. Phys., 15, 10251–10262, https://doi.org/10.5194/acp-15-10251-2015, https://doi.org/10.5194/acp-15-10251-2015, 2015
H. Delattre, C. Vallet-Coulomb, and C. Sonzogni
Atmos. Chem. Phys., 15, 10167–10181, https://doi.org/10.5194/acp-15-10167-2015, https://doi.org/10.5194/acp-15-10167-2015, 2015
Short summary
Short summary
Based on summer measurements of δ18O and δD in the atmospheric vapour of a Mediterranean coastal wetland exposed to high evaporation, this paper explores the main drivers of isotopic signal variability. After having classified the data according to the main regional air mass trajectories, average diurnal cycles are discussed with regards to the contribution of local evaporation to the ground level atmospheric vapour.
M. Zimnoch, P. Wach, L. Chmura, Z. Gorczyca, K. Rozanski, J. Godlowska, J. Mazur, K. Kozak, and A. Jeričević
Atmos. Chem. Phys., 14, 9567–9581, https://doi.org/10.5194/acp-14-9567-2014, https://doi.org/10.5194/acp-14-9567-2014, 2014
J.-L. Bonne, V. Masson-Delmotte, O. Cattani, M. Delmotte, C. Risi, H. Sodemann, and H. C. Steen-Larsen
Atmos. Chem. Phys., 14, 4419–4439, https://doi.org/10.5194/acp-14-4419-2014, https://doi.org/10.5194/acp-14-4419-2014, 2014
F. Aemisegger, S. Pfahl, H. Sodemann, I. Lehner, S. I. Seneviratne, and H. Wernli
Atmos. Chem. Phys., 14, 4029–4054, https://doi.org/10.5194/acp-14-4029-2014, https://doi.org/10.5194/acp-14-4029-2014, 2014
R. Weller, I. Levin, D. Schmithüsen, M. Nachbar, J. Asseng, and D. Wagenbach
Atmos. Chem. Phys., 14, 3843–3853, https://doi.org/10.5194/acp-14-3843-2014, https://doi.org/10.5194/acp-14-3843-2014, 2014
Z. Kern, B. Kohán, and M. Leuenberger
Atmos. Chem. Phys., 14, 1897–1907, https://doi.org/10.5194/acp-14-1897-2014, https://doi.org/10.5194/acp-14-1897-2014, 2014
K. Kawamura, J. P. Severinghaus, M. R. Albert, Z. R. Courville, M. A. Fahnestock, T. Scambos, E. Shields, and C. A. Shuman
Atmos. Chem. Phys., 13, 11141–11155, https://doi.org/10.5194/acp-13-11141-2013, https://doi.org/10.5194/acp-13-11141-2013, 2013
H. C. Steen-Larsen, S. J. Johnsen, V. Masson-Delmotte, B. Stenni, C. Risi, H. Sodemann, D. Balslev-Clausen, T. Blunier, D. Dahl-Jensen, M. D. Ellehøj, S. Falourd, A. Grindsted, V. Gkinis, J. Jouzel, T. Popp, S. Sheldon, S. B. Simonsen, J. Sjolte, J. P. Steffensen, P. Sperlich, A. E. Sveinbjörnsdóttir, B. M. Vinther, and J. W. C. White
Atmos. Chem. Phys., 13, 4815–4828, https://doi.org/10.5194/acp-13-4815-2013, https://doi.org/10.5194/acp-13-4815-2013, 2013
D. Noone, C. Risi, A. Bailey, M. Berkelhammer, D. P. Brown, N. Buenning, S. Gregory, J. Nusbaumer, D. Schneider, J. Sykes, B. Vanderwende, J. Wong, Y. Meillier, and D. Wolfe
Atmos. Chem. Phys., 13, 1607–1623, https://doi.org/10.5194/acp-13-1607-2013, https://doi.org/10.5194/acp-13-1607-2013, 2013
J. K. Spiegel, F. Aemisegger, M. Scholl, F. G. Wienhold, J. L. Collett Jr., T. Lee, D. van Pinxteren, S. Mertes, A. Tilgner, H. Herrmann, R. A. Werner, N. Buchmann, and W. Eugster
Atmos. Chem. Phys., 12, 11679–11694, https://doi.org/10.5194/acp-12-11679-2012, https://doi.org/10.5194/acp-12-11679-2012, 2012
J. K. Spiegel, F. Aemisegger, M. Scholl, F. G. Wienhold, J. L. Collett Jr., T. Lee, D. van Pinxteren, S. Mertes, A. Tilgner, H. Herrmann, R. A. Werner, N. Buchmann, and W. Eugster
Atmos. Chem. Phys., 12, 9855–9863, https://doi.org/10.5194/acp-12-9855-2012, https://doi.org/10.5194/acp-12-9855-2012, 2012
Y. Igarashi, H. Fujiwara, and D. Jugder
Atmos. Chem. Phys., 11, 7069–7080, https://doi.org/10.5194/acp-11-7069-2011, https://doi.org/10.5194/acp-11-7069-2011, 2011
A. D. Griffiths, W. Zahorowski, A. Element, and S. Werczynski
Atmos. Chem. Phys., 10, 8969–8982, https://doi.org/10.5194/acp-10-8969-2010, https://doi.org/10.5194/acp-10-8969-2010, 2010
Cited articles
Affek, H. P. and Eiler, J. M.:Abundance of mass 47-CO2 in urban air, car exhaust, and human breath, Geochim. Cosmochim. Ac., 70, 1–12, 2006.
Akbari, H., Menon, S., and Rosenfeld, A.: Global cooling: increasing world-wide urban albedos to offset CO2, Climatic Change, 94, 275–286, 2009.
An, H.: Ammonia synthesis: current status and future outlook, Coal Chem. West. China, 2, 4–13, 2012.
Andres, R. J., Marland, G., Boden, T., and Bischof, S.: Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751–1991; and an estimate of their isotopic composition and latitudinal distribution, Oak Ridge National Lab., TN, USA, 1994.
Bai, Y.: A Comparative Study on Turbulent Fluxes Exchange over Nanjing Urban and Suburban in Summer, MS Thesis, Nanjing University of Information Science & Technology, Nanjing, 2011.
Ballantyne, A. P., Miller, J. B., Baker, I. T., Tans, P. P., and White, J. W. C.: Novel applications of carbon isotopes in atmospheric CO2: what can atmospheric measurements teach us about processes in the biosphere?, Biogeosciences, 8, 3093–3106, https://doi.org/10.5194/bg-8-3093-2011, 2011.
Ballantyne, A. P., Miller, J. B., and Tans, P. P.: Apparent seasonal cycle in isotopic discrimination of carbon in the atmosphere and biosphere due to vapor pressure deficit, Global Biogeochem. Cy., 24, 1–16, 2010.
Bi, J., Zhang, R., Wang, H., Liu, M., and Wu, Y.: The benchmarks of carbon emissions and policy implications for China's cities: Case of Nanjing, Energy Policy, 39, 4785–4794, 2011.
Bowling, D. R., Sargent, S. D., Tanner, B. D., and Ehleringer, J. R.: Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange, Agr. Forest Meteorol., 118, 1–19, 2003.
Bowling, D. R., Burns, S. P., Conway, T. J., Monson, R. K., and White, J. W. C.: Extensive observations of CO2 carbon isotope content in and above a high-elevation subalpine forest, Global Biogeochem. Cy., 19, GB3023, https://doi.org/10.1029/2004GB002394, 2005.
Bush, S. E., Pataki, D. E., and Ehleringer, J. R.: Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA, Appl. Geochem., 22, 715–723, 2007.
CESY: China Energy Statistical Yearbook 2013: China Statistical Publishing House, Beijing, also available at: http://www.stats.gov.cn/tjsj/ndsj/ 2013/indexch.htm (last access: 22 February 2016), 2013.
China Cement: http://hy.ccement.com/map/, last access: 6 July 2016.
Clark-Thorne, S. T. and Yapp, C. J.: Stable carbon isotope constraints on mixing and mass balance of CO2 in an urban atmosphere: Dallas metropolitan area, Texas, USA, Appl. Geochem., 18, 75–95, 2003.
Coutts, A. M., Beringer, J., and Tapper, N. J.: Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia, Atmos. Environ., 41, 51–62, 2007.
CSY: China Statistical Yearbook, National Bureau of Statistics of China, also available at: http://www.stats.gov.cn/tjsj/ndsj/2013/indexch.htm (last access: 22 February 2016), 2013.
Duan, Y.: Study of characteristics of coal isotope conposition in China, Coal Geol. Explor., 23, 29–33, 1995.
Ehleringer, J. R., Bowling, D. R., Flanagan, L. B., Fessenden, J., Helliker, B., Martinelli, L. A., and Ometto, J. P.: Stable isotopes and carbon cycle processes in forests and grasslands, Plant Biol., 4, 181–189, 2002.
Farquhar, G. and Lloyd, J.: Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere, Stable Isotopes Plant Carb.-Water Relat., 40, 47–70, 1993.
Fessenden, J. E. and Ehleringer, J. R.: Age-related variations in δ13C of ecosystem respiration across a coniferous forest chronosequence in the Pacific Northwest, Tree Physiol., 22, 159–167, 2002.
Friedman, L. and Irsa, A. P.: Variations in isotopic composition of carbon in urban atmospheric carbon dioxide, Science, 158, 263–264, 1967.
Gorski, G., Strong, C., Good, S. P., Bares, R., Ehleringer, J. R., and Bowen, G. J.: Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere, P. Natl. Acad. Sci. USA, 112, 3247–3252, 2015.
Griffis, T. J.: Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A review of optical isotope techniques and their application, Agr. Forest Meteorol., 174, 85–109, 2013.
Griffis, T. J., Lee, X., Baker, J. M., Sargent, S. D., and King, J. Y.: Feasibility of quantifying ecosystem–atmosphere C18O16O exchange using laser spectroscopy and the flux-gradient method, Agr. Forest Meteorol., 135, 44–60, 2005.
Guha, T. and Ghosh, P.: Diurnal variation of atmospheric CO2 concentration and δ13C in an urban atmosphere during winter-role of the nocturnal boundary layer, J. Atmos. Chem., 65, 1–12, 2010.
Guha, T. and Ghosh, P.: Diurnal and seasonal variation of mixing ratio and δ13C of air CO2 observed at an urban station Bangalore, India, Environ. Sci. Poll. Res., 22, 1877–1890, 2015.
ICLEI – International Council for Local Environmental Initiatives: Local government operations protocol for the quantification and reporting of greenhouse gas emissions inventories, available at: http://www.arb.ca.gov/cc/protocols/localgov/archive/final lgo protocol2008-09-25.pdf (last access: 18 August 2015), 2008.
Jasechko, S., Gibson, J. J., and Edwards, T. W.: Stable isotope mass balance of the Laurentian Great Lakes, J. Great Lakes Res., 40, 336–346, 2014.
Jasek, A., Zimnoch, M., Gorczyca, Z., Smula, E., and Rozanski, K.: Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland, Isotopes Environ. Health Stud., 50, 143–155, 2014.
Keeling, C. D.: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas, Geochim. Cosmochim. Ac., 13, 322–334, 1958.
Keeling, C. D.: The concentration and isotopic abundances of carbon dioxide in rural and marine air, Geochim. Cosmochim. Ac., 24, 277–298, 1961.
Koerner, B. and Klopatek, J.: Anthropogenic and natural CO2 emission sources in an arid urban environment, Environ. Pollut., 116, S45–S51, 2002.
Leavitt, S. W., Paul, E. A., Galadima, A., Nakayama, F. S., Danzer, S. R., Johnson, H., and Kimball, B. A.: Carbon isotopes and carbon turnover in cotton and wheat FACE experiments, Plant Soil, 187, 147–155, 1995.
Lee, X., Sargent, S., Smith, R., and Tanner, B.: In situ measurement of the water vapor 18O ∕ 16O isotope ratio for atmospheric and ecological applications, J. Atmos. Ocean. Tech., 22, 555–565, 2005.
Lichtfouse, E., Lichtfouse, M., and Jaffrezic, A.: δ13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas, Environ. Sci. Technol., 37, 87–89, 2003.
Liu, H. Z., Feng, J. W., Järvi, L., and Vesala, T.: Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing, Atmos. Chem. Phys., 12, 7881–7892, https://doi.org/10.5194/acp-12-7881-2012, 2012.
Lloyd, J., Kruijt, B., Hollinger, D. Y., Grace, J., Francey, R. J., Wong, S., Kelliher, F. M., Miranda, A. C., Farquhar, G. D., and Gash, J. H. C.: Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison between rain forest in Amazonia and a boreal forest in Siberia, Funct. Plant Biol., 23, 371–399, 1996.
Lloyd, J., Francey, R. J., Mollicone, D., Raupach, M. R, Sogachev, A., Arneth, A., Byers, J. N., Kelliher, F. M., Rebmann, C., and Valentini, R.: Vertical profiles, boundary layer budgets, and regional flux estimates for CO2 and its 13C ∕ 12C ratio and for water vapor above a forest/bog mosaic in central Siberia, Global Biogeochem. Cy., 15, 267–284, 2001.
McDonald, B. C., McBride, Z. C., Martin, E. W., and Harley, R. A.: High-resolution mapping of motor vehicle carbon dioxide emissions, J. Geophys. Res.-Atmos., 119, 5283–5298, 2014.
McManus, J. B., Zahniser, M. S., Nelson, D. D., Williams, L. R., and Kolb, C. E.: Infrared laser spectrometer with balanced absorption for measurement of isotopic ratios of carbon gases, Spectrochim. Ac. Pt. A, 58, 2465–2479, 2002.
Miller, J. B. and Tans, P. P.: Calculating isotopic fractionation from atmospheric measurements at various scales, Tellus B, 55, 207–214, 2003.
Miller, J. B., Tans, P. P., White, J. W. C., Conway, T. J., and Vaughn, B. W.: The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes, Tellus B, 55, 197–206, 2003.
Moore, J. and Jacobson, A. D.: Seasonally varying contributions to urban CO2 in the Chicago, Illinois, USA region: Insights from a high-resolution CO2 concentration and δ13C record, Elementa, 3, 000052, https://doi.org/10.12952/journal.elementa.000052, 2015.
Mu, H., Li, H., Zhang, M., and Li, M.: Analysis of China's carbon dioxide flow for 2008, Energy Policy, 54, 320–326, 2013.
Newman, S., Xu, X., Gurney, K. R., Hsu, Y. K., Li, K. F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk, R., Wong, K. W., Rao, P., Fischer, M. L., and Yung, Y. L.: Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity, Atmos. Chem. Phys., 16, 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, 2016.
Newman, S., Xu, X., Affek, H. P., Stolper, E., and Epstein, S.: Changes in mixing ratio and isotopic composition of CO2 in urban air from the Los Angeles basin, California, between 1972 and 2003, J. Geophys. Res., 113, 1–15, 2008.
NSY: Nanjing Statistical Yearbook, Nanjing Municipal Bureau Statistics, also available at: http://www.njtj.gov.cn/2004/2013/renmin/index.htm (last access: 22 February 2016), 2003.
Ometto, J. P., Flanagan, L. B., Martinelli, L. A., Moreira, M. Z., Higuchi, N., and Ehleringer, J. R.: Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil, Global Biogeochem. Cy., 16, 1–10, 2002.
Ometto, J. P., Ehleringer, J. R., Domingues, T. F., Berry, J. A., Ishida, F. Y., Mazzi, E., Higuchi, N., Flanagan, L. B., Nardoto, G. B., and Martinelli, L. A.: The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil, Biogeochemistry, 79, 251–274, 2006.
Pan, J.: Theoretical and Process Studies of the Abatement of Fuel Gas Emissions during Iron Ore Sintering, PhD Dissertation, Southcentral Univeristy of China, Changsha, Hunan Province, 2007.
Pang, J., Wen, X., and Sun, X.: Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China, Sci. Total Environ., 539, 322–330, 2016.
Pataki, D. E., Bowling, D. R., and Ehleringer, J. R.: Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects, J. Geophys. Res.-Atmos., 108, 1–8, 2003a.
Pataki, D. E., Ehleringer, J. R., Flanagan, L. B., Yakir, D., Bowling, D. R., Still, C. J., Buchmann, N., Kaplan, J. O., and Berry, J. A.: The application and interpretation of Keeling plots in terrestrial carbon cycle research, Global Biogeochem. Cy., 17, 1–14, 2003b.
Pataki, D. E., Bowling, D. R., Ehleringer, J. R., and Zobitz, J. M.: High resolution atmospheric monitoring of urban carbon dioxide sources, Geophys. Res. Lett., 33, 1–5, 2006.
Pataki, D. E., Lai, C., Keeling, C. D., and Ehleringer, J. R.: Insights from stable isotopes on the role of terrestrial ecosystems in the global carbon cycle, in: Terrestrial Ecosystems in a Changing World, Springer, Berlin, Germany, 37–44, 2007.
Pataki, D. E., Emmi, P. C., Forster, C. B., Mills, J. I., Pardyjak, E. R., Peterson, T. R., Thompson, J. D., and Dudley-Murphy, E.: An integrated approach to improving fossil fuel emissions scenarios with urban ecosystem studies, Ecol. Complex., 6, 1–14, 2009.
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M., Petron, G., Hirsch, A. I., Worthy, D. E., van der Werf, G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci. USA, 104, 18925–18930, 2007.
Prairie, Y. T. and Duarte, C. M.: Direct and indirect metabolic CO2 release by humanity, Biogeosciences, 4, 215–217, https://doi.org/10.5194/bg-4-215-2007, 2007.
Rella, C.: Accurate stable carbon isotope ratio measurements with rapidly varying carbon dioxide concentrations using the Picarro δ13C G2101-i gas analyzer, Picarro White Paper, Picarro Inc., Sunnyvale, California, 2011.
Ren, L., Wang, W., Wang, J., and Liu, R.: Analysis of energy consumption and carbon emission during the urbanization of Shandong Province, China, J. Clean. Prod., 103, 534–541, 2015.
Röckmann, T., Eyer, S., van der Veen, C., Popa, M. E., Tuzson, B., Monteil, G., Houweling, S., Harris, E., Brunner, D., Fischer, H., Zazzeri, G., Lowry, D., Nisbet, E. G., Brand, W. A., Necki, J. M., Emmenegger, L., and Mohn, J.: In situ observations of the isotopic composition of methane at the Cabauw tall tower site, Atmos. Chem. Phys., 16, 10469–10487, https://doi.org/10.5194/acp-16-10469-2016, 2016.
Rose, L. S., Akbari, H., and Taha, H.: Characterizing the fabric of the urban environment: a case study of Greater Houston, Texas, National Laboratory, Lawrence, Berkeley, 2003.
Satterthwaite, D.: Cities' contribution to global warming: notes on the allocation of greenhouse gas emissions, Environ. Urban., 20, 539–549, 2008.
Shen, S., Yang, D., Xiao, W., Liu, S., and Lee, X.: Constraining anthropogenic CH4 emissions in Nanjing and the Yangtze River Delta, China, using atmospheric CO2 and CH4 mixing ratios, Adv. Atmos. Sci., 31, 1343–1352, 2014.
Song, T. and Wang, Y.: Carbon dioxide fluxes from an urban area in Beijing, Atmos. Res., 106, 139–149, 2012.
Sturm, P., Leuenberger, M., Valentino, F. L., Lehmann, B., and Ihly, B.: Measurements of CO2, its stable isotopes, O2/N2, and 222Rn at Bern, Switzerland, Atmos. Chem. Phys., 6, 1991–2004, https://doi.org/10.5194/acp-6-1991-2006, 2006.
Sun, B., Dilcher, D. L., Beerling, D. J., Zhang, C., Yan, D., and Kowalski, E.: Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China, P. Natl. Acad. Sci. USA, 100, 7141–7146, 2003.
Takahashi, H. A., Konohira, E., Hiyama, T., Minami, M., Nakamura, T., and Yoshida, N.: Diurnal variation of CO2 concentration, δ14C and δ13C in an urban forest: estimate of the anthropogenic and biogenic CO2 contributions, Tellus B, 54, 97–109, 2002.
Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985, J. Geophys. Res., 94, 8549–8565, 1989.
Vardag, S. N., Hammer, S., and Levin, I.: Evaluation of 4 years of continuous δ13C(CO2) data using a moving Keeling plot method, Biogeosciences, 13, 4237–4251, https://doi.org/10.5194/bg-13-4237-2016, 2016.
Wada, R., Nakayama, T., Matsumi, Y., Hiyama, T., Inoue, G., and Shibata, T.: Observation of carbon and oxygen isotopic compositions of CO2 at an urban site in Nagoya using Mid-IR laser absorption spectroscopy, Atmos. Environ., 45, 1168–1174, 2011.
Wang, D.: Method and Empirical Research of Urban Greenhouse Gas Measurement, MS Thesis, Tianjin University, Tianjin, 2013.
Wang, W. and Pataki, D. E.: Drivers of spatial variability in urban plant and soil isotopic composition in the Los Angeles basin, Plant Soil, 350, 323–338, 2012.
Wehr, R. and Saleska, S. R.: The long-solved problem of the best-fit straight line: application to isotopic mixing lines, Biogeosciences, 14, 17–29, https://doi.org/10.5194/bg-14-17-2017, 2017.
Wen, X.-F., Meng, Y., Zhang, X.-Y., Sun, X.-M., and Lee, X.: Evaluating calibration strategies for isotope ratio infrared spectroscopy for atmospheric 13CO2 ∕ 12CO2 measurement, Atmos. Meas. Tech., 6, 1491–1501, https://doi.org/10.5194/amt-6-1491-2013, 2013.
Widory, D.: Combustibles, fuels and their combustion products: A view through carbon isotopes, Combust. Theory Model., 10, 831–841, 2006.
Widory, D. and Javoy, M.: The carbon isotope composition of atmospheric CO2 in Paris, Earth Planet. Sc. Lett., 215, 289–298, 2003.
Yakir, D. and da Sternberg, L.: The use of stable isotopes to study ecosystem gas exchange, Oecologia, 123, 297–311, 2000.
Yang, H. M., Wang, H. Z., and Wu, Y. B.: Observation and characteristics analysis of traffic flow in Nanjing, Environ. Sci. Technol., 24, 98–101, 2011.
Zhou, L., Conway, T. J., White, J. W., Mukai, H., Zhang, X., Wen, Y., Li, J., and MacClune, K.: Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan Observatory: Background features and possible drivers, 1991–2002, Global Biogeochem. Cy., 19, GB3021, https://doi.org/10.1029/2004GB002430, 2005.
Zimnoch, M., Florkowski, T., Necki, J. M., and Neubert, R. E.: Diurnal variability of δ13C and δ18O of atmospheric CO2 in the urban atmosphere of Kraków, Poland, Isotopes Environ. Health Stud., 40, 129–143, 2004.
Zobitz, J. M., Burns, S. P., Reichstein, M., and Bowling, D. R.: Partitioning net ecosystem carbon exchange and the carbon isotopic disequilibrium in a subalpine forest, Global Change Biol., 14, 1785–1800, 2008.
Zondervan, A. and Meijer, H. A.: Isotopic characterisation of CO2 sources during regional pollution events using isotopic and radiocarbon analysis, Tellus B, 48, 601–612, 1996.
Short summary
The Yangtze River Delta is one of the most industrialized regions in China. In situ optical isotopic measurement in Nanjing, a city located in the Delta, showed unusually high atmospheric δ13C signals in the summer (−7.44 ‰, July 2013 mean), which we attributed to the influence of cement production in the region. Flux partitioning calculations revealed that natural ecosystems in the region were a negligibly small source of atmospheric CO2.
The Yangtze River Delta is one of the most industrialized regions in China. In situ optical...
Altmetrics
Final-revised paper
Preprint