Articles | Volume 17, issue 5
https://doi.org/10.5194/acp-17-3279-2017
https://doi.org/10.5194/acp-17-3279-2017
Research article
 | 
07 Mar 2017
Research article |  | 07 Mar 2017

Causes of interannual variability over the southern hemispheric tropospheric ozone maximum

Junhua Liu, Jose M. Rodriguez, Stephen D. Steenrod, Anne R. Douglass, Jennifer A. Logan, Mark A. Olsen, Krzysztof Wargan, and Jerald R. Ziemke

Related authors

Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024,https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Technical note: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers – first steps toward assessing the feasibility of a global observation strategy
Daniel C. Anderson, Bryan N. Duncan, Julie M. Nicely, Junhua Liu, Sarah A. Strode, and Melanie B. Follette-Cook
Atmos. Chem. Phys., 23, 6319–6338, https://doi.org/10.5194/acp-23-6319-2023,https://doi.org/10.5194/acp-23-6319-2023, 2023
Short summary
Multidecadal increases in global tropospheric ozone derived from ozonesonde and surface site observations: can models reproduce ozone trends?
Amy Christiansen, Loretta J. Mickley, Junhua Liu, Luke D. Oman, and Lu Hu
Atmos. Chem. Phys., 22, 14751–14782, https://doi.org/10.5194/acp-22-14751-2022,https://doi.org/10.5194/acp-22-14751-2022, 2022
Short summary
A machine learning methodology for the generation of a parameterization of the hydroxyl radical
Daniel C. Anderson, Melanie B. Follette-Cook, Sarah A. Strode, Julie M. Nicely, Junhua Liu, Peter D. Ivatt, and Bryan N. Duncan
Geosci. Model Dev., 15, 6341–6358, https://doi.org/10.5194/gmd-15-6341-2022,https://doi.org/10.5194/gmd-15-6341-2022, 2022
Short summary
Stratospheric impact on the Northern Hemisphere winter and spring ozone interannual variability in the troposphere
Junhua Liu, Jose M. Rodriguez, Luke D. Oman, Anne R. Douglass, Mark A. Olsen, and Lu Hu
Atmos. Chem. Phys., 20, 6417–6433, https://doi.org/10.5194/acp-20-6417-2020,https://doi.org/10.5194/acp-20-6417-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Influence of nitrogen oxides and volatile organic compounds emission changes on tropospheric ozone variability, trends and radiative effect
Suvarna Fadnavis, Yasin Elshorbany, Jerald Ziemke, Brice Barret, Alexandru Rap, P. R. Satheesh Chandran, Richard J. Pope, Vijay Sagar, Domenico Taraborrelli, Eric Le Flochmoen, Juan Cuesta, Catherine Wespes, Folkert Boersma, Isolde Glissenaar, Isabelle De Smedt, Michel Van Roozendael, Hervé Petetin, and Isidora Anglou
Atmos. Chem. Phys., 25, 8229–8254, https://doi.org/10.5194/acp-25-8229-2025,https://doi.org/10.5194/acp-25-8229-2025, 2025
Short summary
Tropospheric ozone trends and attributions over East and Southeast Asia in 1995–2019: an integrated assessment using statistical methods, machine learning models, and multiple chemical transport models
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
Atmos. Chem. Phys., 25, 7991–8028, https://doi.org/10.5194/acp-25-7991-2025,https://doi.org/10.5194/acp-25-7991-2025, 2025
Short summary
Characterization of reactive oxidized nitrogen in the global upper troposphere using recent and historic commercial and research aircraft campaigns and GEOS-Chem
Nana Wei, Eloise A. Marais, Gongda Lu, Robert G. Ryan, and Bastien Sauvage
Atmos. Chem. Phys., 25, 7925–7940, https://doi.org/10.5194/acp-25-7925-2025,https://doi.org/10.5194/acp-25-7925-2025, 2025
Short summary
Soil deposition of atmospheric hydrogen constrained using planetary-scale observations
Alexander K. Tardito Chaudhri and David S. Stevenson
Atmos. Chem. Phys., 25, 7369–7385, https://doi.org/10.5194/acp-25-7369-2025,https://doi.org/10.5194/acp-25-7369-2025, 2025
Short summary
Comparative ozone production sensitivity to NOx and VOCs in Quito, Ecuador, and Santiago, Chile
María Cazorla, Melissa Trujillo, Rodrigo Seguel, and Laura Gallardo
Atmos. Chem. Phys., 25, 7087–7109, https://doi.org/10.5194/acp-25-7087-2025,https://doi.org/10.5194/acp-25-7087-2025, 2025
Short summary

Cited articles

Allen, D., Pickering, K., Duncan, B., and Damon, M.: Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model, J. Geophys. Res.-Atmos., 115, D22301, https://doi.org/10.1029/2010jd014062, 2010.
Bals-Elsholz, T. M., Atallah, E. H., Bosart, L. F., Wasula, T. A., Cempa, M. J., and Lupo, A. R.: The wintertime Southern Hemisphere split jet: Structure, variability, and evolution, J. Climate, 14, 4191–4215, https://doi.org/10.1175/1520-0442(2001)014<4191:twshsj>2.0.co;2, 2001.
Bjerknes, J.: Atmospheric teleconnections from the equatorial Pacific, Mon. Weather Rev., 97, 163–172, 1969.
Chandra, S., Ziemke, J. R., Min, W., and Read, W. G.: Effects of 1997–1998 El Nino on tropospheric ozone and water vapor, Geophys. Res. Lett., 25, 3867–3870, https://doi.org/10.1029/98gl02695, 1998.
Chandra, S., Ziemke, J. R., Bhartia, P. K., and Martin, R. V.: Tropical tropospheric ozone: Implications for dynamics and biomass burning, J. Geophys. Res.-Atmos., 107, ACH 3-1–ACH 3-17, https://doi.org/10.1029/2001jd000447, 2002.
Download
Short summary
We quantify the relative contribution of processes controlling the interannual variability (IAV) of tropospheric ozone over the southern hemispheric tropospheric ozone maximum (SHTOM) with GMI chemistry transport model. We use various GMI tracer diagnostics, including a StratO3 tracer to quantify the stratospheric impact, and tagged CO tracers to track the emission sources. Our result shows that the stratospheric contribution is the most important factor driving the IAV of upper tropospheric O3.
Share
Altmetrics
Final-revised paper
Preprint