Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 16, issue 14
Atmos. Chem. Phys., 16, 9361–9379, 2016
https://doi.org/10.5194/acp-16-9361-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 16, 9361–9379, 2016
https://doi.org/10.5194/acp-16-9361-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Jul 2016

Research article | 28 Jul 2016

Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with α-pinene ozonolysis

Theodora Nah et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Theodora Nah on behalf of the Authors (06 Jul 2016)  Author's response    Manuscript
ED: Publish as is (09 Jul 2016) by Manabu Shiraiwa
Publications Copernicus
Download
Short summary
The influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene ozonolysis is studied. SOA growth rate and mass yields are independent of seed surface area, consistent with the condensation of SOA-forming vapors being dominated by quasi-equilibrium growth. Faster α-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations, indicating that a faster α-pinene oxidation rate leads to rapidly produced SOA-forming oxidation products.
The influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene...
Citation
Altmetrics
Final-revised paper
Preprint