Supplementary Information: 1

2 Influence of Seed Aerosol Surface Area and Oxidation Rate on Vapor-Wall 3 Deposition and SOA Mass Yields: A case study with α-pinene Ozonolysis

4

T. Nah,¹ R.C. McVay,² X. Zhang,^{3,#} C. M. Boyd,¹ J. H. Seinfeld^{2,3} and N. L. Ng^{1,4*} 5

¹School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA

²Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA

6 7 8 9 ³Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA

⁴School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA

10 [#]Now at: Center for Aerosol and Cloud Chemistry, Aerodyne Research, Billerica, MA, USA

11 12

* To whom correspondence should be addressed: <u>ng@chbe.gatech.edu</u>

13

Figure S1: Raw and particle wall loss (PWL) corrected number and volume concentration data for the 100 ppb O₃ experiments. Raw nucleation (panels a and d) and low AS (panels b and e) data are particle wall loss corrected using particle wall loss rates determined from the low AS-seed only experiments. Raw high AS (panels c and f) data are particle wall loss corrected using particle wall loss rates determined from the high AS-seed only experiments.

22

Figure S2: Raw and particle wall loss (PWL) corrected number and volume concentration data for the 500 ppb O_3 experiments. Raw nucleation (panels a and d) and low AS (panels b and e) data are particle wall loss corrected using particle wall loss rates determined from the low AS-seed only experiments. Raw high AS (panels c and f) data are particle wall loss corrected using particle wall loss rates determined from the high AS-seed only experiments.

Figure S3: Raw and particle wall loss (PWL) corrected number and volume concentration data for the 100 ppb O₃ experiments. All the raw data are particle wall loss corrected using the average particle wall loss rates (i.e. average of the particle wall loss rates obtained from low AS-seed only and high-AS seed only experiments).

Figure S4: Raw and particle wall loss (PWL) corrected number and volume concentration data for the 100 ppb O_3 experiments. All the raw data are particle wall loss corrected using the average particle wall loss rates (i.e. average of the particle wall loss rates obtained from low AS-seed only and high-AS seed only experiments).

40 **Figure S5:** 10 min-averaged SOA mass yields over the course of an α -pinene ozonolysis 41 experiment as a function of initial total AS seed surface area concentration for the (a) 100 42 ppb O₃ experiments, and (b) 500 ppb O₃ experiments. Here, all the data have been 43 particle wall loss corrected using the average particle wall loss rates (i.e. average of the 44 particle wall loss rates obtained from low AS-seed only and high-AS seed only 45 experiments). Symbol color indicates the SOA mass concentration and symbol size indicates the time after O_3 is injected into the chamber. The \times symbols are the SOA mass 46 47 yields at peak SOA growth. The y-axis error bars represent the uncertainty in the peak 48 SOA mass yield, which originates from the α -pinene injection and the aerosol volume 49 concentration measured by the SMPS at peak SOA growth (one standard deviation). As 50 discussed in the main text, the use of average particle wall loss rates for particle wall loss 51 correction does not change the conclusions of this work: 1) SOA mass yields are 52 enhanced at higher O₃ concentrations, and 2) there is a lack of a SOA mass yield 53 dependence on the seed surface area within the range of AS seed surface area 54 concentration used in this study.

55 56 Figure S6: Reaction profiles of the measured and modeled O_3 and α -pinene 57 concentration in the α -pinene ozonolysis experiments. Panels (a), (b) and (c) show results 58 from the nucleation, low AS and high AS 100 ppb O₃ experiments, respectively. Panels 59 (d), (e) and (f) show results from the nucleation, low AS and high AS 500 ppb O_3 60 experiments, respectively. The blue lines that fit the α -pinene concentration 61 measurements and the green lines that fit the O₃ concentration measurements are model 62 simulation results that come from the coupled vapor-particle dynamics model using the optimal model values: $\alpha_p = 1$, $\alpha_w = 10^{-6}$, $\tau_{olig} = 4$ h, branching ratios = 0.57, 0.35, 0.04, 63 0.015 and 0.025 for oxidation products with vapor pressures $>10^3$, 10^2 , 10, 1 and 0.1 µg 64 m^{-3} , respectively (described in the main text). 65

Figure S7: Results of sensitivity tests performed for α_w .

Figure S8: Results of sensitivity tests performed for α_p . Note that for all experiments 70 except the two nucleation experiments, $\alpha_p = 1$ and $\alpha_p = 0.1$ give identical results.

Figure S9: Results of sensitivity tests performed for τ_{olig} .

Figure S10: Results of sensitivity tests performed for the branching ratios of oxidation products with vapor pressures $>10^3$, 10^2 , 10, 1 and 0.1 µg m⁻³.

Figure S11: Results from the coupled vapor-particle dynamics model showing how SOA mass concentration (ΔM_o) changes as a function of reacted α -pinene at different O₃ concentrations, assuming all the α -pinene oxidation products are non-volatile. In these model simulation runs, the initial α -pinene concentration is fixed at 48 ppb, while the O₃ concentration is varied from 75 to 1000 ppb. The O₃ injection rate used in these model simulation runs is 500/54.25 ppb min⁻¹.

83

84

85

86

87

88

Figure S12: Predictions from the coupled vapor-particle dynamics model showing time-dependent growth curves for SOA formation from α -pinene ozonolysis at different O₃ concentrations. In these model simulation runs, the initial α -pinene mixing ratio is fixed at 48 ppb, while the O₃ mixing ratio is increased from 75 to 1000 ppb. In the model, the O₃ injection rate is assumed to be fixed at 500/54.25 ppb min⁻¹, and the injection time is increased to achieve the desired O₃ concentration (i.e., 75, 100, 250, 500, 750 or 1000 ppb) in the chamber. The predicted ΔM_0 decreased slightly at the end of the experiment at the higher O₃ concentrations (250, 500, 750 and 1000 ppb) due to SOA evaporation. It is important to note that SOA evaporation is predicted at high O₃ concentrations in the coupled vapor-particle dynamics model, but not observed in chamber experiments.

Figure S13: Results from the coupled vapor-particle dynamics model showing how SOA mass concentration (ΔM_{o}) changes as a function of reacted α -pinene at different O₃ concentrations. In these model simulation runs, the initial α -pinene concentration is fixed at 48 ppb, while the O₃ concentration is varied from 75 to 1000 ppb. Here, the O₃ injection rate is 5 times faster that the base rate used in the model. The base rate is 500/54.25 ppb min⁻¹, similar to the rate used to analyze results from the 500 ppb O₃ experiments. As discussed in the main text, the oxidation rate effect persists at a higher O_3 concentration when a faster O_3 injection rate is used. It is important to note that SOA evaporation is predicted at high O₃ concentrations in the coupled vapor-particle dynamics model, but not observed in chamber experiments.

126 Table S1: Initial and particle wall loss corrected final number concentrations"												
	Experiment	Initial	Final	%	Final	%						
		Number	Number	Change ^c	Number	Change ^c						
		Concentration	Concentration ^b		Concentration ^d							
10	Oppb O ₃ nucleation	23	8222	3.5×10^4	9152	3.9×10^4						
10) ppb O ₃ low AS	39119	32553	-16.8	38689	-1.1						
10) ppb O ₃ high AS	51254	45280	-11.7	39889	-22.2						
500) ppb O ₃ nucleation	1	11303	1.6×10^{6}	11974	1.7×10^{6}						
500) ppb O ₃ low AS	39800	35216	-11.5	38905	-2.2						
50) ppb O ₃ high AS	44196	40191	-9.1	35189	-20.4						
127 128 129 130	^b The data shown here low AS data have	re correspond to been particle	those shown in F wall loss correct	igs. S1 and ed using p	S2. The nucleation particle wall loss	n and rates						
131	wall loss corrected a	using particle wa	ull loss rates deter	mined from	the high ΛS_{-see}	d only						
132	wall loss corrected using particle wall loss rates determined from the high AS-seed only											
102	2 EXPERIMENTS.											
133	$C_{\text{M}}^{\text{Change}} = \frac{C_{\text{M}}^{\text{Change}} + C_{\text{M}}^{\text{Change}} + C_{\text{M}}^{Change$											
134	^d The data shown here correspond to those shown in Figs. S3 and S4. All the data have											
135	been particle wall loss corrected using the average particle wall loss rates (i.e. average of											
136	the particle wall loss rates obtained from low AS-seed only and high-AS seed only											
137	experiments).											
138												
139												
140												
141												
142												
143												
144												
145												
146												
147												
148												

a a man at a d fin a l . mbar appartrations^a 100 · 1 11 1 . . т · · · 1 1 04

151 these studies are shown Fig. S6.										
Study	Temperature	RH	Seed	OH	O_3	ΔHC				
	(K)	(%)		Scavenger	(ppb)	(ppb)				
Cocker et al. (2001) ^a	301.2-302.9	<2, 39-	None,	2-butanol	130-600	22.6-				
		49.2	$(NH_4)_2SO_4$			212.3				
			and NH ₄ HSO ₄							
Gao et al. (2004) ^b	293	55	MgSO ₄	cyclohexane	24-270	12-135				
Griffin et al. (1999)	303.3-309.9	5	$(NH_4)_2SO_4$	2-butanol	67-260	16.7-65				
Hoffmann et al. (1997)	289.3-322.1	N.A.	$(NH_4)_2SO_4$	None	210-327	38-154.1				
Pathak et al. (2007b)	288-313	< 10	None,	2-butanol	750-	3.7-8.5				
			$(NH_4)_2SO_4$		3100					
Presto et al. (2005) ^c	295	< 10	None	2-butanol	160-605	15-210				
Presto et al. $(2006)^d$	295	< 10	None	2-butanol	260-350	13.4-135				
Shilling et al. (2008) ^e	298	40	$(NH_4)_2SO_4$	1- and 2-	50, 300,	0.3-22.8				
				butanol	535					
Song et al. $(2007)^{f}$	300.6-301.7	< 2	None	cyclohexane	46-369	5.9-81.1				
This study	298	< 5	$(NH_4)_2SO_4$	cyclohexane	100, 500	42.4-52.1				

149 **Table S2:** Comparison of experimental conditions used in this work with those of 150 previous dark α -pinene ozonolysis studies. The SOA mass yields and concentrations of 151 these studies are shown Fig. S6.

^aData collected using aqueous seed aerosol is excluded from our analysis.

^bData collected using acidic seed aerosol is excluded from our analysis.

154 Conly dark experiments in which $[\alpha$ -pinene]/ $[NO_x] > 15$ are used in our analysis.

^dOnly dark α -pinene ozonolysis experiments are used in our analysis.

^eData collected in batch mode and continuous-flow mode are used in our analysis.

^fData collected using organic seed aerosol is excluded from our analysis.