



## Supplement of

# Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with $\alpha$ -pinene ozonolysis

Theodora Nah et al.

Correspondence to: Nga L. Ng (ng@chbe.gatech.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.



Figure S1: Raw and particle wall loss (PWL) corrected number and volume concentration data for the 100 ppb O<sub>3</sub> experiments. Raw nucleation (panels a and d) and low AS (panels b and e) data are particle wall loss corrected using particle wall loss rates determined from the low AS-seed only experiments. Raw high AS (panels c and f) data are particle wall loss corrected using particle wall loss rates determined from the high AS-seed only experiments.



22

Figure S2: Raw and particle wall loss (PWL) corrected number and volume concentration data for the 500 ppb  $O_3$  experiments. Raw nucleation (panels a and d) and low AS (panels b and e) data are particle wall loss corrected using particle wall loss rates determined from the low AS-seed only experiments. Raw high AS (panels c and f) data are particle wall loss corrected using particle wall loss rates determined from the high AS-seed only experiments.



Figure S3: Raw and particle wall loss (PWL) corrected number and volume concentration data for the 100 ppb O<sub>3</sub> experiments. All the raw data are particle wall loss corrected using the average particle wall loss rates (i.e. average of the particle wall loss rates obtained from low AS-seed only and high-AS seed only experiments).





Figure S4: Raw and particle wall loss (PWL) corrected number and volume concentration data for the 500 ppb  $O_3$  experiments. All the raw data are particle wall loss corrected using the average particle wall loss rates (i.e. average of the particle wall loss rates obtained from low AS-seed only and high-AS seed only experiments).



40 Figure S5: Reaction profiles of the measured and modeled  $O_3$  and  $\alpha$ -pinene concentration in the  $\alpha$ -pinene ozonolysis experiments. Panels (a), (b) and (c) show results 41 42 from the nucleation, low AS and high AS 100 ppb O<sub>3</sub> experiments, respectively. Panels 43 (d), (e) and (f) show results from the nucleation, low AS and high AS 500 ppb  $O_3$ 44 experiments, respectively. The blue lines that fit the  $\alpha$ -pinene concentration measurements and the green lines that fit the O<sub>3</sub> concentration measurements are model 45 46 simulation results that come from the coupled vapor-particle dynamics model described 47 in Section 3.



50 **Figure S6:** 10 min-averaged SOA mass yields over the course of an  $\alpha$ -pinene ozonolysis 51 experiment as a function of initial total AS seed surface area concentration for the (a) 100 52 ppb O<sub>3</sub> experiments, and (b) 500 ppb O<sub>3</sub> experiments. Here, all the data have been 53 particle wall loss corrected using the average particle wall loss rates (i.e. average of the 54 particle wall loss rates measured from low AS-seed only and high-AS seed only 55 experiments). Symbol color indicates the SOA mass concentration and symbol size indicates the time after  $O_3$  is injected into the chamber. The  $\times$  symbols are the SOA mass 56 57 yields at peak SOA growth. The y-axis error bars represent the uncertainty in the peak 58 SOA mass yield, which originates from the  $\alpha$ -pinene injection and the aerosol volume 59 concentration measured by the SMPS at peak SOA growth (one standard deviation). As discussed in the main text, the use of average measured particle wall loss rates for particle 60 wall loss correction does not change the conclusions of this work: 1) SOA mass yields 61 62 are enhanced at higher O<sub>3</sub> concentrations, and 2) there is a lack of a SOA mass yield 63 dependence on the seed surface area within the range of AS seed surface area 64 concentration used in this study.





66 **Figure S7:** 10 min-averaged SOA mass yields over the course of an  $\alpha$ -pinene ozonolysis 67 experiment as a function of initial total AS seed surface area concentration. Panels (a) and (b) show the SOA mass yields obtained using the coagulation-corrected size-68 dependent particle wall deposition coefficients for the 100 and 500 ppb O<sub>3</sub> experiments, 69 70 respectively. Panels (c) and (d) show the SOA mass yields obtained using the measured 71 size-dependent particle wall deposition coefficients (that account for coagulation) for the 72 100 and 500 ppb  $O_3$  experiments, respectively (also shown in Fig. 4 of the main text). 73 Symbol color indicates the SOA mass concentration and symbol size indicates the time 74 after  $O_3$  is injected into the chamber. The  $\times$  symbols are the SOA mass yields at peak 75 SOA growth. The y-axis error bars represent the uncertainty in the peak SOA mass yield, 76 which originates from the  $\alpha$ -pinene injection and the aerosol volume concentration 77 measured by the SMPS at peak SOA growth (one standard deviation). As discussed in the 78 main text, the use of coagulation-corrected particle wall deposition coefficients for 79 particle wall loss correction does not change the conclusions of this work: 1) SOA mass 80 yields are enhanced at higher  $O_3$  concentrations, and 2) there is a lack of a SOA mass 81 yield dependence on the seed surface area within the range of AS seed surface area 82 concentration used in this study.





Figure S8: Comparison of SOA mass yields obtained using the coagulation-corrected size-dependent particle wall deposition coefficients to those of previous dark  $\alpha$ -pinene ozonolysis studies (Table S2). The SOA mass yields and concentrations of majority of these previous studies (Hoffmann et al., 1997; Griffin et al., 1999; Cocker et al., 2001b; Gao et al., 2004; Presto et al., 2005; Presto et al. 2006; Pathak et al., 2007b; Song et al., 2007) were previously compiled by Shilling et al. (2008). Similar to Shilling et al. (2008), all the data shown here (including those reported in this study) have been adjusted using an organic density of 1.0 g cm<sup>-3</sup>, and to 298 K using a temperature correction of 1.6 % per K, as recommended by Pathak et al. (2007b) to facilitate easier comparison among the different studies.



Figure S9: Reaction profiles for measured and modeled SOA concentration, using both the Karnezi et al. (2014) parameters and the lowest-error combination of parameters (see Table S4). Panels (a), (b) and (c) show results from the nucleation, low AS and high AS 100 ppb O<sub>3</sub> experiments, respectively. Panels (d), (e) and (f) show results from the nucleation, low AS and high AS 500 ppb O<sub>3</sub> experiments, respectively.

- 115
- 116
- 117



119Figure S10: Results from the coupled vapor-particle dynamics model showing how SOA120mass concentration ( $\Delta M_o$ ) changes as a function of reacted α-pinene at different O3121concentrations, assuming all the α-pinene oxidation products are non-volatile. In these122model simulation runs, the initial α-pinene concentration is fixed at 48 ppb, while the O3123concentration is varied from 75 to 1000 ppb. The O3 injection rate used in these model124simulation runs is 500/54.25 ppb min<sup>-1</sup>.



Figure S11: Predictions from the coupled vapor-particle dynamics model showing time-dependent growth curves for SOA formation from  $\alpha$ -pinene ozonolysis at different O<sub>3</sub> concentrations. In these model simulation runs, the initial  $\alpha$ -pinene mixing ratio is fixed at 48 ppb, while the O<sub>3</sub> mixing ratio is increased from 75 to 1000 ppb. In the model, the O<sub>3</sub> injection rate is assumed to be fixed at 500/54.25 ppb min<sup>-1</sup>, and the injection time is increased to achieve the desired O<sub>3</sub> concentration (i.e., 75, 100, 250, 500, 750 or 1000 ppb) in the chamber. The predicted  $\Delta M_0$  decreased slightly at the end of the experiment at the higher O<sub>3</sub> concentrations (250, 500, 750 and 1000 ppb) due to SOA evaporation. It is important to note that SOA evaporation is predicted at high O<sub>3</sub> concentrations in the coupled vapor-particle dynamics model, but not observed in chamber experiments.





Figure S12: Results from the coupled vapor-particle dynamics model showing how SOA mass concentration ( $\Delta M_{o}$ ) changes as a function of reacted  $\alpha$ -pinene at different O<sub>3</sub> concentrations. In these model simulation runs, the initial  $\alpha$ -pinene concentration is fixed at 48 ppb, while the O<sub>3</sub> concentration is varied from 75 to 1000 ppb. Here, the O<sub>3</sub> injection rate is 5 times faster than the base rate used in the model. The base rate is 500/54.25 ppb min<sup>-1</sup>, the same rate used to analyze results from the 500 ppb O<sub>3</sub> experiments. As discussed in the main text, the oxidation rate effect persists at a higher  $O_3$  concentration when a faster  $O_3$  injection rate is used. It is important to note that SOA evaporation is predicted at high O<sub>3</sub> concentrations in the coupled vapor-particle dynamics model, but not observed in chamber experiments.

| 100 |                                             | a partiere main io.         |                                          |                     | contractions                             |                     |
|-----|---------------------------------------------|-----------------------------|------------------------------------------|---------------------|------------------------------------------|---------------------|
|     | Experiment                                  | Initial                     | Final                                    | %                   | Final                                    | %                   |
|     |                                             | Number                      | Number                                   | Change <sup>c</sup> | Number                                   | Change <sup>c</sup> |
|     |                                             | Concentration               | Concentration                            |                     | Concentration                            |                     |
|     |                                             | (particle/cm <sup>3</sup> ) | (particle/cm <sup>3</sup> ) <sup>b</sup> |                     | (particle/cm <sup>3</sup> ) <sup>d</sup> |                     |
| 100 | ) ppb O <sub>3</sub> nucleation             | 23                          | 8222                                     | $3.5 \times 10^4$   | 9152                                     | $3.9 \times 10^4$   |
| 100 | ) ppb O <sub>3</sub> low AS                 | 39119                       | 32553                                    | -16.8               | 38689                                    | -1.1                |
| 100 | ) ppb O3 high AS                            | 51254                       | 45280                                    | -11.7               | 39889                                    | -22.2               |
| 500 | ) ppb O <sub>3</sub> nucleation             | 1                           | 11303                                    | $1.6 \times 10^{6}$ | 11974                                    | $1.7 \times 10^{6}$ |
| 500 | ) ppb O <sub>3</sub> low AS                 | 39800                       | 35216                                    | -11.5               | 38905                                    | -2.2                |
| 500 | ) ppb O <sub>3</sub> high AS                | 44196                       | 40191                                    | -9.1                | 35189                                    | -20.4               |
| 169 | <sup>a</sup> Particle number con            | ncentrations (dN)           | )                                        |                     |                                          |                     |
| 170 | <sup>b</sup> The data shown he              | re correspond to            | those shown in F                         | igs. S1 and         | S2. The nucleation                       | on and              |
| 171 | low AS data have                            | e been particle             | wall loss correct                        | ted using p         | article wall loss                        | rates               |
| 172 | determined from the                         | e low AS-seed on            | ly experiments. T                        | The high AS         | data have been p                         | article             |
| 173 | wall loss corrected                         | using particle wa           | Il loss rates deter                      | mined from          | the high AS-see                          | d only              |
| 174 | experiments.                                |                             |                                          |                     |                                          |                     |
| 175 | $^{\circ}$ % Change = $\frac{(Differe}{2})$ | ence between initial and    | d particle wall loss corr                | ected final numb    | $\frac{1}{2}$                            | 00%                 |
| 176 | <sup>d</sup> The data shown he              | ere correspond to           | those shown in                           | Figs. S3 and        | d S4. All the data                       | a have              |
| 177 | been particle wall lo                       | oss corrected usir          | ig the average par                       | rticle wall lo      | ss rates (i.e. aver                      | age of              |
| 178 | the particle wall lo                        | oss rates obtaine           | d from low AS-                           | seed only a         | nd high-AS seed                          | 1 only              |
| 179 | experiments).                               |                             |                                          |                     |                                          |                     |
| 180 | ·······················).                   |                             |                                          |                     |                                          |                     |
|     |                                             |                             |                                          |                     |                                          |                     |
| 181 |                                             |                             |                                          |                     |                                          |                     |
| 101 |                                             |                             |                                          |                     |                                          |                     |
| 182 |                                             |                             |                                          |                     |                                          |                     |
| 102 |                                             |                             |                                          |                     |                                          |                     |
| 102 |                                             |                             |                                          |                     |                                          |                     |
| 183 |                                             |                             |                                          |                     |                                          |                     |
|     |                                             |                             |                                          |                     |                                          |                     |
| 184 |                                             |                             |                                          |                     |                                          |                     |
|     |                                             |                             |                                          |                     |                                          |                     |
| 185 |                                             |                             |                                          |                     |                                          |                     |
|     |                                             |                             |                                          |                     |                                          |                     |
| 186 |                                             |                             |                                          |                     |                                          |                     |
|     |                                             |                             |                                          |                     |                                          |                     |
| 187 |                                             |                             |                                          |                     |                                          |                     |
| 107 |                                             |                             |                                          |                     |                                          |                     |
| 100 |                                             |                             |                                          |                     |                                          |                     |
| 100 |                                             |                             |                                          |                     |                                          |                     |
| 100 |                                             |                             |                                          |                     |                                          |                     |
| 189 |                                             |                             |                                          |                     |                                          |                     |
|     |                                             |                             |                                          |                     |                                          |                     |
| 190 |                                             |                             |                                          |                     |                                          |                     |

#### **Table S1:** Initial and particle wall loss corrected final number concentrations<sup>a</sup>

|     | Parameter                                            | Discretization                                  |
|-----|------------------------------------------------------|-------------------------------------------------|
|     | $\alpha_p$                                           | 1, 0.1, 0.01, 0.001                             |
|     | $lpha_w$                                             | $10^{-7}, 10^{-6}, 10^{-5}$                     |
|     | $	au_{olig}$                                         | 4, 6, 8                                         |
|     | $>10^3$ branching ratio <sup>a</sup>                 | 0.5, 0.6, 0.7, 0.8, 0.9, 1                      |
|     | 10 <sup>2</sup> branching ratio <sup>a</sup>         | 0, 0.1, 0.2, 0.3, 0.4, 0.5                      |
|     | 10 branching ratio <sup>a</sup>                      | 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2 |
|     | 1 branching ratio <sup>a</sup>                       | 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2 |
|     | 0.1 branching ratio <sup>a</sup>                     | 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2 |
| 192 | <sup>a</sup> Only combinations of parameters summing | to one were allowed.                            |
| 193 | ·····                                                |                                                 |
| 170 |                                                      |                                                 |
| 104 |                                                      |                                                 |
| 194 |                                                      |                                                 |
| 105 |                                                      |                                                 |
| 195 |                                                      |                                                 |
|     |                                                      |                                                 |
| 196 |                                                      |                                                 |
|     |                                                      |                                                 |
| 197 |                                                      |                                                 |
|     |                                                      |                                                 |
| 198 |                                                      |                                                 |
| 170 |                                                      |                                                 |
| 100 |                                                      |                                                 |
| 199 |                                                      |                                                 |
|     |                                                      |                                                 |
| 200 |                                                      |                                                 |
|     |                                                      |                                                 |
| 201 |                                                      |                                                 |
|     |                                                      |                                                 |
| 202 |                                                      |                                                 |
|     |                                                      |                                                 |
| 203 |                                                      |                                                 |
| 205 |                                                      |                                                 |
| 204 |                                                      |                                                 |
| 204 |                                                      |                                                 |
|     |                                                      |                                                 |
| 205 |                                                      |                                                 |
|     |                                                      |                                                 |
| 206 |                                                      |                                                 |
|     |                                                      |                                                 |
| 207 |                                                      |                                                 |
|     |                                                      |                                                 |

### **Table S2:** Discretization of parameters

| 210 these studies are                                                                                                                                                                 | shown Fig. 5.                                         | bib btuait                           |                                                           | is yields and co                                  | neentration    | 5 01      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|-----------------------------------------------------------|---------------------------------------------------|----------------|-----------|
| Study                                                                                                                                                                                 | Temperature                                           | RH                                   | Seed                                                      | OH                                                | O <sub>3</sub> | ΔHC       |
|                                                                                                                                                                                       | (K)                                                   | (%)                                  |                                                           | Scavenger                                         | (ppb)          | (ppb)     |
| Cocker et al. (2001) <sup>a</sup>                                                                                                                                                     | 301.2-302.9                                           | <2, 39-                              | None,                                                     | 2-butanol                                         | 130-600        | 22.6-     |
|                                                                                                                                                                                       |                                                       | 49.2                                 | $(NH_4)_2SO_4$                                            |                                                   |                | 212.3     |
|                                                                                                                                                                                       |                                                       |                                      | and NH <sub>4</sub> HSO <sub>4</sub>                      |                                                   |                |           |
| Gao et al. (2004) <sup>b</sup>                                                                                                                                                        | 293                                                   | 55                                   | $MgSO_4$                                                  | cyclohexane                                       | 24-270         | 12-135    |
| Griffin et al. (1999)                                                                                                                                                                 | 303.3-309.9                                           | 5                                    | $(NH_4)_2SO_4$                                            | 2-butanol                                         | 67-260         | 16.7-65   |
| Hoffmann et al. (1997)                                                                                                                                                                | 289.3-322.1                                           | N.A.                                 | $(NH_4)_2SO_4$                                            | None                                              | 210-327        | 38-154.1  |
| Pathak et al. (2007b)                                                                                                                                                                 | 288-313                                               | < 10                                 | None,                                                     | 2-butanol                                         | 750-           | 3.7-8.5   |
|                                                                                                                                                                                       |                                                       |                                      | $(NH_4)_2SO_4$                                            |                                                   | 3100           |           |
| Presto et al. (2005) <sup>c</sup>                                                                                                                                                     | 295                                                   | < 10                                 | None                                                      | 2-butanol                                         | 160-605        | 15-210    |
| Presto et al. $(2006)^d$                                                                                                                                                              | 295                                                   | < 10                                 | None                                                      | 2-butanol                                         | 260-350        | 13.4-135  |
| Shilling et al. (2008) <sup>e</sup>                                                                                                                                                   | 298                                                   | 40                                   | $(NH_4)_2SO_4$                                            | 1- and 2-                                         | 50, 300,       | 0.3-22.8  |
|                                                                                                                                                                                       |                                                       |                                      |                                                           | butanol                                           | 535            |           |
| Song et al. $(2007)^{f}$                                                                                                                                                              | 300.6-301.7                                           | < 2                                  | None                                                      | cyclohexane                                       | 46-369         | 5.9-81.1  |
| This study                                                                                                                                                                            | 298                                                   | < 5                                  | $(NH_4)_2SO_4$                                            | cyclohexane                                       | 100, 500       | 42.4-52.1 |
| <ul> <li>214 <sup>d</sup>Only dark α-pin</li> <li><sup>e</sup>Data collected in</li> <li><sup>f</sup>Data collected un</li> <li>217</li> <li>218</li> <li>219</li> <li>220</li> </ul> | ene ozonolysis<br>n batch mode ar<br>sing organic see | experime<br>nd continu<br>ed aerosol | nts are used in ou<br>ous-flow mode a<br>is excluded from | r analysis.<br>re used in our an<br>our analysis. | nalysis.       |           |
| 221                                                                                                                                                                                   |                                                       |                                      |                                                           |                                                   |                |           |
| 222                                                                                                                                                                                   |                                                       |                                      |                                                           |                                                   |                |           |
| 223                                                                                                                                                                                   |                                                       |                                      |                                                           |                                                   |                |           |
| 224                                                                                                                                                                                   |                                                       |                                      |                                                           |                                                   |                |           |
| 225                                                                                                                                                                                   |                                                       |                                      |                                                           |                                                   |                |           |
| 226                                                                                                                                                                                   |                                                       |                                      |                                                           |                                                   |                |           |

Table S3: Comparison of experimental conditions used in this work with those of 

| Parameter                        | Lowest percentage error | Karnezi et al. (2014)<br>method |
|----------------------------------|-------------------------|---------------------------------|
| $\overline{\alpha_p}$            | 0.1                     | 0.35                            |
| $\alpha_w$                       | 10-6                    | 3.6x10 <sup>-6</sup>            |
| $\tau_{olig}(\mathbf{h})$        | 4                       | 6                               |
| $>10^3$ branching ratio          | 0.6                     | 0.66                            |
| 10 <sup>2</sup> branching ratio  | 0.3                     | 0.16                            |
| 10 branching ratio               | 0.05                    | 0.06                            |
| 1 branching ratio                | 0.05                    | 0.06                            |
| 0.1 branching ratio              | 0                       | 0.06                            |
| Percentage error for combination | 21%                     | 37%                             |

| 227 | Table S4: Best-fit parameters, using lowest percentage error and Karnezi et al. (201 | 4) |
|-----|--------------------------------------------------------------------------------------|----|
| 228 | nethod                                                                               |    |