Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Download
Short summary
We develop a physically based parameterisation of the co-condensation process. Our model includes solid-state diffusion within a snow grain. It reproduces with good agreement the nitrate measurement in surface snow. Winter and summer concentrations are driven respectively by thermodynamic equilibrium and co-condensation. Adsorbed nitrate likely accounts for a minor part. This work shows that co-condensation is required to explain the chemical composition of snow undergoing temperature gradient.
Altmetrics
Final-revised paper
Preprint
Articles | Volume 16, issue 19
Atmos. Chem. Phys., 16, 12531–12550, 2016
https://doi.org/10.5194/acp-16-12531-2016
Atmos. Chem. Phys., 16, 12531–12550, 2016
https://doi.org/10.5194/acp-16-12531-2016

Research article 07 Oct 2016

Research article | 07 Oct 2016

Air–snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

Josué Bock et al.

Related authors

Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-463,https://doi.org/10.5194/bg-2020-463, 2021
Preprint under review for BG
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Rapid increase in summer surface ozone over the North China Plain during 2013–2019: a side effect of particulate matter reduction control?
Xiaodan Ma, Jianping Huang, Tianliang Zhao, Cheng Liu, Kaihui Zhao, Jia Xing, and Wei Xiao
Atmos. Chem. Phys., 21, 1–16, https://doi.org/10.5194/acp-21-1-2021,https://doi.org/10.5194/acp-21-1-2021, 2021
Short summary
Pan-Arctic surface ozone: modelling vs. measurements
Xin Yang, Anne-M. Blechschmidt, Kristof Bognar, Audra McClure-Begley, Sara Morris, Irina Petropavlovskikh, Andreas Richter, Henrik Skov, Kimberly Strong, David W. Tarasick, Taneil Uttal, Mika Vestenius, and Xiaoyi Zhao
Atmos. Chem. Phys., 20, 15937–15967, https://doi.org/10.5194/acp-20-15937-2020,https://doi.org/10.5194/acp-20-15937-2020, 2020
Short summary
Influence of aerosol copper on HO2 uptake: a novel parameterized equation
Huan Song, Xiaorui Chen, Keding Lu, Qi Zou, Zhaofeng Tan, Hendrik Fuchs, Alfred Wiedensohler, Daniel R. Moon, Dwayne E. Heard, María-Teresa Baeza-Romero, Mei Zheng, Andreas Wahner, Astrid Kiendler-Scharr, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 15835–15850, https://doi.org/10.5194/acp-20-15835-2020,https://doi.org/10.5194/acp-20-15835-2020, 2020
Short summary
Role of ammonia in European air quality with changing land and ship emissions between 1990 and 2030
Sebnem Aksoyoglu, Jianhui Jiang, Giancarlo Ciarelli, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 15665–15680, https://doi.org/10.5194/acp-20-15665-2020,https://doi.org/10.5194/acp-20-15665-2020, 2020
Short summary
Discrepancies between MICS-Asia III simulation and observation for surface ozone in the marine atmosphere over the northwestern Pacific Asian Rim region
Hajime Akimoto, Tatsuya Nagashima, Natsumi Kawano, Li Jie, Joshua S. Fu, and Zifa Wang
Atmos. Chem. Phys., 20, 15003–15014, https://doi.org/10.5194/acp-20-15003-2020,https://doi.org/10.5194/acp-20-15003-2020, 2020
Short summary

Cited articles

Abbatt, J. P. D.: Interaction of HNO3 with water–ice surfaces at temperatures of the free troposphere, Geophys. Res. Lett., 24, 1479–1482, https://doi.org/10.1029/97GL01403, 1997.
Abbatt, J. P. D.: Interactions of atmospheric trace gases with ice surfaces: adsorption and reaction, Chem. Rev., 103, 4783–4800, https://doi.org/10.1021/cr0206418, 2003.
Abbatt, J. P. D., Bartels-Rausch, T., Ullerstam, M., and Ye, T. J.: Uptake of acetone, ethanol and benzene to snow and ice: effects of surface area and temperature, Environ. Res. Lett., 3, 045008, https://doi.org/10.1088/1748-9326/3/4/045008, 2008.
Arimoto, R., Zeng, T., Davis, D., Wang, Y., Khaing, H., Nesbit, C., and Huey, G.: Concentrations and sources of aerosol ions and trace elements during ANTCI-2003, Atmos. Environ., 42, 2864–2876, https://doi.org/10.1016/j.atmosenv.2007.05.054, 2008.
Arora, O. P., Cziczo, D. J., Morgan, A. M., Abbatt, J. P. D., and Niedziela, R. F.: Uptake of nitric acid by sub-micron-sized ice particles, Geophys. Res. Lett., 26, 3621–3624, https://doi.org/10.1029/1999GL010881, 1999.
Publications Copernicus
Download
Short summary
We develop a physically based parameterisation of the co-condensation process. Our model includes solid-state diffusion within a snow grain. It reproduces with good agreement the nitrate measurement in surface snow. Winter and summer concentrations are driven respectively by thermodynamic equilibrium and co-condensation. Adsorbed nitrate likely accounts for a minor part. This work shows that co-condensation is required to explain the chemical composition of snow undergoing temperature gradient.
Citation
Altmetrics
Final-revised paper
Preprint