Articles | Volume 15, issue 16
https://doi.org/10.5194/acp-15-9555-2015
https://doi.org/10.5194/acp-15-9555-2015
Research article
 | 
27 Aug 2015
Research article |  | 27 Aug 2015

Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements

B. Sinha, K. Singh Sangwan, Y. Maurya, V. Kumar, C. Sarkar, B. P. Chandra, and V. Sinha

Related authors

Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024,https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024,https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Discovery of reactive chlorine, sulphur and nitrogen containing ambient volatile organic compounds in the megacity of Delhi during both clean and extremely polluted seasons
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
EGUsphere, https://doi.org/10.5194/egusphere-2024-500,https://doi.org/10.5194/egusphere-2024-500, 2024
Short summary
Chloride (HCl ∕ Cl) dominates inorganic aerosol formation from ammonia in the Indo-Gangetic Plain during winter: modeling and comparison with observations
Pooja V. Pawar, Sachin D. Ghude, Gaurav Govardhan, Prodip Acharja, Rachana Kulkarni, Rajesh Kumar, Baerbel Sinha, Vinayak Sinha, Chinmay Jena, Preeti Gunwani, Tapan Kumar Adhya, Eiko Nemitz, and Mark A. Sutton
Atmos. Chem. Phys., 23, 41–59, https://doi.org/10.5194/acp-23-41-2023,https://doi.org/10.5194/acp-23-41-2023, 2023
Short summary
Significant emissions of dimethyl sulfide and monoterpenes by big-leaf mahogany trees: discovery of a missing dimethyl sulfide source to the atmospheric environment
Lejish Vettikkat, Vinayak Sinha, Savita Datta, Ashish Kumar, Haseeb Hakkim, Priya Yadav, and Baerbel Sinha
Atmos. Chem. Phys., 20, 375–389, https://doi.org/10.5194/acp-20-375-2020,https://doi.org/10.5194/acp-20-375-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024,https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Multi-year observations of variable incomplete combustion in the New York megacity
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024,https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024,https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024,https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024,https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary

Cited articles

Adams, R. M., Glyer, J. D., Johnson, S. L., and McCarl, B. A.: Assessment of the economic effects of ozone on United States agriculture, JAPCA J. Air Waste Ma., 39, 960–968, 1989.
Agrawal, M., Singh, B., Rajput, M., Marshall, F., and Bell, J. N. B.: Effect of air pollution on peri-urban agriculture: a case study, Environ. Pollut., 126, 323–329, 2003.
Agricultural Statistics: Government of India, Ministry of Agriculture, Department of Agriculture and Cooperation, Directorate of Economics and Statistics, Pocket Book on Agricultural Statistics 2013, New Delhi, 2013.
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The effects of tropospheric ozone on net primary productivity and implications for climate change, Ann. Rev. Plant Biol., 63, 637–661, 2012.
Akhtar, N., Yamaguchi, M., Inada, H., Hoshino, D., and Kondo, T.: Effects of ozone on growth, yield and leaf gas exchange rates of four Bangladeshi cultivars of rice (Oryza sativa L.), Environ. Pollut., 158, 2970–2973, 2010a.
Download
Short summary
We use ozone measurements at a suburban site in Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize in Punjab and Haryana for the years 2011-2013. Crop production losses amount to 10.3-20.8 Mt yr-1 for wheat and 3.2-5.4 Mt yr-1 for rice, enough to feed 225-437 million of India’s poor. The lower limit for the ozone-related economic losses is 3.7-6.5 billion USD (Punjab and Haryana), while the upper limit amounts to 3.5-20% of Indian GDP (all of India).
Altmetrics
Final-revised paper
Preprint