Articles | Volume 15, issue 16
Atmos. Chem. Phys., 15, 9555–9576, 2015
https://doi.org/10.5194/acp-15-9555-2015
Atmos. Chem. Phys., 15, 9555–9576, 2015
https://doi.org/10.5194/acp-15-9555-2015
Research article
27 Aug 2015
Research article | 27 Aug 2015

Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements

B. Sinha et al.

Related authors

Hydrochloric acid emission dominates inorganic aerosol formation from ammonia in the Indo-Gangetic Plain during winter
Pooja V. Pawar, Sachin D. Ghude, Gaurav Govardhan, Prodip Acharja, Rachana Kulkarni, Rajesh Kumar, Baerbel Sinha, Vinayak Sinha, Chinmay Jena, Preeti Gunwani, Tapan Kumar Adhya, Eiko Nemitz, and Mark A. Sutton
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-237,https://doi.org/10.5194/acp-2022-237, 2022
Preprint under review for ACP
Short summary
Significant emissions of dimethyl sulfide and monoterpenes by big-leaf mahogany trees: discovery of a missing dimethyl sulfide source to the atmospheric environment
Lejish Vettikkat, Vinayak Sinha, Savita Datta, Ashish Kumar, Haseeb Hakkim, Priya Yadav, and Baerbel Sinha
Atmos. Chem. Phys., 20, 375–389, https://doi.org/10.5194/acp-20-375-2020,https://doi.org/10.5194/acp-20-375-2020, 2020
Short summary
Source apportionment of volatile organic compounds in the northwest Indo-Gangetic Plain using a positive matrix factorization model
Pallavi, Baerbel Sinha, and Vinayak Sinha
Atmos. Chem. Phys., 19, 15467–15482, https://doi.org/10.5194/acp-19-15467-2019,https://doi.org/10.5194/acp-19-15467-2019, 2019
Short summary
Source apportionment of NMVOCs in the Kathmandu Valley during the SusKat-ABC international field campaign using positive matrix factorization
Chinmoy Sarkar, Vinayak Sinha, Baerbel Sinha, Arnico K. Panday, Maheswar Rupakheti, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 8129–8156, https://doi.org/10.5194/acp-17-8129-2017,https://doi.org/10.5194/acp-17-8129-2017, 2017
Short summary
Quantifying the contribution of long-range transport to particulate matter (PM) mass loadings at a suburban site in the north-western Indo-Gangetic Plain (NW-IGP)
H. Pawar, S. Garg, V. Kumar, H. Sachan, R. Arya, C. Sarkar, B. P. Chandra, and B. Sinha
Atmos. Chem. Phys., 15, 9501–9520, https://doi.org/10.5194/acp-15-9501-2015,https://doi.org/10.5194/acp-15-9501-2015, 2015
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Variations in surface SO2 and NOx mixing ratios from 2004 to 2016 at a background site in the North China Plain
Xueli Liu, Liang Ran, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Fan Dong, Di He, Liyan Zhou, Qingfeng Shi, and Yao Wang
Atmos. Chem. Phys., 22, 7071–7085, https://doi.org/10.5194/acp-22-7071-2022,https://doi.org/10.5194/acp-22-7071-2022, 2022
Short summary
Fate of the nitrate radical at the summit of a semi-rural mountain site in Germany assessed with direct reactivity measurements
Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, Akima Ringsdorf, Achim Edtbauer, Horst Fischer, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 7051–7069, https://doi.org/10.5194/acp-22-7051-2022,https://doi.org/10.5194/acp-22-7051-2022, 2022
Short summary
Spatiotemporal variations of the δ(O2 ∕ N2), CO2 and δ(APO) in the troposphere over the western North Pacific
Shigeyuki Ishidoya, Kazuhiro Tsuboi, Yosuke Niwa, Hidekazu Matsueda, Shohei Murayama, Kentaro Ishijima, and Kazuyuki Saito
Atmos. Chem. Phys., 22, 6953–6970, https://doi.org/10.5194/acp-22-6953-2022,https://doi.org/10.5194/acp-22-6953-2022, 2022
Short summary
OH and HO2 radical chemistry at a suburban site during the EXPLORE-YRD campaign in 2018
Xuefei Ma, Zhaofeng Tan, Keding Lu, Xinping Yang, Xiaorui Chen, Haichao Wang, Shiyi Chen, Xin Fang, Shule Li, Xin Li, Jingwei Liu, Ying Liu, Shengrong Lou, Wanyi Qiu, Hongli Wang, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 7005–7028, https://doi.org/10.5194/acp-22-7005-2022,https://doi.org/10.5194/acp-22-7005-2022, 2022
Short summary
Towards reconstructing the Arctic atmospheric methane history over the 20th century: measurement and modelling results for the North Greenland Ice Core Project firn
Taku Umezawa, Satoshi Sugawara, Kenji Kawamura, Ikumi Oyabu, Stephen J. Andrews, Takuya Saito, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 22, 6899–6917, https://doi.org/10.5194/acp-22-6899-2022,https://doi.org/10.5194/acp-22-6899-2022, 2022
Short summary

Cited articles

Adams, R. M., Glyer, J. D., Johnson, S. L., and McCarl, B. A.: Assessment of the economic effects of ozone on United States agriculture, JAPCA J. Air Waste Ma., 39, 960–968, 1989.
Agrawal, M., Singh, B., Rajput, M., Marshall, F., and Bell, J. N. B.: Effect of air pollution on peri-urban agriculture: a case study, Environ. Pollut., 126, 323–329, 2003.
Agricultural Statistics: Government of India, Ministry of Agriculture, Department of Agriculture and Cooperation, Directorate of Economics and Statistics, Pocket Book on Agricultural Statistics 2013, New Delhi, 2013.
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The effects of tropospheric ozone on net primary productivity and implications for climate change, Ann. Rev. Plant Biol., 63, 637–661, 2012.
Akhtar, N., Yamaguchi, M., Inada, H., Hoshino, D., and Kondo, T.: Effects of ozone on growth, yield and leaf gas exchange rates of four Bangladeshi cultivars of rice (Oryza sativa L.), Environ. Pollut., 158, 2970–2973, 2010a.
Download
Short summary
We use ozone measurements at a suburban site in Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize in Punjab and Haryana for the years 2011-2013. Crop production losses amount to 10.3-20.8 Mt yr-1 for wheat and 3.2-5.4 Mt yr-1 for rice, enough to feed 225-437 million of India’s poor. The lower limit for the ozone-related economic losses is 3.7-6.5 billion USD (Punjab and Haryana), while the upper limit amounts to 3.5-20% of Indian GDP (all of India).
Altmetrics
Final-revised paper
Preprint