Articles | Volume 15, issue 14
https://doi.org/10.5194/acp-15-7877-2015
https://doi.org/10.5194/acp-15-7877-2015
Review article
 | 
17 Jul 2015
Review article |  | 17 Jul 2015

Overview of receptor-based source apportionment studies for speciated atmospheric mercury

I. Cheng, X. Xu, and L. Zhang

Related authors

Natural Surface Emissions Dominate Anthropogenic Emissions Contributions to Total Gaseous Mercury (TGM) at Canadian Rural Sites
Irene Cheng, Amanda Cole, Leiming Zhang, and Alexandra Steffen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2895,https://doi.org/10.5194/egusphere-2024-2895, 2024
Short summary
Long-term declines in atmospheric nitrogen and sulfur deposition reduce critical loads exceedances at multiple Canadian rural sites, 2000–2018
Irene Cheng, Leiming Zhang, Zhuanshi He, Hazel Cathcart, Daniel Houle, Amanda Cole, Jian Feng, Jason O'Brien, Anne Marie Macdonald, Julian Aherne, and Jeffrey Brook
Atmos. Chem. Phys., 22, 14631–14656, https://doi.org/10.5194/acp-22-14631-2022,https://doi.org/10.5194/acp-22-14631-2022, 2022
Short summary
Emissions databases for polycyclic aromatic compounds in the Canadian Athabasca oil sands region – development using current knowledge and evaluation with passive sampling and air dispersion modelling data
Xin Qiu, Irene Cheng, Fuquan Yang, Erin Horb, Leiming Zhang, and Tom Harner
Atmos. Chem. Phys., 18, 3457–3467, https://doi.org/10.5194/acp-18-3457-2018,https://doi.org/10.5194/acp-18-3457-2018, 2018
Short summary
Long-term air concentrations, wet deposition, and scavenging ratios of inorganic ions, HNO3, and SO2 and assessment of aerosol and precipitation acidity at Canadian rural locations
Irene Cheng and Leiming Zhang
Atmos. Chem. Phys., 17, 4711–4730, https://doi.org/10.5194/acp-17-4711-2017,https://doi.org/10.5194/acp-17-4711-2017, 2017
Short summary
Potential sources and processes affecting speciated atmospheric mercury at Kejimkujik National Park, Canada: comparison of receptor models and data treatment methods
Xiaohong Xu, Yanyin Liao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 17, 1381–1400, https://doi.org/10.5194/acp-17-1381-2017,https://doi.org/10.5194/acp-17-1381-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Estimating the variability in NOx emissions from Wuhan with TROPOMI NO2 data during 2018 to 2023
Qianqian Zhang, K. Folkert Boersma, Chiel van der Laan, Alba Mols, Bin Zhao, Shengyue Li, and Yuepeng Pan
Atmos. Chem. Phys., 25, 3313–3326, https://doi.org/10.5194/acp-25-3313-2025,https://doi.org/10.5194/acp-25-3313-2025, 2025
Short summary
Enhanced understanding of atmospheric blocking modulation on ozone dynamics within a high-resolution Earth system model
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025,https://doi.org/10.5194/acp-25-3029-2025, 2025
Short summary
Natural emissions of VOC and NOx over Africa constrained by TROPOMI HCHO and NO2 data using the MAGRITTEv1.1 model
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
Atmos. Chem. Phys., 25, 2863–2894, https://doi.org/10.5194/acp-25-2863-2025,https://doi.org/10.5194/acp-25-2863-2025, 2025
Short summary
Anthropogenic emission controls reduce summertime ozone–temperature sensitivity in the United States
Shuai Li, Haolin Wang, and Xiao Lu
Atmos. Chem. Phys., 25, 2725–2743, https://doi.org/10.5194/acp-25-2725-2025,https://doi.org/10.5194/acp-25-2725-2025, 2025
Short summary
Investigating the response of China's surface ozone concentration to the future changes of multiple factors
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
Atmos. Chem. Phys., 25, 2649–2666, https://doi.org/10.5194/acp-25-2649-2025,https://doi.org/10.5194/acp-25-2649-2025, 2025
Short summary

Cited articles

Abbott, M. L., Lin, C.-J., Martian, P., and Einerson, J. J.: Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho, Appl. Geochem., 23, 438–453, 2008.
Akhtar, U. S.: Atmospheric total gaseous mercury concentration measurement in Windsor: A study of variability and potential sources, MASc Thesis, University of Windsor, Windsor, Ontario, Canada, 2008.
Belis, C. A., Karagulian, F., Larsen, B. R., and Hopke, P. K.: Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe, Atmos. Environ., 69, 94–108, 2013.
Blanchard, P., Froude, F. A., Martin, J. B., Dryfhout-Clark, H., and Woods, J. T.: Four years of continuous total gaseous mercury (TGM) measurements at sites in Ontario, Canada, Atmos. Environ., 36, 3735–3743, 2002.
Chen, L. W. A., Watson, J. G., Chow, J. C., DuBois, D. W., and Herschberger, L.: PM2.5 source apportionment: reconciling receptor models for US nonurban and urban long-term networks, JAPCA J. Air Waste Ma., 61, 1204–1217, 2011.
Download
Short summary
Current knowledge of receptor-based studies using speciated atmospheric mercury is reviewed and recommendations for future research needs are provided.
Share
Altmetrics
Final-revised paper
Preprint