Articles | Volume 15, issue 12
Atmos. Chem. Phys., 15, 6929–6942, 2015
https://doi.org/10.5194/acp-15-6929-2015
Atmos. Chem. Phys., 15, 6929–6942, 2015
https://doi.org/10.5194/acp-15-6929-2015

Research article 25 Jun 2015

Research article | 25 Jun 2015

Estimates of non-traditional secondary organic aerosols from aircraft SVOC and IVOC emissions using CMAQ

M. C. Woody et al.

Related authors

Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning
Benjamin N. Murphy, Matthew C. Woody, Jose L. Jimenez, Ann Marie G. Carlton, Patrick L. Hayes, Shang Liu, Nga L. Ng, Lynn M. Russell, Ari Setyan, Lu Xu, Jeff Young, Rahul A. Zaveri, Qi Zhang, and Havala O. T. Pye
Atmos. Chem. Phys., 17, 11107–11133, https://doi.org/10.5194/acp-17-11107-2017,https://doi.org/10.5194/acp-17-11107-2017, 2017
Short summary
Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions
Shantanu H. Jathar, Matthew Woody, Havala O. T. Pye, Kirk R. Baker, and Allen L. Robinson
Atmos. Chem. Phys., 17, 4305–4318, https://doi.org/10.5194/acp-17-4305-2017,https://doi.org/10.5194/acp-17-4305-2017, 2017
Short summary
Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS
Matthew C. Woody, Kirk R. Baker, Patrick L. Hayes, Jose L. Jimenez, Bonyoung Koo, and Havala O. T. Pye
Atmos. Chem. Phys., 16, 4081–4100, https://doi.org/10.5194/acp-16-4081-2016,https://doi.org/10.5194/acp-16-4081-2016, 2016
Short summary
Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield
K. R. Baker, A. G. Carlton, T. E. Kleindienst, J. H. Offenberg, M. R. Beaver, D. R. Gentner, A. H. Goldstein, P. L. Hayes, J. L. Jimenez, J. B. Gilman, J. A. de Gouw, M. C. Woody, H. O. T. Pye, J. T. Kelly, M. Lewandowski, M. Jaoui, P. S. Stevens, W. H. Brune, Y.-H. Lin, C. L. Rubitschun, and J. D. Surratt
Atmos. Chem. Phys., 15, 5243–5258, https://doi.org/10.5194/acp-15-5243-2015,https://doi.org/10.5194/acp-15-5243-2015, 2015
Short summary
A plume-in-grid approach to characterize air quality impacts of aircraft emissions at the Hartsfield–Jackson Atlanta International Airport
J. Rissman, S. Arunachalam, M. Woody, J. J. West, T. BenDor, and F. S. Binkowski
Atmos. Chem. Phys., 13, 9285–9302, https://doi.org/10.5194/acp-13-9285-2013,https://doi.org/10.5194/acp-13-9285-2013, 2013

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impacts of emission changes in China from 2010 to 2017 on domestic and intercontinental air quality and health effect
Yuqiang Zhang, Drew Shindell, Karl Seltzer, Lu Shen, Jean-Francois Lamarque, Qiang Zhang, Bo Zheng, Jia Xing, Zhe Jiang, and Lei Zhang
Atmos. Chem. Phys., 21, 16051–16065, https://doi.org/10.5194/acp-21-16051-2021,https://doi.org/10.5194/acp-21-16051-2021, 2021
Short summary
Exploring the sensitivity of atmospheric nitrate concentrations to nitric acid uptake rate using the Met Office's Unified Model
Anthony C. Jones, Adrian Hill, Samuel Remy, N. Luke Abraham, Mohit Dalvi, Catherine Hardacre, Alan J. Hewitt, Ben Johnson, Jane P. Mulcahy, and Steven T. Turnock
Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021,https://doi.org/10.5194/acp-21-15901-2021, 2021
Short summary
Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China
Shuping Zhang, Golam Sarwar, Jia Xing, Biwu Chu, Chaoyang Xue, Arunachalam Sarav, Dian Ding, Haotian Zheng, Yujing Mu, Fengkui Duan, Tao Ma, and Hong He
Atmos. Chem. Phys., 21, 15809–15826, https://doi.org/10.5194/acp-21-15809-2021,https://doi.org/10.5194/acp-21-15809-2021, 2021
Short summary
How alkaline compounds control atmospheric aerosol particle acidity
Vlassis A. Karydis, Alexandra P. Tsimpidi, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 21, 14983–15001, https://doi.org/10.5194/acp-21-14983-2021,https://doi.org/10.5194/acp-21-14983-2021, 2021
Short summary
Aerosol transport pathways and source attribution in China during the COVID-19 outbreak
Lili Ren, Yang Yang, Hailong Wang, Pinya Wang, Lei Chen, Jia Zhu, and Hong Liao
Atmos. Chem. Phys., 21, 15431–15445, https://doi.org/10.5194/acp-21-15431-2021,https://doi.org/10.5194/acp-21-15431-2021, 2021
Short summary

Cited articles

Agrawal, H., Sawant, A. A., Jansen, K., Wayne Miller, J., and Cocker III, D. R.: Characterization of chemical and particulate emissions from aircraft engines, Atmos. Environ., 42, 4380–4392, 2008.
Arunachalam, S., Wang, B., Davis, N., Baek, B. H., and Levy, J. I.: Effect of chemistry-transport model scale and resolution on population exposure to PM2.5 from aircraft emissions during landing and takeoff, Atmos. Environ., 45, 3294–3300, 2011.
Baek, B. H., Arunachalam, S., Woody, M., Vennam, L. P., Omary, M., Binkowski, F., and Fleming, G.: A new interface to model global commercial aircraft emissions from the FAA Aviation Environmental Design Tool (AEDT) in air quality models, Annual CMAS Conference, Chapel Hill, NC, USA, 15–17 October, 2012.
Barrett, S. R., Britter, R. E., and Waitz, I. A.: Global mortality attributable to aircraft cruise emissions, Environ. Sci. Technol., 44, 7736–7742, 2010.
Beyersdorf, A. J., Timko, M. T., Ziemba, L. D., Bulzan, D., Corporan, E., Herndon, S. C., Howard, R., Miake-Lye, R., Thornhill, K. L., Winstead, E., Wey, C., Yu, Z., and Anderson, B. E.: Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels, Atmos. Chem. Phys., 14, 11–23, https://doi.org/10.5194/acp-14-11-2014, 2014.
Download
Short summary
Utilizing an aircraft-specific parameterization based on smog chamber data in a regional AQM, contributions of non-traditional secondary organic aerosols (NTSOA) from aircraft emissions of semi-volatile and intermediate volatility organic compounds were assessed. NTSOA, a previously unaccounted component of PM2.5 in most AQMs, contributed up to 7.4% of aviation-attributable PM2.5 at the airport and rose to 17.9% downwind, suggesting its significance in aviation-attributed PM2.5 at all scales.
Altmetrics
Final-revised paper
Preprint