Articles | Volume 15, issue 1
https://doi.org/10.5194/acp-15-135-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-15-135-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah
E. M. Neemann
Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah, USA
E. T. Crosman
Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah, USA
J. D. Horel
Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah, USA
L. Avey
Utah Division of Air Quality, Salt Lake City, Utah, USA
Related authors
No articles found.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
Alessandro Franchin, Dorothy L. Fibiger, Lexie Goldberger, Erin E. McDuffie, Alexander Moravek, Caroline C. Womack, Erik T. Crosman, Kenneth S. Docherty, William P. Dube, Sebastian W. Hoch, Ben H. Lee, Russell Long, Jennifer G. Murphy, Joel A. Thornton, Steven S. Brown, Munkhbayar Baasandorj, and Ann M. Middlebrook
Atmos. Chem. Phys., 18, 17259–17276, https://doi.org/10.5194/acp-18-17259-2018, https://doi.org/10.5194/acp-18-17259-2018, 2018
Short summary
Short summary
We present the results of aerosol and trace gas measurements from airborne and ground-based platforms. The measurements took place in January–February 2017 in northern Utah as part of the Utah Winter Fine Particulate Study (UWFPS). We characterized the chemical composition of PM1 on a regional scale, also probing the vertical dimension. We used a thermodynamic model to study the effectiveness of limiting total ammonium or total nitrate as a strategy to control aerosol concentrations.
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Seasonal characteristics of atmospheric peroxyacetyl nitrate (PAN) in a coastal city of Southeast China: Explanatory factors and photochemical effects
Atmospheric oxidation capacity and ozone pollution mechanism in a coastal city of southeastern China: analysis of a typical photochemical episode by an observation-based model
Error induced by neglecting subgrid chemical segregation due to inefficient turbulent mixing in regional chemical-transport models in urban environments
Statistical regularization for trend detection: an integrated approach for detecting long-term trends from sparse tropospheric ozone profiles
The influence of typhoons on atmospheric composition deduced from IAGOS measurements over Taipei
Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative
Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell
Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations
Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species
CFD modeling of reactive pollutant dispersion in simplified urban configurations with different chemical mechanisms
Forty years of improvements in European air quality: regional policy-industry interactions with global impacts
Tropical convective transport and the Walker circulation
Transport of short-lived species into the Tropical Tropopause Layer
Nudging technique for scale bridging in air quality/climate atmospheric composition modelling
On the segregation of chemical species in a clear boundary layer over heterogeneous land surfaces
SOSA – a new model to simulate the concentrations of organic vapours and sulphuric acid inside the ABL – Part 1: Model description and initial evaluation
Taotao Liu, Gaojie Chen, Jinsheng Chen, Lingling Xu, Mengren Li, Youwei Hong, Yanting Chen, Xiaoting Ji, Chen Yang, Yuping Chen, Weiguo Huang, Quanjia Huang, and Hong Wang
Atmos. Chem. Phys., 22, 4339–4353, https://doi.org/10.5194/acp-22-4339-2022, https://doi.org/10.5194/acp-22-4339-2022, 2022
Short summary
Short summary
We clarified the seasonal variations of PAN pollution, influencing factors, its mechanisms, and impacts on O3 based on OBM and GAM models. PAN presented inhibition and promotion effects on O3 under low and high ROx levels. Monitoring of PAN and its precursors, and the quantification of its impacts on O3 formation, significantly guide photochemical pollution control. The analysis methods used in this study provide a reference for study of the formation mechanisms of PAN and O3 in other regions.
Taotao Liu, Youwei Hong, Mengren Li, Lingling Xu, Jinsheng Chen, Yahui Bian, Chen Yang, Yangbin Dan, Yingnan Zhang, Likun Xue, Min Zhao, Zhi Huang, and Hong Wang
Atmos. Chem. Phys., 22, 2173–2190, https://doi.org/10.5194/acp-22-2173-2022, https://doi.org/10.5194/acp-22-2173-2022, 2022
Short summary
Short summary
Based on the OBM-MCM model analyses, the study aims to clarify (1) the pollution characteristics of O3 and its precursors, (2) the atmospheric oxidation capacity and radical chemistry, and (3) the O3 formation mechanism and sensitivity analysis. The results are expected to enhance the understanding of the O3 formation mechanism with low O3 precursor levels and provide scientific evidence for O3 pollution control in coastal cities.
Cathy W. Y. Li, Guy P. Brasseur, Hauke Schmidt, and Juan Pedro Mellado
Atmos. Chem. Phys., 21, 483–503, https://doi.org/10.5194/acp-21-483-2021, https://doi.org/10.5194/acp-21-483-2021, 2021
Short summary
Short summary
Intense and localised emissions of pollutants are common in urban environments, in which turbulence cannot mix these segregated pollutants efficiently in the atmosphere. Despite their relatively high resolution, regional models cannot resolve such segregation and assume instantaneous mixing of these pollutants in their model grids, which potentially induces significant error in the subsequent chemical calculation, based on our calculation with a model that explicitly resolves turbulent motions.
Kai-Lan Chang, Owen R. Cooper, Audrey Gaudel, Irina Petropavlovskikh, and Valérie Thouret
Atmos. Chem. Phys., 20, 9915–9938, https://doi.org/10.5194/acp-20-9915-2020, https://doi.org/10.5194/acp-20-9915-2020, 2020
Short summary
Short summary
We provide a statistical framework for detecting trends of multiple autocorrelated time series from sparsely sampled profile data. The result is a better and more consistent quantification of trend estimates of vertical profile data. The focus was placed on the long-term ozone time series from commercial aircraft and balloon-borne ozonesonde measurements. This framework can be applied to other trace gases in the atmosphere.
Frank Roux, Hannah Clark, Kuo-Ying Wang, Susanne Rohs, Bastien Sauvage, and Philippe Nédélec
Atmos. Chem. Phys., 20, 3945–3963, https://doi.org/10.5194/acp-20-3945-2020, https://doi.org/10.5194/acp-20-3945-2020, 2020
Short summary
Short summary
Ozone, carbon monoxide and relative humidity were measured by two China Airlines aircraft equipped with IAGOS instruments during the summer of 2016. We examined landing and take-off profiles near Taipei (Taiwan), in the vicinity of three typhoons, in relation to ERA-5 meteorological reanalyses. Upstream of the storms, these data suggest that air is transported downwards from the stratosphere. Downstream, the troposphere is cleaner and moister due to the uplift of marine boundary layer air.
Clara Orbe, David A. Plummer, Darryn W. Waugh, Huang Yang, Patrick Jöckel, Douglas E. Kinnison, Beatrice Josse, Virginie Marecal, Makoto Deushi, Nathan Luke Abraham, Alexander T. Archibald, Martyn P. Chipperfield, Sandip Dhomse, Wuhu Feng, and Slimane Bekki
Atmos. Chem. Phys., 20, 3809–3840, https://doi.org/10.5194/acp-20-3809-2020, https://doi.org/10.5194/acp-20-3809-2020, 2020
Short summary
Short summary
Atmospheric composition is strongly influenced by global-scale winds that are not always properly simulated in computer models. A common approach to correct for this bias is to relax or
nudgeto the observed winds. Here we systematically evaluate how well this technique performs across a large suite of chemistry–climate models in terms of its ability to reproduce key aspects of both the tropospheric and stratospheric circulations.
Huang Yang, Darryn W. Waugh, Clara Orbe, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, Patrick Jöckel, Susan E. Strahan, Kane A. Stone, and Robyn Schofield
Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019, https://doi.org/10.5194/acp-19-5511-2019, 2019
Short summary
Short summary
We evaluate the performance of a suite of models in simulating the large-scale transport from the northern midlatitudes to the Arctic using a CO-like idealized tracer. We find a large multi-model spread of the Arctic concentration of this CO-like tracer that is well correlated with the differences in the location of the midlatitude jet as well as the northern Hadley Cell edge. Our results suggest the Hadley Cell is key and zonal-mean transport by surface meridional flow needs better constraint.
Clara Orbe, Huang Yang, Darryn W. Waugh, Guang Zeng, Olaf Morgenstern, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, David A. Plummer, John F. Scinocca, Beatrice Josse, Virginie Marecal, Patrick Jöckel, Luke D. Oman, Susan E. Strahan, Makoto Deushi, Taichu Y. Tanaka, Kohei Yoshida, Hideharu Akiyoshi, Yousuke Yamashita, Andreas Stenke, Laura Revell, Timofei Sukhodolov, Eugene Rozanov, Giovanni Pitari, Daniele Visioni, Kane A. Stone, Robyn Schofield, and Antara Banerjee
Atmos. Chem. Phys., 18, 7217–7235, https://doi.org/10.5194/acp-18-7217-2018, https://doi.org/10.5194/acp-18-7217-2018, 2018
Short summary
Short summary
In this study we compare a few atmospheric transport properties among several numerical models that are used to study the influence of atmospheric chemistry on climate. We show that there are large differences among models in terms of the timescales that connect the Northern Hemisphere midlatitudes, where greenhouse gases and ozone-depleting substances are emitted, to the Southern Hemisphere. Our results may have important implications for how models represent atmospheric composition.
Johannes Bieser, Franz Slemr, Jesse Ambrose, Carl Brenninkmeijer, Steve Brooks, Ashu Dastoor, Francesco DeSimone, Ralf Ebinghaus, Christian N. Gencarelli, Beate Geyer, Lynne E. Gratz, Ian M. Hedgecock, Daniel Jaffe, Paul Kelley, Che-Jen Lin, Lyatt Jaegle, Volker Matthias, Andrei Ryjkov, Noelle E. Selin, Shaojie Song, Oleg Travnikov, Andreas Weigelt, Winston Luke, Xinrong Ren, Andreas Zahn, Xin Yang, Yun Zhu, and Nicola Pirrone
Atmos. Chem. Phys., 17, 6925–6955, https://doi.org/10.5194/acp-17-6925-2017, https://doi.org/10.5194/acp-17-6925-2017, 2017
Short summary
Short summary
We conducted a multi model study to investigate our ability to reproduce the vertical distribution of mercury in the atmosphere. For this, we used observational data from over 40 aircraft flights in EU and US. We compared observations to the results of seven chemistry transport models and found that the models are able to reproduce vertical gradients of total and elemental Hg. Finally, we found that different chemical reactions seem responsible for the oxidation of Hg depending on altitude.
Beatriz Sanchez, Jose-Luis Santiago, Alberto Martilli, Magdalena Palacios, and Frank Kirchner
Atmos. Chem. Phys., 16, 12143–12157, https://doi.org/10.5194/acp-16-12143-2016, https://doi.org/10.5194/acp-16-12143-2016, 2016
Short summary
Short summary
This paper is focused on analyzing the coupled behavior between dispersion of reactive pollutants and atmospheric dynamics in different atmospheric conditions using a computational fluid dynamics model. It allows one to provide the selection of the chemical reactions needed that gives the best compromise between accuracy in modeling NO and NO2 dispersion in the streets and the computational time required. The conclusions can be applied to future studies about modeling air quality in cities.
Monica Crippa, Greet Janssens-Maenhout, Frank Dentener, Diego Guizzardi, Katerina Sindelarova, Marilena Muntean, Rita Van Dingenen, and Claire Granier
Atmos. Chem. Phys., 16, 3825–3841, https://doi.org/10.5194/acp-16-3825-2016, https://doi.org/10.5194/acp-16-3825-2016, 2016
Short summary
Short summary
The interplay of European air quality policies and technological advancement to reduce anthropogenic emissions avoided a dramatic deterioration of air quality in Europe and beyond over the last 40 years (e.g. fuel quality directives reduced global SO2 emissions by 88 %, while the EURO standards led to a 50 % reduction of PM2.5). The story told by the EDGAR retrospective scenarios can be informative for designing multi-pollutant abatement policies also in emerging economies.
J. S. Hosking, M. R. Russo, P. Braesicke, and J. A. Pyle
Atmos. Chem. Phys., 12, 9791–9797, https://doi.org/10.5194/acp-12-9791-2012, https://doi.org/10.5194/acp-12-9791-2012, 2012
M. J. Ashfold, N. R. P. Harris, E. L. Atlas, A. J. Manning, and J. A. Pyle
Atmos. Chem. Phys., 12, 6309–6322, https://doi.org/10.5194/acp-12-6309-2012, https://doi.org/10.5194/acp-12-6309-2012, 2012
A. Maurizi, F. Russo, M. D'Isidoro, and F. Tampieri
Atmos. Chem. Phys., 12, 3677–3685, https://doi.org/10.5194/acp-12-3677-2012, https://doi.org/10.5194/acp-12-3677-2012, 2012
H. G. Ouwersloot, J. Vilà-Guerau de Arellano, C. C. van Heerwaarden, L. N. Ganzeveld, M. C. Krol, and J. Lelieveld
Atmos. Chem. Phys., 11, 10681–10704, https://doi.org/10.5194/acp-11-10681-2011, https://doi.org/10.5194/acp-11-10681-2011, 2011
M. Boy, A. Sogachev, J. Lauros, L. Zhou, A. Guenther, and S. Smolander
Atmos. Chem. Phys., 11, 43–51, https://doi.org/10.5194/acp-11-43-2011, https://doi.org/10.5194/acp-11-43-2011, 2011
Cited articles
Ahmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer, A., Brown, S., Edwards, P. M., de Gouw, J. A., Frost, G. J., Gilman, J., Helmig, D., Johnson, B., Karion, A., Koss, A., Langford, A., Lerner, B., Olson, J., Oltmans, S., Peischl, J., Pétron, G., Pichugina, Y., Roberts, J. M., Ryerson, T., Schnell, R., Senff, C., Sweeney, C., Thompson, C., Veres, P., Warneke, C., Wild, R., Williams, E. J., Yuan, B., and Zamora, R.: Understanding high wintertime ozone pollution events in an oil and natural gas producing region of the western US, Atmos. Chem. Phys. Discuss., 14, 20295-20343, https://doi.org/10.5194/acpd-14-20295-2014, 2014.
Alcott, T. I. and Steenburgh, W. J.: Orographic influences on a Great Salt Lake-effect snow- storm, Mon. Weather Rev., 141, 2432–2450, https://doi.org/10.1175/MWR-D-12-00328.1, 2013.
Baklanov, A. A., Grisogono, B., Bornstein, R., Mahrt, L., Zilitinkevich, S. S., Taylor, P., Larsen, S. E., Rotach, W. M., and Fernando, H. J. S.: The nature, theory, and modelling of atmospheric planetary boundary layers, B. Am. Meteorol. Soc., 92, 123–128, https://doi.org/10.1175/2010BAMS2797.1, 2011.
Barickman, P.: Emission inventory development activities, in: Final report: 2013 Uinta Basin winter ozone study, edited by: Stoeckenius, T. and McNally, D., ENVIRON International Corporation, Novato, California, Chapter 9, 1–7, available at: http://www.deq.utah.gov/locations/uintahbasin/studies/UBOS-2013.htm (last access: 13 June 2014), 2014.
Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., and Dominici, F.: Ozone and short-term mortality in 95 US urban communities, 1987–2000, J. Am. Med. Assoc., 292, 2372–2378, https://doi.org/10.1001/jama.292.19.2372, 2004.
Benson, C. S.: Ice fog: low temperature air pollution, Geophysical Institute of the University of Alaska, Fairbanks, Alaska, 198 pp., available at: www.dtic.mil/dtic/tr/fulltext/u2/631553.pdf (last access: 13 June 2014), 1965.
Billings, B. J., Grubišic, V., and Borys, R. D.: Maintenance of a mountain valley cold pool: a numerical study, Mon. Weather Rev., 134, 2266–2278, https://doi.org/10.1175/MWR3180.1, 2006.
Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multi-Scale Air Quality (CMAQ) modelling system, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006.
Cai, X.-M. and Luhar, A. K.: Fumigation of pollutants in and above the entrainment zone into a growing convective boundary layer: a large-eddy simulation, Atmos. Environ., 36, 2997–3008, https://doi.org/10.1016/S1352-2310(02)00240-6, 2002.
Chen, R. and Dudhia, J.: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modelling system. Part I: model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Clements, C. B., Whiteman, C. D., and Horel, J. D.: Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah, J. Appl. Meteorol., 42, 752–768, https://doi.org/10.1175/1520-0450(2003)042<0752:CSAEIA>2.0.CO;2, 2003.
Edwards, P. M., Young, C. J., Aikin, K., deGouw, J., Dube, W. P., Geiger, F., Gilman, J., Helmig, D., Holloway, J. S., Kercher, J., Lerner, B., Martin, R., McLaren, R., Parrish, D. D., Peischl, J., Roberts, J. M., Ryerson, T. B., Thornton, J., Warneke, C., Williams, E. J., and Brown, S. S.: Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah, Atmos. Chem. Phys., 13, 8955–8971, https://doi.org/10.5194/acp-13-8955-2013, 2013.
EPA: Air quality criteria for ozone related photochemical oxidants, EPA 600/R-05/004aF, US Environ. Prot. Agency, Research Triangle Park, NC, 821 pp., 2006.
EPA: SPECIATE 4.3: addendum to SPECIATE 4.2, speciation database development documentation, EPA/600/R-11/121, US Environ. Prot. Agency, Research Triangle Park, NC, 28 pp., available at: http://www.epa.gov/ttn/chief/software/speciate/speciate4/addendum4.2.pdf (last access: 13 June 2014), 2011.
EPA: National ambient air quality standards (NAAQS), available at: http://www.epa.gov/air/ criteria.html, (last access: 30 April), 2014.
Gultepe, I., Kuhn, T., Pavolonis, M., Calvert, C., Gurka, J., Heymsfield, A. J., Liu, P. S. K., Zhou, B., Ware, R., Ferrier, B., Milbrandt, J., and Bernstein, B.: Ice fog in arctic during FRAM- ICE fog project: aviation and nowcasting applications, B. Am. Meteorol. Soc., 95, 211–226, https://doi.org/10.1175/BAMS-D-11-00071.1, 2014.
Helmig, D., Thompson, C. R., Evans, J., Boylan, P., Hueber, J., and Park, J.-H.: Highly elevated atmospheric levels of volatile organic compounds in the Uintah Basin, Utah. Environ. Sci. Technol., 48, 4707–4715, https://doi.org/10.1021/es405046r, 2014.
Heymsfield, A. J., Schmitt, C., and Bansemer, A.: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86 °C, J. Atmos. Sci., 70, 4123–4154, https://doi.org/10.1175/JAS-D-12-0124.1, 2013.
Holtslag, A. A. M., Svensson, G., Baas, P., Basu, S., Beare, B., Beljaars, A. C. M., Bosveld, F. C., Cuxart, J., Lindvall, J., Steenveld, G. J., Tjernstrom, M., and Van De Wiel, B. J. H.: Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models, B. Am. Meteorol. Soc., 94, 1691–1706, https://doi.org/10.1175/BAMS-D-11-00187.1, 2013.
Horel, J., Splitt, M., Dunn, L., Pechmann, J., White, B., Ciliberti, C., Lazarus, S., Slemmer, J., Zaff, D., and Burks, J.: Mesowest: cooperative mesonets in the western United States, B. Am. Meteorol. Soc., 83, 211–225, https://doi.org/10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2, 2002.
Hu, X. M., Klein, P. M., and Xue, M.: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments, J. Geophys. Res.-Atmos., 118, 10490–10505, https://doi.org/10.1002/Jgrd.50823, 2013.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Janjic, Z. I.: The Step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes, Mon. Weather Rev., 122, 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994.
Jeong, J.-H., Linderholm, H. W., Woo, S.-H., Folland, C., Kim, B.-M., Kim, S.-J., and Chen, D.: Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season, J. Climate, 26, 1956–1972, https://doi.org/10.1175/JCLI-D-12-00159.1, 2013.
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., and García-Bustamante, E.: A revised scheme for the WRF surface layer formulation, Mon. Weather Rev., 140, 898–918, https://doi.org/10.1175/MWR-D-11-00056.1, 2012.
Kain, J. S.: The Kain–Fritsch convective parameterization: an update, J. Appl. Meteorol., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
Karion, A., Oltmans, S., Petron, G., Sweeney, C., and Schnell, R.: Analysis of aircraft observations, in: Final report: 2013 Uinta Basin winter ozone study, edited by: Stoeckenius, T. and McNally, D., ENVIRON International Corporation, Novato, California, chapter 4, 1–26, available at: http://www.deq.utah.gov/locations/U/uintahbasin/studies/UBOS-2013.htm, last access: 22 December 2014.
Katurji, M. and Zhong, S.: The influence of topography and ambient stability on the characteristics of cold-air pools: a numerical investigation, J. Appl. Meteorol. Climatol., 51, 1740–1749, https://doi.org/10.1175/JAMC-D-11-0169.1, 2012.
Kim, C. K., Stuefer, M., Schmitt, C. G., Heymsfield, A. J., and Thompson, G.: Numerical modelling of ice fog in interior Alaska using the weather research and forecasting model, Pure Appl. Geophys., 1–20, https://doi.org/10.1007/s00024-013-0766-7, 2014.
Kumai, M. and O'Brien, H. W.: A study of ice fog and ice-fog nuclei at Fairbanks, Alaska, part II. US Army Materiel Command Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 19 pp., available at: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0676811 (last access: 13 June 2014), 1965.
Lareau, N. P.: The Dynamics of persistent cold-air pool breakup, Ph.D. thesis, University of Utah, Salt Lake City, Utah, 138 pp., 2014.
Lareau, N. P. and Horel, J. D.: Dynamically induced displacements of a persistent cold-air pool, Bound.-Lay. Meteor., https://doi.org/10.1007/s10546-014-9968-5, 2014.
Lareau, N. P., Crosman, E. T., Whiteman, C. D., Horel, J. D., Hoch, S. W., Brown, W. O. J., and Horst, T. W.: The persistent cold-air pool study, B. Am. Meteorol. Soc., 94, 51–63, https://doi.org/10.1175/BAMS-D-11-00255.1, 2013.
Lee, L., Wooldridge, P. J., Gilman, J. B., Warneke, C., de Gouw, J., and Cohen, R. C.: Low temperatures enhance organic nitrate formation: evidence from observations in the 2012 Uintah Basin Winter Ozone Study, Atmos. Chem. Phys., 14, 12441–12454, https://doi.org/10.5194/acp-14-12441-2014, 2014.
Li, R., Warneke, C., Graus, M., Field, R., Geiger, F., Veres, P. R., Soltis, J., Li, S.-M., Murphy, S. M., Sweeney, C., Pétron, G., Roberts, J. M., and de Gouw, J.: Measurements of hydrogen sulfide (H2S) using PTR-MS: calibration, humidity dependence, inter-comparison and results from field studies in an oil and gas production region, Atmos. Meas. Tech., 7, 3597–3610, https://doi.org/10.5194/amt-7-3597-2014, 2014.
Lippmann, M.: Health effects of tropospheric ozone: review of recent research findings and their implications to ambient air quality standards, J. Expo. Anal. Environ. Epid., 3, 103–129, 1993.
Lu, W. and Zhong, S.: A numerical study of a persistent cold air pool episode in the Salt Lake Valley, Utah, J. Geophys. Res.-Atmos., 119, 1733–1752, https://doi.org/10.1002/2013JD020410, 2014. Lyman, S. and Shorthill, H. (Eds.): Final report: 2012 Uintah Basin winter ozone and air quality study, Commercialization and Regional Development, Utah State University, Vernal, Utah, 285 pp., available at: http://rd.usu.edu/files/uploads/ubos_2011-12_final_report.pdf (last access: 13 June 2014), 2013.
Lyman, S., Mansfield, M., Shorthill, H., Anderson, R., Mangum, C., Evans, J., and Shorthill, T.: Distributed measurements of air quality and meteorology, in: Final report: 2013 Uinta Basin winter ozone study, edited by: Stoeckenius, T. and McNally, D., ENVIRON International Corporation, Novato, California, chapter 3, 1–35, available at: http://www.deq.utah.gov/locations/U/uintahbasin/studies/UBOS-2013.htm, last access: 22 December 2014.
Malek, E., Davis, T., Martin, R. S., and Silva, P. J.: Meteorological and environmental aspects of one of the worst national air pollution episodes (January 2004) in Logan, Cache Valley, Utah, USA, Atmos. Res., 79, 108–122, https://doi.org/10.1016/j.atmosres.2005.05.003, 2006.
Neemann, E. M.: Analysis and simulation of a cold-air pool and high wintertime ozone episode in Utah's Uintah Basin, M.S. thesis, University of Utah, Salt Lake City, Utah, 94 pp., 2014.
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local- scale measurements, J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139, 2011.
Oltmans, S. J., Karion, A., Schnell, R. C., Pétron, G., Sweeney, C., Wolter, S., Neff, D., Montzka, S. A., Miller, B. R., Helmig, D., Johnson, B. J., and Hueber, J.: A high ozone episode in winter 2013 in the Uinta Basin oil and gas region characterized by aircraft measurements, Atmos. Chem. Phys. Discuss., 14, 20117–20157, https://doi.org/10.5194/acpd-14-20117-2014, 2014.
Pollack, I. B., Ryerson, T. B., Trainer, M., Neuman, J. A., Roberts, J. M., and Parrish, D. D.: Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: a synthesis of measurements from 1960 to 2010, J. Geophys. Res.-Atmos., 118, 1–19, https://doi.org/10.1002/jgrd.50472, 2013.
Reeves, H. D. and Stensrud, D. J.: Synoptic-scale flow and valley cold pool evolution in the western United States, Weather Forecast., 24, 1625–1643, https://doi.org/10.1175/2009WAF2222234.1,2009.
Reeves, H. D., Elmore, K. L., Manikin, G. S., and Stensrud, D. J.: Assessment of forecasts during persistent valley cold pools in the Bonneville Basin by the North American Mesoscale Model, Weather Forecast., 26, 447–467, https://doi.org/10.1175/WAF-D-10-05014.1, 2011.
Roberts, J. M., Veres, P. R., Yuan, B., Warneke, C., Geiger, F., Edwards, P. M., Wild, R., Dube, W., Petron, G., Kofler, J., Zahn, A., Brown, S. S., Graus, M., Gilman, J., Lerner, B., Peischl, J., de Gouw, J. A., Li, R., Bates, T., Quinn, P., Koss, A., Li, S.-M., Parrish, D. D., Senff, C. J., Langford, A. O., Banta, R., Martin, R., Zamora, R., Murphy, S., Soltis, J., and Field, R.: Analysis of aircraft observations, in: Final report: 2013 Uinta Basin winter ozone study, edited by: Stoeckenius, T. and McNally, D., ENVIRON International Corporation, Novato, California, Chapter 5, 1–96, available at: http://www.deq.utah.gov/locations/U/uintahbasin/studies/UBOS-2013.htm, last access 13 June 2014.last access: 22 December 2014.
Salmond, J. A.: Wavelet analysis of intermittent turbulence in the very stable nocturnal boundary layer: implications for the vertical mixing of ozone, Bound.-Lay. Meteorol., 114, 463–488, https://doi.org/10.1007/s10546-004-2422-3, 2005.
Schmitt, C. G., Stuefer, M., Heymsfield, A. J., and Kim, C. K.: The microphysical properties of ice fog measured in urban environments of interior Alaska, J. Geophys. Res. Atmos., 118, 11136–11147, https://doi.org/10.1002/jgrd.50822, 2013.
Schnell, R. C., Oltmans, S. J., Neely, R. R., Endres, M. S., Molenar, J. V., and White, A. B.: Rapid photochemical production of ozone at high concentrations in a rural site during winter, Nat. Geosci., 2, 120–122, https://doi.org/10.1038/NGEO415, 2009.
Schnell, R., Johnson, B., Cullis, P., Sterling, C., Hall, E., Albee, R., Jordan, A., Wendell, J., Oltmans, S., Petron, G., and Sweeney, C.: Tethered ozonesonde and surface ozone measurements in the Uintah Basin, winter 2013, in: Final report: 2013 Uinta Basin winter ozone study, edited by: Stoeckenius, T. and McNally, D., ENVIRON International Corporation, Novato, California, chapter 8, 1–48, 2014.
Shin, H. H. and Hong, S.-Y.: Intercomparison of planetary boundary-layer parameterizations in the WRF model for a single day from CASES-99. Bound.-Lay. Meteorol., 139, 261–281, https://doi.org/10.1007/s10546-010-9583-z, 2011.
Shupe, M. D. and Intrieri, J. M.: Cloud radiative forcing of the arctic surface: the influence of cloud properties, surface albedo, and solar zenith angle, J. Climate, 17, 616–628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2, 2004.
Silcox, G. D., Kelly, K. E., Crosman, E. T., Whiteman, C. D., and Allen, B. L.: Wintertime PM2.5 concentrations in Utah's Salt Lake Valley during persistent multi-day cold-air pools, Atmos. Environ., 46, 17–24, https://doi.org/10.1016/j.atmosenv.2011.10.041, 2012.
Stoeckenius, T. and McNally, D. (Eds.): Final report: 2013 Uinta Basin winter ozone study, ENVIRON International Corporation, Novato, California, 367 pp., available at: http://www.deq.utah.gov/locations/uintahbasin/studies/UBOS-2013.htm, last access: 13 June 2014.
Sheridan, P. F., Vosper, S. B., and Brown, A. R.: Characteristics of cold pools observed in narrow valleys and dependence on external conditions, Q. J. Roy. Meteor. Soc., 140, 715–728, https://doi.org/10.1002/qj.2159, 2014.
Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone, J. Atmos. Sci., 71, 3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1, 2014.
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme, Part II: Implementation of a new snow parameterization, Mon. Weather Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008.
Warneke, C., Geiger, F., Edwards, P. M., Dube, W., Pétron, G., Kofler, J., Zahn, A., Brown, S. S., Graus, M., Gilman, J. B., Lerner, B. M., Peischl, J., Ryerson, T. B., de Gouw, J. A., and Roberts, J. M.: Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition, Atmos. Chem. Phys., 14, 10977–10988, https://doi.org/10.5194/acp-14-10977-2014, 2014a.
Warneke, C., Veres, P. R., Murphy, S. M., Soltis, J., Field, R. A., Graus, M. G., Koss, A., Li, S.-M., Li, R., Yuan, B., Roberts, J. M., and de Gouw, J. A.: PTR-QMS vs. PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013, Atmos. Meas. Tech. Discuss., 7, 6565–6593, https://doi.org/10.5194/amtd-7-6565-2014, 2014b.
Whiteman, C. D., Zhong, S., Shaw, W. J., Hubbe, J. M., Bian, X., and Mittelstadt, J.: Cold pools in the Columbia Basin, Weather Forecast., 16, 432–447, https://doi.org/10.1175/1520-0434(2001)016<0432:CPITCB>2.0.CO;2, 2001.
Zängl, G.: Formation of extreme cold-air pools in elevated sinkholes: an idealized numerical process study, Mon. Weather Rev., 133, 925–941, https://doi.org/10.1175/MWR2895.1, 2005a.
Zängl, G.: Wintertime cold-air pools in the Bavarian Danube Valley Basin: data analysis and idealized numerical simulations, J. Appl. Meteorol., 44, 1950–1971, https://doi.org/10.1175/JAM2321.1, 2005b.
Zhang, H. L., Pu, Z. X., and Zhang, X. B.: Examination of Errors in Near-Surface Temperature and Wind from WRF Numerical Simulations in Regions of Complex Terrain, Weather Forec., 28, 893–914, https://doi.org/10.1175/Waf-D-12-00109.1, 2013.
Short summary
This paper uses numerical model simulations to investigate the meteorological characteristics of the 31 January–6 February 2013 cold-air pool (also know as a temperature 'inversion') in the Uintah Basin, Utah, and the resulting high ozone concentrations. A number of factors that influence cold pools and pollutant concentrations in the Uintah Basin are discussed, including snow cover, ice fog, and thermally driven flows.
This paper uses numerical model simulations to investigate the meteorological characteristics of...
Altmetrics
Final-revised paper
Preprint