Articles | Volume 13, issue 23
Atmos. Chem. Phys., 13, 12073–12088, 2013
https://doi.org/10.5194/acp-13-12073-2013
Atmos. Chem. Phys., 13, 12073–12088, 2013
https://doi.org/10.5194/acp-13-12073-2013

Research article 13 Dec 2013

Research article | 13 Dec 2013

Analyzing experimental data and model parameters: implications for predictions of SOA using chemical transport models

K. C. Barsanti et al.

Related authors

Nighttime and Daytime Dark Oxidation Chemistry in Wildfire Plumes: An Observation and Model Analysis of FIREX-AQ Aircraft Data
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard H. Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Lee Thornhill, Joel A. Thornton, Geoff S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-267,https://doi.org/10.5194/acp-2021-267, 2021
Preprint under review for ACP
Short summary
A Predictive Model for Salt Nanoparticle Formation UsingHeterodimer Stability Calculations
Sabrina Chee, Kelley Barsanti, James N. Smith, and Nanna Myllys
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-84,https://doi.org/10.5194/acp-2021-84, 2021
Preprint under review for ACP
Short summary
Using GECKO-A to derive mechanistic understanding of SOA formation from the ubiquitous but understudied camphene
Isaac Kwadjo Afreh, Bernard Aumont, Marie Camredon, and Kelley Claire Barsanti
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-829,https://doi.org/10.5194/acp-2020-829, 2020
Revised manuscript accepted for ACP
Short summary
Viscosities, diffusion coefficients, and mixing times of intrinsic fluorescent organic molecules in brown limonene secondary organic aerosol and tests of the Stokes–Einstein equation
Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, and Allan K. Bertram
Atmos. Chem. Phys., 19, 1491–1503, https://doi.org/10.5194/acp-19-1491-2019,https://doi.org/10.5194/acp-19-1491-2019, 2019
Short summary
Speciated and total emission factors of particulate organics from burning western US wildland fuels and their dependence on combustion efficiency
Coty N. Jen, Lindsay E. Hatch, Vanessa Selimovic, Robert J. Yokelson, Robert Weber, Arantza E. Fernandez, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 19, 1013–1026, https://doi.org/10.5194/acp-19-1013-2019,https://doi.org/10.5194/acp-19-1013-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Source apportionment of fine organic carbon at an urban site of Beijing using a chemical mass balance model
Jingsha Xu, Di Liu, Xuefang Wu, Tuan V. Vu, Yanli Zhang, Pingqing Fu, Yele Sun, Weiqi Xu, Bo Zheng, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 7321–7341, https://doi.org/10.5194/acp-21-7321-2021,https://doi.org/10.5194/acp-21-7321-2021, 2021
Short summary
Modeled changes in source contributions of particulate matter during the COVID-19 pandemic in the Yangtze River Delta, China
Jinlong Ma, Juanyong Shen, Peng Wang, Shengqiang Zhu, Yu Wang, Pengfei Wang, Gehui Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 21, 7343–7355, https://doi.org/10.5194/acp-21-7343-2021,https://doi.org/10.5194/acp-21-7343-2021, 2021
Short summary
Aerosols from anthropogenic and biogenic sources and their interactions – modeling aerosol formation, optical properties, and impacts over the central Amazon basin
Janaína P. Nascimento, Megan M. Bela, Bruno B. Meller, Alessandro L. Banducci, Luciana V. Rizzo, Angel Liduvino Vara-Vela, Henrique M. J. Barbosa, Helber Gomes, Sameh A. A. Rafee, Marco A. Franco, Samara Carbone, Glauber G. Cirino, Rodrigo A. F. Souza, Stuart A. McKeen, and Paulo Artaxo
Atmos. Chem. Phys., 21, 6755–6779, https://doi.org/10.5194/acp-21-6755-2021,https://doi.org/10.5194/acp-21-6755-2021, 2021
Aerosol radiative forcings induced by substantial changes in anthropogenic emissions in China from 2008 to 2016
Mingxu Liu and Hitoshi Matsui
Atmos. Chem. Phys., 21, 5965–5982, https://doi.org/10.5194/acp-21-5965-2021,https://doi.org/10.5194/acp-21-5965-2021, 2021
Short summary
A study of the effect of aerosols on surface ozone through meteorology feedbacks over China
Yawei Qu, Apostolos Voulgarakis, Tijian Wang, Matthew Kasoar, Chris Wells, Cheng Yuan, Sunil Varma, and Laura Mansfield
Atmos. Chem. Phys., 21, 5705–5718, https://doi.org/10.5194/acp-21-5705-2021,https://doi.org/10.5194/acp-21-5705-2021, 2021
Short summary

Cited articles

Aumont, B., Szopa, S., and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 2497–2517, https://doi.org/10.5194/acp-5-2497-2005, 2005.
Barsanti, K. C., Smith, J. N., and Pankow, J. F.: Application of the np plus mP modeling approach for simulating secondary organic particulate matter formation from alpha-pinene oxidation, Atmos. Environ., 45, 6812–6819, https://doi.org/10.1016/j.atmosenv.2011.01.038, 2011.
Byun, D. and Schere, K. L.: Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006.
Camredon, M., Hamilton, J. F., Alam, M. S., Wyche, K. P., Carr, T., White, I. R., Monks, P. S., Rickard, A. R., and Bloss, W. J.: Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysis, Atmos. Chem. Phys., 10, 2893–2917, https://doi.org/10.5194/acp-10-2893-2010, 2010.
Cappa, C. D. and Wilson, K. R.: Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior, Atmos. Chem. Phys., 11, 1895–1911, https://doi.org/10.5194/acp-11-1895-2011, 2011.
Download
Altmetrics
Final-revised paper
Preprint