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Abstract. Despite critical importance for air quality and cli-
mate predictions, accurate representation of secondary or-
ganic aerosol (SOA) formation remains elusive. An essen-
tial addition to the ongoing discussion of improving model
predictions is an acknowledgement of the linkages between
experimental conditions, parameter optimization and model
output, as well as the linkage between empirically-derived
partitioning parameters and the physicochemical properties
of SOA they represent in models. In this work, a “best avail-
able” set of SOA modeling parameters is selected by com-
paring predicted SOA yields and mass concentrations with
observed yields and mass concentrations from a comprehen-
sive list of published smog chamber studies. Evaluated SOA
model parameters include existing parameters for two prod-
uct (2p) and volatility basis set (VBS) modeling frameworks,
and new 2p-VBS parameters; 2p-VBS parameters are devel-
oped to exploit advantages of the VBS approach within the
computationally-economical and widely-used 2p framework.
Fine particulate matter (PM2.5) and SOA mass concentra-
tions are simulated for the continental United States using
CMAQv.4.7.1; results are compared for a base case (with
default CMAQ parameters) and two best available parame-
ter cases to illustrate the high- and low-NOx limits of bio-
genic SOA formation from monoterpenes. Results are dis-
cussed in terms of implications for current chemical trans-
port model simulations and recommendations are provided
for future modeling and measurement efforts. The compar-
isons of SOA yield predictions with data from 22 published
chamber studies illustrate that: (1) SOA yields for naphtha-
lene, and cyclic and > C5 straight-chain/branched alkanes
are not well represented using either the newly developed

or existing parameters for low-yield aromatics and lumped
alkanes, respectively; and (2) for four of seven volatile or-
ganic compound+oxidant systems, the 2p-VBS parameters
better represent chamber data than do the default CMAQ
v.4.7.1 parameters. Using the “best available” parameters
(combination of published 2p and newly derived 2p-VBS),
predicted SOA mass and PM2.5 concentrations increase by
up to 15 % and 7 %, respectively, for the high-NOx case
and up to 215 % (∼ 3 µg m−3) and 55 %, respectively, for
the low-NOx case. Percent bias between model-based and
observationally-based secondary organic carbon (SOC) im-
proved from−63 % for the base case to−15 % for the low-
NOx case. The ability to robustly assign “best available” pa-
rameters in all volatile organic compound+oxidant systems,
however, is critically limited due to insufficient data; particu-
larly for photo-oxidation of diverse monoterpenes, sesquiter-
penes, and alkanes under a range of atmospherically relevant
conditions.

1 Introduction

Atmospheric fine particulate matter (PM2.5) has long been
linked to direct climate forcing, with estimates of radiative
forcing due to the sulfate fraction surpassing that due to
the organic carbon fraction (Haywood and Boucher, 2000
and references therein). However, more recently, Goldstein
et al. (2009) reported that for the southeastern United States
(US) the spatial and temporal distributions of aerosol optical
thickness (AOT) are most consistent with biogenic organic
aerosol precursors (e.g.,α-pinene), suggesting secondary
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organic aerosol (SOA) can dominate AOT in the summer,
affecting negative radiative forcing or cooling in the region.
A modeling study by Myhre et al. (2009) also suggests that
SOA is a significant contributor to negative radiative forcing,
on a global scale. Additional radiative forcing (Park et al.,
2010), though positive in sign, may be possible if one con-
siders the production of brown carbon from SOA constituents
(Updyke et al., 2012). SOA, by virtue of its contribution to
PM2.5 (20–50 % globally, Hallquist et al., 2009), also plays
a role in adversely affecting health (e.g., Pope, 2007). It is
thus of critical importance that a quantitative and predictive
understanding of SOA be achieved. To that end, much effort
has been directed at developing, improving, and testing SOA
models that are sufficiently comprehensive yet not computa-
tionally burdensome.

Accurate representation of SOA is elusive, even at the
process-level, and becomes increasingly so as attempts are
made to simplify and parameterize systems that are not fully
understood. While the focus of this work is on bottom-up
SOA modeling approaches, top-down approaches exist as
well (e.g., Spracklen et al., 2011). One bottom-up approach
to simulating SOA in three-dimensional chemical transport
models (CTMs) proceeds by combining anthropogenic and
biogenic emissions estimates with smog chamber data on
SOA formation from individual volatile organic compound
(VOC) precursors to generate regional and/or global SOA
fields (Hallquist et al., 2009). Representation of SOA for-
mation is based on gas/particle (G/P) partitioning theory
(Pankow, 1994a, b) and historically parameterized using the
two-product (2p) approach of Odum et al. (1996), in which
up to two lumped products are assumed to represent the con-
densable oxidation products of each VOC+oxidant system.
For each such system, products are assigned empirically-
derived partitioning parameters (Kp or C*) and stoichiomet-
ric product yields (α) using a least-squares fitting approach,
typically such that one product has a relatively lowerα value
and lower volatility (product 1) and the other has a rela-
tively higherα value and higher volatility (product 2). An
alternative, more recent approach is the volatility basis set
(VBS) approach (Donahue et al., 2006; Lane et al., 2008b),
in which C* values are defined by fixed logarithmically-
spaced bins and least-squares fitting is used to assignα val-
ues (e.g., Pathak et al., 2007a). In addition to SOA formation
from oxidation of volatile precursors (“traditional” SOA),
the VBS approach has been used to parameterize SOA for-
mation based on smog chamber studies of intermediate to
low volatility precursors (Grieshop et al., 2009; Presto et al.,
2010), including those precursors produced from the evap-
oration of primary organic aerosol (POA) (Grieshop et al.,
2009).

While there are a variety of limitations associated with us-
ing smog chamber data to derive model parameters to repre-
sent SOA formation in the real atmosphere (e.g., Kroll and
Seinfeld, 2008), and more detailed modeling approaches are
being developed (e.g., GECKO-A, Aumont et al., 2005; Lee-

Taylor et al., 2011; and CNPG, Pankow and Barsanti, 2009;
Barsanti et al., 2011), most widely-used approaches for pre-
dicting SOA in CTMs rely on parameterizations of cham-
ber experiments. These CTMs include CAM-Chem (Lack
et al., 2004; Heald et al., 2008), CMAQ (Carlton et al.,
2010), GEOS-Chem (Henze and Seinfeld, 2006; Pye et al.,
2010), GISS GCM (Chung and Seinfeld, 2002) and PM-
CAMx (Lane et al., 2008b; Tsimpidi et al., 2011). The de-
fault implementation of the 2p and VBS approaches in these
CTMs, as well as the fitting of 2p and VBS parameters, as-
sumes instantaneous G/P equilibrium. Recent work suggests
that this assumption is appropriate in CTMs (Saleh et al.,
2013), though other recent studies (Virtanen et al., 2010;
Cappa and Wilson, 2011; Vaden et al., 2011; Perraud et al.,
2012; Shiraiwa and Seinfeld, 2012) suggest that this assump-
tion may not be appropriate under all conditions; changes in
the physicochemical properties of particles due to ambient
condition changes and/or condensed-phase chemistry may
lead to circumstances where partitioning kinetics are con-
trolled by particle-phase diffusion. In this work, the default
assumption of instantaneous equilibrium is retained.

Chamber studies conducted with very high initial pre-
cursor concentrations (and subsequently high reacted hy-
drocarbon levels,1HC), lead to very high organic aerosol
mass concentrations (Mo) relative to ambient values. Be-
cause highMo values favor SOA condensation, even rela-
tively volatile compounds can contribute significantly to the
SOA that forms. In darkα-pinene ozonolysis experiments by
Yu et al. (1999)∼ 50–95 % of the SOA mass formed can be
attributed to identified and hypothesized oxidation products
that are relatively volatile, withKp values on the order of
10−6 to 10−1 m3 µg−1 (C* ≈ 105 to 10 µg m−3). In more re-
cent darkα-pinene ozonolysis experiments by Camredon et
al. (2010), also at highMo, all of the proposed and identi-
fied major monomeric oxidation products in the condensed
phase haveKp values on the order of 10−5 to 10−1 m3 µg−1

(C* ≈ 104 to 10 µg m−3). However, only products at the low-
est end of such volatility distributions (Kp = 10−1 m3 µg−1 or
C* = 10 µg m−3) would be expected to condense at an atmo-
spherically relevantMo of ∼ 5 µg m−3, and for those prod-
ucts, only∼ 33 % would be expected in the condensed phase.

When the 2p fitting approach is applied to chamber data
from experiments carried out at high1HC levels (and thus
high Mo), the relatively volatile products with higher stoi-
chiometric yields (α) form in significant levels, “masking"
the presence of lower volatility products with much lowerα

values. Thus, while lower volatility products do not influence
Kp values derived from highMo chamber experiments, such
products may explain most of the SOA formation in the at-
mosphere. Evidence for this has been provided by lowMo
chamber experiments (Presto and Donahue, 2006; Pathak et
al., 2007a; Shilling et al., 2008). As described in Presto and
Donahue (2006), the VBS fitting approach has some advan-
tages over the 2p fitting approach that are achieved by fixing
the volatility bins (C* values) based on experimental and/or
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Fig. 1. Comparison of 2p (solid lines) and VBS (dashed lines) parameterizations for darkα-pinene ozonolysis chamber experiments, as
influenced by the range in SOA mass concentration and number of data points at low SOA mass concentration.(a) SOA yield vs. SOA mass
concentration;(b) SOA mass concentration vs. level of reacted hydrocarbon (1HC).

ambientMo ranges and fitting only theα values. For a typi-
cal 4-species basis set (e.g.,C* = {1, 10, 100, 1000} µg m−3)
the number of free parameters, four, is the same as with the
2p approach; however, the VBS parameters are much less
covariant because the volatility space is fixed. Furthermore,
because of the fixed logarithmically-spaced volatility bins,
VBS parameters may be better able to represent SOA forma-
tion at low Mo, specifically when limited data exist. In this
work, parameters based on VBS fits are developed and eval-
uated in an effort to take advantage of the robustness of the
VBS fitting approach within the computationally economi-
cal, precursor specific, and widely used 2p modeling frame-
work. These new parameters are herein called “2p-VBS”.

Principles of G/P partitioning theory are used here to guide
a detailed analysis of the often overlooked, but non-trivial
linkages between experimental conditions, parameter opti-
mization, and predictions of SOA using CTMs. A detailed
comparison of predicted SOA yields and mass concentra-
tions using the 2p, VBS, and the new 2p-VBS parameters
with published smog chamber data is conducted and used to
recommend the “best” parameters based on currently avail-
able data. The “best available” parameters then are used in
CMAQ to simulate SOA and PM2.5 over the continental US
during a two-week summer period. Results of the analysis
and model predictions are used to highlight current knowl-
edge gaps and may be used to guide future chamber experi-
ments and SOA modeling efforts.

2 Approach

2.1 Development of 2p-VBS parameters

In this section, the motivation and approach for developing
the new 2p-VBS parameters are described. Figure 1a and b il-

lustrate the relationship between chamberMo and1HC lev-
els and predicted SOA yields and mass concentrations using
2p and VBS fitting approaches for darkα-pinene ozonoly-
sis experiments (shown only forMo ≤ 10 µg m−3, see Sup-
plement Table S1 for a descriptive list of all of the experi-
mental data considered, including fullMo and1HC ranges).
As introduced above, the SOA fitting parameters are influ-
enced both by the range inMo, as well as the number of data
points at lowMo. The Presto et al. (2005) data spans1HC
levels from 15–210 ppb andMo values from 7–346 µg m−3

(three data points withMo < 10 µg m−3), while Shilling et
al. (2008) spans1HC levels from 0.3–14 ppb andMo from
0.1–7 µg m−3 (twenty data points withMo < 10 µg m−3). Re-
sults from Shilling et al. (2008) suggest that when sufficient
data points were available at lowMo both the 2p and VBS
parameterizations represented the observed yields (Fig. 1a)
and captured the observed SOA formation at the lowest1HC
levels (Fig. 1b). For the Presto et al. (2005) dataset, while the
observed yields atMo > 50 µg m−3 were represented by the
published 2p parameterization (not shown here, see Presto et
al., 2005), observed SOA formation at the lowest1HC levels
(15–25 ppb) was not captured (Fig. 1b). In this work, VBS
parameters were fit to the Presto et al. (2005) dataset; the
VBS parameters were better able to represent observed SOA
formation at1HC levels < 25 ppb in the experiments from
which the parameters were derived, as well as in other cham-
ber experiments for the same VOC+oxidant system (Grif-
fin et al., 1999; Cocker et al., 2001a; Pathak et al., 2007b;
Song et al., 2007). These results suggest that the VBS ap-
proach may be better able to represent SOA formation at low
1HC levels andMo, specifically when data are available but
sparse, due to the fixed logarithmically-spaced volatility bins
across the experimentally relevantMo range. The ability of
any individual parameterization to represent SOA formation
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will further depend on the quality of data used in the fitting
and the chemical similarity between the observed and mod-
eled systems.

In the context of chemical transport modeling, the inability
of some chamber-based parameterizations to accurately cap-
ture SOA formation at low, atmospherically relevant1HC
levels has important consequences for spatial and temporal
predictions of atmospheric PM2.5, as well as implications for
analyses of the relative contributions of specific SOA precur-
sors, including source-attribution analyses. Therefore, in an
effort to exploit the fitting advantages of the VBS approach
and potentially provide improved parameters for use within
the 2p modeling framework, 2p-VBS parameters were de-
veloped for evaluation as follows. For the traditional SOA
precursors, the published VBS parameters of Tsimpidi et
al. (2010) atT = 298 K were used to generate 263 pseudo-
data points (yield vs.Mo) for Mo = 0 to 200 µg m−3 at each
of three temperatures (272, 298, and 324 K) using an effec-
tive 1Hvap= 30 kJ mol−1 (see Pathak et al. 2007b); those
789 pseudo-data points were then fit to generate a set of 2p-
VBS parameters for each set of VBS parameters. The 2p-
VBS parameters are presented in Table 1 forT = 298 K and
ρ = 1.5 g cm−3 (the same temperature and density reported
in Tsimpidi et al. (2010); see Supplement for derivation of
the density correction). In addition to the volatile SOA pre-
cursors, 2p-VBS parameters were derived for semi-volatile
alkanes and POA (Table 2) based on the VBS parameters of
Presto et al. (2010), Shrivastava et al. (2008) and Grieshop et
al. (2009). Following Shrivastava et al. (2008) in which the
effective1Hvap varied withC* for POA, here1Hvap was
treated as an additional fitting parameter (values are included
in Table 2). Published VBS parameters were chosen as the
starting point for this work because of the ability of VBS
parameterizations to represent SOA formation over a wide
1HC andMo range and the limited availability of validated
data within the range of atmospherically relevant1HC and
Mo.

For each of the traditional SOA precursors, the 2p-VBS
parameters reproduced the yield curves from the VBS pa-
rameters over the range ofMo data, at each of the three tem-
peratures, and were able to represent SOA formation with
the same degree of uncertainty as the VBS parameters (i.e.,
no additional error is introduced by the 2p-VBS fit, see Sup-
plement Figure S1). Therefore, the SOA yield and mass pre-
dictions using the Tsimpidi et al. (2010) VBS parameters
and the 2p-VBS parameters derived here produce equivalent
results for “first generation” SOA formation, including the
temperature dependence of SOA yields. Consequently, only
predictions using the 2p-VBS parameters are shown in sub-
sequent figures (i.e., predictions using Tsimpidi et al. (2010)
VBS parameters are not shown). Differences between the 2-
VBS parameters in this work and the reduced species VBS
parameters in Shrivastava et al. (2011), also developed to re-
duce computational burden, are described in the Supplement
(see Fig. S2).

2.2 Chemical transport modeling

CMAQ (Byun and Schere, 2006) version 4.7.1 was used to
simulate SOA mass concentrations over the continental US
(12× 12 km resolution) up to 50 mb with 34 vertical layers
(4 666 194 grid cells) for 12–31 July 2006. This date range
is representative of typical US summertime conditions when
biogenic SOA is a measurable component of total PM2.5
(Kleindienst et al., 2010). The simulation results for the first
three days were excluded from subsequent analysis to allow
for model initialization and spin-up. The gas-phase chem-
istry mechanism SAPRC07 (Carter, 2010) was used for the
simulations, with updated isoprene photo-oxidation chem-
istry to improve isoprene nitrate yields, isoprene nitrate life-
times, and NOx recycling rates (Xie et al., 2013). Anthro-
pogenic emissions were based on the 2005 National Emis-
sions Inventory (NEI) projected to 2006; biogenic emissions
were generated with the Biogenic Emissions Inventory Sys-
tem (BEIS) model version 3.14. Meteorological inputs for
BEIS and pollutant transport were from version 3.1 of the
Weather Research Forecasting (WRF) model. Three cases
were considered: a base case using the revised CMAQv4.7
parameters (i.e., CMAQv4.7.1 parameters) described in Carl-
ton et al. (2010) and two additional cases exploring best
available SOA parameters and sensitivity to NOx-dependent
biogenic SOA formation (BA-highNOx and BA-lowNOx).
Selection of the best available parameters was based on the
comparison of 2p, VBS and 2p-VBS predictions with cham-
ber data, as described in detail in the results and discussion
section. The default aging mechanism of CMAQv4.7.1 was
retained, wherein traditional SOA is converted to nonvolatile
SOA with a rate constantkolig = 9.6× 10−6 s−1 (Carlton et
al., 2010).

CMAQv4.7.1 allows NOx-dependent SOA formation for
anthropogenic precursors only (see Carlton et al., 2010);
thus two case studies (BA-highNOx and BA-lowNOx) were
constructed to illustrate the limits of SOA formation from
monoterpenes under “high” and “low” NOx conditions. For
the aromatic precursors within CMAQ, the branching be-
tween the high- and low-NOx SOA formation pathways
is treated dynamically as a function of the ratio of nitric
oxide (NO) to hydroperoxy radical (HO2) and the reac-
tion rates of the peroxyradical (RO2) with NO and HO2
(Henze et al., 2008). Therefore, the anthropogenic high-NOx
parameters were the same in the prescribed BA-highNOx
and BA-lowNOx case studies, and were selected as de-
scribed below. For the anthropogenic low-NOx parameters,
the default CMAQv4.7.1 values were used. While legiti-
mate questions exist as to the relationship between NOx
conditions in chambers and NOx conditions in the real at-
mosphere (and how each are defined), a detailed investi-
gation is beyond the scope of this manuscript. For bio-
genic precursors, the division between high- and low-NOx
experimental data and SOA parameterizations was thus
based on a number of factors: (1) the designations given in
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Table 1.2p-VBS parameters, based on VBS parameters of Tsimpidi et al. (2010), for SOA precursors under high- and low-NOx conditions
atT = 298 K andρ = 1.5 g cm−3.

High NOx Low NOx

Precursor α1 C∗
1 α2 C∗

2 Data α1 C∗
1 α2 C∗

2 Data
Sources Sources

ALK4 0.038 10 0.075 10
ALK5 0.150 10 a, b, c 0.300 10
OLE1 0.009 9.0 0.116 284 0.014 4.0 0.170 236
OLE2 0.032 8.1 0.216 244 0.055 2.8 0.297 170
ARO1= TOL 0.186 10 0.488 180 0.218 3.2 0.625 103 d, e
ARO2= XYL 0.219 11 0.487 185 d 0.275 3.7 0.639 97
ISO 0.020 7.4 0.018 68 f 0.019 2.1 0.032 28
TERP 0.130 7.3 0.433 191 0.160 1.7 0.615 126
SESQ fit for 0.647 18 g, h, i n/a
Mo ≤ 30 µg m−3

Data sources for the Tsimpidi et al. (2010) parameterizations are provided if specifically discussed in the text.a Wang et al. (1992);
b Takekawa et al. (2003);c Lim and Ziemann (2005);d Ng et al. (2007b);e Hildebrandt et al. (2009);f Pandis et al. (1991);
g Hoffmann et al. (1997);h Griffin et al. (1999);i Ng et al. (2007a).

Table 2.2p-VBS parameters based on VBS parameters for alkanes
(Presto et al., 2010), naphthalene (Pye et al., 2010), undifferentiated
POA (Shrivastava et al., 2008), wood smoke POA and diesel POA
(Grieshop et al., 2009) under high-NOx conditions forT = 298 K
andρ = 1.0 g cm−3.

Precursor α1 C∗
1 1Hvap,1 α2 C∗

2 1Hvap,2

C12H26 0.091 4.7 30 0.569 218 30
C13H28 0.121 1.1 30 0.666 52.6 30
C14H30 0.139 0.7 30 0.675 31.4 30
C15H32 0.155 0.6 30 0.674 23.4 30
C16H34 0.167 0.5 30 0.672 19.0 30
C17H36 0.183 0.5 30 0.664 16.0 30
Naphthalene 0.144 2.9 30 0.226 33.7 30
POA 0.257 0.7 112 0.501 180 77
Wood Smoke POA 0.228 1.6 69 0.473 103 56
Diesel POA 0.239 4.4 66 0.479 213 58

the associated publications, (2) reported HCinitial / NOxinitial
and/or1HC / NOxinitial ratios, and (3) comparisons among
reportedly similar data/parameterizations (see Supplement
Table S1 for chamber experiment details). The selection of
biogenic SOA parameters, specifically for monoterpenes, un-
der high-NOx conditions (BA-highNOx) and low-NOx con-
ditions (BA-lowNOx) is described below. The parameters se-
lected for each case are summarized in Table 3.

3 Results and discussion

3.1 Biogenic precursor parameters

In Figs. 2–4, for each of the biogenic precursors (isoprene,
monoterpenes, sesquiterpenes), two panels are shown. The
first is SOA yield vs.Mo and the second isMo vs. 1HC.
Theoretical yield (panel a) and SOA (panel b) curves using

2p, VBS, and/or 2p-VBS parameters are shown, along with
chamber data. The predicted SOA curves are particularly
well-suited for illustrating the ability (or inability) of model
parameters to represent SOA formation under ambient condi-
tions. Where sufficient chamber data were available, the fig-
ures were limited toMo < 10–30 µg m−3 to further highlight
the atmospherically relevant range. For the precursors that
have been more widely studied (e.g., monoterpenes), a subset
of published chamber data was selected based either on the
use of the data in derivation of CTM model parameters or on
the experimental conditions (relatively low/atmospherically
relevant1HC levels andMo). Parameters were evaluated for
both high- and low-NOx conditions.

3.1.1 Isoprene parameters

In Fig. 2, the 2p-VBS theoretical yield (Fig. 2a) and SOA for-
mation (Fig. 2b) curves for isoprene are compared with those
from two additional parameterizations widely used in chem-
ical transport modeling: (1) the Henze and Seinfeld (2006)
low-NOx 2p parameterization based on the chamber experi-
ments of Kroll et al. (2006), and (2) the high-NOx “3p” pa-
rameterization of Pandis et al. (1991). Also shown are upper-
bound (low-NOx) and lower-bound (high-NOx) parameter-
izations from Carlton et al. (2009) (note: the lower-bound
parameterization is outside the axis range in Fig. 2b). For the
low-NOx conditions, the 2p-VBS underpredicted SOA yields
compared to chamber observations (Fig. 2a) and was not able
to reproduce the observed SOA formation at the lowest1HC
levels (Fig. 2b) (chamber data: Kroll et al., 2005, 2006; Chan
et al., 2010; Chhabra et al., 2010). The low-NOx VBS pa-
rameterization, on which the 2p-VBS parameterization was
based, relied on extrapolation of chamber data as described
in Lane et al. (2008b). Briefly, the high-NOx VBS parameters
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Table 3. Default parameters (base case) and best available parameters for biogenic high NOx (BA-highNOx) and biogenic low NOx (BA-
lowNOx) used in CMAQv4.7.1 simulationsa; T = 298 K and densitiesb matched to reported densities for base case (Carlton et al., 2010).
Data references not provided in this work can be found in Carlton et al. (2010) for 2p parameters and in Tsimpidi et al. (2010) for VBS
parameters.

Base Case Best Available (BA)

Precursor α1 C∗
1 α2 C∗

2 α1 C∗
1 α2 C∗

2 Source

ALK5 0.072 0.02 0.10 6.7 2p-VBS
TOL = ARO1c 0.076 2.3 0.148 21.3 0.201 8.5 0.527 149 2p-VBS
XYL = ARO2c 0.039 1.3 0.112 34.5 0.039 1.3 0.112 34.5 CMAQ
ISO 0.029 0.6 0.232 116 0.029 0.6 0.232 116 CMAQ
TERP (high NOx) 0.139 14.8 0.454 134 0.112 6.3 0.376 165 2p-VBS
TERP (low NOx) n/a 0.139 1.5 0.533 110 2p-VBS
SQT= SESQ 1.537 25.0 1.537 25.0 CMAQ

aNOx dependent SOA pathways for anthropogenic compounds are treated in CMAQv.4.7.1, with branching calculated as a
function of RO2 reaction with NO vs. HO2. Only the high NOx anthropogenic parameters are shown here; the CMAQ default
low NOx anthropogenic parameters were used in all simulations. High NOx and low NOx biogenic cases were run to illustrate
the limits of SOA production in each of these scenarios (note: only the TERP parameters vary with NOx level, see text for
discussion);
b Density,ρ (g cm−3): ALK5, 1.0; TOL, 1.24; XYL, 1.48; ISO, 1.4; TERP, 1.3; SQT, 1.3;
c Eachα value (CMAQ and 2p-VBS) was divided by 0.765 (TOL) or 0.804 (XYL) to account for a stoichiometric factor in the
implementation of the SAPRC mechanism in CMAQv4.7.1.

Fig. 2. Evaluation of 2p and 2p-VBS parameterizations for isoprene under low-NOx (cyan) and high-NOx (black) conditions.(a) Theo-
retical yield curve (SOA yield vs. SOA mass concentration);(b) predicted SOA mass curve (SOA mass concentration vs. level of reacted
hydrocarbon,1HC).

(Lane et al., 2008a; Tsimpidi et al., 2010), based on the “3p”
parameterization of Pandis et al. (1991), were adjusted using
anMo-dependent yield correction from theα-pinene exper-
iments and parameterizations of Pathak et al. (2007a). It is
thus not unexpected that the low-NOx 2p-VBS parameteriza-
tion was not able to represent observed SOA formation, par-
ticularly at the lowest1HC levels. In contrast, the low-NOx
2p parameterizations of Henze and Seinfeld (2006) and of
Carlton et al. (2009) were derived directly from chamber data
and were in better agreement with the chamber observations
(Kroll et al., 2006; Chhabra et al., 2010). The default low-

NOx parameters based on Henze and Seinfeld (2006), which
notably produce the highest predicted SOA yields, were re-
tained as the best available parameters for the CMAQ simu-
lations.

There have been limited studies investigating the effects
of NOx on isoprene SOA yields (Carlton et al., 2009 and ref-
erences therein). The parameterizations shown here suggest
that increasing NOx potentially results in lower SOA yields
(Fig. 2a); however, as described by Surratt et al. (2010) and
Chan et al. (2010), SOA yields depend on relative concentra-
tions of HO2, NO and NO2, complicating the interpretation
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Fig. 3. Evaluation of 2p and 2p-VBS parameterizations for lumped monoterpenes under low-NOx (cyan) and high-NOx (black) conditions.
(a) Theoretical yield curve (SOA yield vs. SOA mass concentration);(b) predicted SOA mass curve (SOA mass concentration vs. level of
reacted hydrocarbon,1HC).

of NOx dependence. For the high-NOx isoprene conditions,
none of the parameterizations were able to represent the SOA
yields (Fig. 2a) or SOA formation observed at the lowest,
atmospherically relevant,1HC levels (Fig. 2b). NOx de-
pendence of SOA formation by isoprene was not consid-
ered here, given that: (1) under some conditions, highest
yields have been observed under high-NOx conditions when
NO2 / NO ratios are high and RO2+NO2 reactions are fa-
vored over RO2+NO reactions (e.g., Chan et al., 2010); and
(2) the effects of NOx on the volatility of the initially formed
products (e.g., the point at which SOA formation is observed)
are not clear (Fig. 2b).

3.1.2 Monoterpene parameters

In Fig. 3, the 2p-VBS theoretical yield (Fig. 3a) and SOA for-
mation (Fig. 3b) curves for lumped monoterpenes are com-
pared with those obtained from parameterizations used in
CMAQv.4.7.1 (Carlton et al., 2010) and GEOS-Chem (Pye
et al., 2010). Given the limited data available from photo-
oxidation studies of monoterpenes, data also are shown for
dark α-pinene ozonolysis chamber experiments (low NOx
referenced in Fig. 1, high NOx: Presto et al., 2005; Presto
and Donahue, 2006; Ng et al., 2007a). As argued by Pye et
al. (2010), darkα-pinene ozonolysis parameters may serve
as a good proxy for lumped monoterpene photo-oxidation
parameters because the parameters derived from darkα-
pinene ozonolysis experiments likely overestimate yields
from photo-oxidation ofα-pinene, but likely underestimate
yields from photo-oxidation of other monoterpenes known
to have higher yields thanα-pinene.

The CMAQ (Carlton et al., 2010) high-NOx 2p parame-
ters were based on the chamber experiments of Hoffmann
et al. (1997) and Griffin et al. (1999); there is no low-

NOx monoterpene SOA formation pathway in CMAQv.4.7.1.
In Pye et al. (2010), the low-NOx VBS parameters were
based on darkα-pinene ozonolysis chamber experiments of
Shilling et al. (2008). The low-NOx VBS parameters in Lane
et al. (2008b) and Tsimpidi et al. (2010) were calculated as
a weighted average for individual monoterpenes based on
chamber studies under a range of experimental conditions
(e.g., UV vs. dark, high vs. low RH). In Pye et al. (2010)
and Lane et al. (2008a) the high-NOx VBS parameters were
extrapolated from the low-NOx parameters as follows: (1)
Pye et al. (2010) applied a fixed yield correction based on
the α-pinene experiments of Ng et al. (2007a) and Pathak
et al. (2007a), and (2) Lane et al. (2008a) applied aMo-
dependent yield correction based on Pathak et al. (2007a).
The lower yields and mass concentrations predicted in this
work with the 2p-VBS parameters, relative to those predicted
with the Pye et al. (2010) VBS parameters, are a conse-
quence of both the lower observed SOA yields for UV condi-
tions (data used in low-NOx VBS parameterization) and the
greater yield correction in calculating the high-NOx parame-
ters. Note that while the use of the high-NOx isoprene VBS
parameters (Lane et al., 2008a) to obtain the low-NOx iso-
prene parameters leads to a likely underestimation of SOA
formation (Fig. 2a), the use of the low-NOx monoterpene
VBS parameters (Lane et al., 2008a; Pye et al., 2010) to ob-
tain the high-NOx parameters leads to reasonable and per-
haps an overestimation of SOA formation (Fig. 3). The high-
NOx monoterpene parameterization of Pye et al. (2010), de-
rived from the low-NOx Shilling et al. (2008) experiments,
appears to overestimate SOA formation at low1HC and
Mo levels (Fig. 3b). However, the data are insufficient to
make robust conclusions regarding the best available parame-
ters, highlighting the need for monoterpene photo-oxidation
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Fig. 4. Evaluation of 2p and 2p-VBS parameterizations for lumped sesquiterpenes under low-NOx (cyan) and high-NOx (black) conditions.
(a) Theoretical yield curve (SOA yield vs. SOA mass concentration);(b) predicted SOA mass curve (SOA mass concentration vs. level of
reacted hydrocarbon,1HC).

studies under varying atmospherically relevant NOx condi-
tions. Based on the available data, the 2p-VBS parameters
for both low- and high-NOx conditions were chosen for the
CMAQ simulations.

3.1.3 Sesquiterpene parameters

In Fig. 4, the 2p-VBS theoretical yield (Fig. 4a) and SOA
formation (Fig. 4b) curves for lumped sesquiterpenes are
compared with curves from the 2p parameterization used
in CMAQv.4.7.1 (Carlton et al., 2010) and the VBS pa-
rameterization in GEOS-Chem (Pye et al., 2010). Relative
to the 2p and VBS parameterizations, the 2p-VBS param-
eterization underestimated SOA yields (Fig. 4a) andMo
(Fig. 4b) (chamber data: Griffin et al., 1999; Ng et al., 2007a).
The VBS parameters (Lane et al., 2008b; Tsimpidi et al.,
2010), on which the 2p-VBS parameters were based, and the
CMAQ (Carlton et al., 2010) and Pye et al. (2010) parame-
ters all were derived from chamber experiments involvingα-
humulene orβ-caryophyllene as the sesquiterpene precursor;
however, the Lane et al. (2008b)/Tsimpidi et al. (2010) VBS
parameters were derived using data from photo-oxidation
as well as dark ozonolysis experiments (Ng et al., 2006).
For α-humulene andβ-caryophyllene, the dark ozonoly-
sis yields were significantly lower than the photo-oxidation
yields, which likely resulted in the low bias of the Lane et
al. (2008b) parameterization, and thus the low bias of the 2p-
VBS parameterization as compared with CMAQ (Carlton et
al., 2010) and GEOS-Chem (Pye et al., 2010).

Both the CMAQ (Carlton et al., 2010) and Pye et
al. (2010) parameterizations were based on the chamber
photo-oxidation data of Griffin et al. (1999), which had
1HC [ppbC] / NOxinitial [ppb] ratios of 0.5 to 8.0. The
2p parameterization of Carlton et al. (2010) was based

on all seven data points and was categorized as relevant
for high-NOx conditions; whereas the VBS parameteriza-
tion of Pye et al. (2010) was based on four of the seven
data points, with1HC [ppbC] / NOxinitial [ppb] > 3, and
was categorized as relevant for low-NOx conditions. As
shown in Fig. 4a, b the two parameterizations produced
quantitatively similar results. These results are consistent
with the Griffin et al. (1999) data from which no clear
trend as a function of VOC / NOx ratio was observed. The
VOC / NOx ratios span a much smaller range than that of Ng
et al. (2007a), in which the high- and intermediate-NOx ex-
periments all had1HC [ppbC] / NOxinitial [ppb] < 1 and the
low-NOx experiments > 50; in addition, for all but one ex-
periment (1HC [ppbC] / NOxinitial [ppb]= 8) the Griffin et
al. (1999) conditions would be classified as high-NOx based
on Presto et al. (2005). Somewhat surprisingly, the clear
NOx-dependency observed by Ng et al. (2007a) over all mass
loadings (Mo = 20–214 µg m−3) is no longer observable at
the lowestMo (Fig. 4a, b). Instead there appears to be a
greater dependence of SOA yields on the specific sesquiter-
pene precursor than on VOC / NOx ratios (see Supplement
Fig. S3).

Without the availability of additional data on the NOx-
dependency of SOA formation from different sesquiter-
pene precursors, the default CMAQv.4.7.1 parameters for
sesquiterpenes were retained as the best available for high-
NOx conditions and it was concluded that there were in-
sufficient data to support the derivation and/or use of low-
NOx sesquiterpene parameters. The CMAQ parameters how-
ever are not physically realistic, as they indicate a relatively
high increase in the mass of the condensing compounds rel-
ative to the precursor (α ≈ 1.5) without a substantial de-
crease in volatility (unless it is assumed that the sesquiter-
pene SOA is dominated by highly oxidized sesquiterpene
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Fig. 5.Evaluation of 2p and 2p-VBS parameterizations for lumped aromatics.(a) ARO1/toluene theoretical yield curve (SOA yield vs. SOA
mass concentration);(b) ARO2/xylene theoretical yield curve.

fragments). This is a consequence of the system of least-
squares fitting equations being underdetermined, and thus
the derivedα and C* values are non-unique. The single
lumped sesquiterpene oxidation product is relatively volatile
(C* = 25 µg m−3) compared to the lower volatility lumped
product of isoprene (C* = 0.6 µg m−3) and lumped monoter-
penes (2p-VBS,C* = 6 µg m−3). Different combinations of
derivedα and C* values would produce significantly dif-
ferent results when used in CTMs. In the case of sesquiter-
penes, the publishedC* value resulted in a calculated SOA
yield of ∼ 20 % atMo = 5 µg m−3; this is in contrast to the
reported SOA yields of 40–60 % (forMo = 10–20 µg m−3)

shown in Fig. 4. A test set of parameters, more in accord
with the monoterpene parameters, reproduced the observed
chamber data reasonably well and resulted in a calculated
SOA yield of ∼ 45 % atMo = 5 µg m−3. This finding sup-
ports the need for additional constraints, chamber data, on
sesquiterpene+oxidant systems.

3.2 Anthropogenic precursor parameters

In Figs. 5 and 6, theoretical yield curves (SOA yield vs.
Mo) are shown for each of the anthropogenic precursors:
lumped high-yield (refers to yield in the gas phase) aromat-
ics (ARO1 in SAPRC, includes toluene), lumped low-yield
aromatics (ARO2 in SAPRC, includes xylene), and lumped
alkanes (ALK5 in SAPRC). The anthropogenic 2p, VBS, and
2p-VBS parameters were evaluated for high-NOx conditions
only.

3.2.1 Toluene/ARO1 parameters

For toluene/ARO1, the calculated SOA yields were consis-
tent with the data on which each of the parameterizations
were based (Fig. 5a). Hildebrandt et al. (2009) reported a
range of SOA yields that were highly sensitive to experi-

mental conditions such as UV intensity, temperature, and
NOx levels. For comparable temperatures, the reported SOA
yields of Hildebrandt et al. (2009) are higher than those of
Ng et al. (2007b); the latter of which were used to derive
the 2p parameters in CMAQ (Carlton et al., 2010). Hilde-
brandt et al. (2009) described the likely reasons for these dis-
crepancies: temperature differences during the experiments
(slightly higher in Ng et al., 2007b; less variable in Hilde-
brandt et al., 2009), differences in NO2 / NO ratios (NO2
dominated Hildebrandt et al., 2009; a more atmospherically
relevant NO2 / NO mix in Ng et al., 2007b), and corrections
made for vapor loses to walls in Hildebrandt et al. (2009).
The Tsimpidi et al. (2010) parameters used to derive the 2p-
VBS parameters were based on the data of Ng et al. (2007b)
and Hildebrandt et al. (2009), and best represented the mid-
dle point of these two datasets (see Fig. 5a). The 2p-VBS pa-
rameters for toluene/ARO1 under high-NOx conditions were
thus chosen for the CMAQ simulations.

3.2.2 Xylene/ARO2 parameters

The lumped aromatics category ARO2 in SAPRC07 (Carter,
2010) contains xylenes, as well as the PAH naphthalene. In
Fig. 5b, chamber data using naphthalene precursors (Chan et
al., 2009; Kautzman et al., 2010; Shakya and Griffin, 2010)
were differentiated from chamber data using xylene (Cocker
et al., 2001b; Song et al., 2005; Ng et al., 2007b; Zhou et al.,
2011) and “other” ARO2 precursors, e.g., methyl- and ethyl-
benzenes (Odum et al., 1997). There were significant differ-
ences in yields among these ARO2 precursors, particularly
between naphthalene and xylene/“other”. These differences
were reflected in the predicted SOA yields using the naph-
thalene VBS parameters of Pye et al. (2010), based on the
chamber data of Chan et al. (2009), and the xylene 2p param-
eters of Carlton et al. (2010), based on the chamber data of
Ng et al. (2007b). Each of these parameterizations represents
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Fig. 6. Evaluation of 2p and 2p-VBS parameterizations for lumped alkanes (≥ C6). Theoretical yield curve (SOA yield vs. SOA mass
concentration) forMo up to 5000 µg m−3 (a) andMo up to 50 µg m−3 (b); data from Lim and Ziemann (2009).

the available data well, with the caveat that neither param-
eterization is appropriate for naphthaleneand xylenes/other
lumped ARO2 compounds. The high-NOx naphthalene VBS
parameters of Pye et al. (2010) were used to obtain 2p-VBS
parameters, which are provided in Table 2. The naphthalene
2p-VBS parameters were not used in the CMAQ simulations
because naphthalene is not treated explicitly in the SAPRC
gas-phase chemical mechanism but is lumped with xylene.

The high NOx ARO2 VBS parameters of Lane et
al. (2008a)/Tsimpidi et al. (2010), from which the 2p-VBS
parameters were derived, were calculated from the low NOx
ARO2 VBS parameters (Lane et al., 2008b) based on the
chamber data of Ng et al. (2007b), by applying aMo-
dependent yield correction based on theα-pinene parameter-
izations of Pathak et al. (2007a). This approach led to a sig-
nificant overestimation of SOA formation from xylene and
other ARO2 aromatics (excluding naphthalene). Thus, the
default CMAQ parameters for ARO2 under high-NOx con-
ditions were retained as the best available.

3.2.3 Alkane/ALK5 parameters

The lumped alkane species ALK5 includes C6 and higher
cycloalkanes, C7 and highern-alkanes, and C8 and
higher branched alkanes. From an emissions perspective,
the lumped ALK5 species is largely representative of a
∼ C8 alkane (e.g., Carlton et al., 2010; Pye and Pouliot,
2012). The CMAQ ALK5 parameters are from Pandis et
al. (1992)/Strader et al. (1999), based on the chamber ex-
periments of Grosjean and Seinfeld (1989). They roughly
represent SOA formation from C8–C10n-alkanes as mea-
sured by Grosjean and Seinfeld (1989). The VBS parameters
(Lane et al., 2008b; Tsimpidi et al., 2010) used to obtain the
2p-VBS parameters were based on chamber data of Wang

et al. (1992), Takekawa et al. (2003), and Lim and Ziemann
(2005) for C8-C15n-alkanes and methylcylcohexane (Wang
et al., 1992). Due to limited data availability, both Pandis et
al. (1992) and Lane et al. (2008b) derived only one-product
fits for this class of lumped alkanes. Calculated SOA yields
with the CMAQ 2p parameters (Carlton et al., 2010) and
2p-VBS parameters were compared with chamber data from
Lim and Ziemann (2009) for linear and cyclic C8 alkanes
(Fig. 6). The default CMAQ parameters were in good agree-
ment with that data for linear C8 alkanes, though may over-
estimate SOA at lowerMo (Fig. 6b). The 2p-VBS parame-
ters resulted in higher SOA yields at higher1HC levels and
Mo. This likely was due to the inclusion of cyclic alkane data
in the fitting. Lim and Ziemann (2009) demonstrated that
alkane SOA yields followed the trend: cyclic alkanes > linear
alkanes > branched alkanes; furthermore within each class,
SOA yields increased with carbon number.

In addition to 2p and 2p-VBS parameters, VBS parame-
ters from Presto et al. (2010) were compared with the data
of Lim and Ziemann (2009) (Fig. 6). Presto et al. (2010)
derived VBS parameters for C12-C17n-alkanes, based on
n-heptadecane data (2p-VBS parameters based on Presto et
al. (2010) are provided in Table 2). The theoretical yield
curves showed an increase in SOA yield as a function of
carbon number, as observed by Lim and Ziemann (2009).
At high Mo, the calculated SOA yields were higher than
the reported yields of Lim and Ziemann (2009), particularly
for the C12 alkanes; however, the experiments were con-
ducted over very differentMo ranges with no overlapping
data points and thus, the yields may not be directly com-
parable. At lowMo (Fig. 6b), there are no data points for
evaluation other than those from which the parameteriza-
tion of Presto et al. (2010) was derived (not shown). Based

Atmos. Chem. Phys., 13, 12073–12088, 2013 www.atmos-chem-phys.net/13/12073/2013/



K. C. Barsanti et al.: Implications for predictions of SOA using chemical transport models 12083

on current emissions inventories and the results of Presto
et al. (2010), the 2p-VBS parameters were chosen the best
available.

The SOA yields from cyclic and C12 and highern-alkanes
(Fig. 6) and naphthalene (Fig. 5) were significantly underes-
timated by the default 2p parameters for the volatile SOA
precursors with which they are lumped (cyclic and > C12
alkanes with ALK5 and naphthalene with ARO2) in the
gas-phase chemical mechanism SAPRC07 (Carter, 2010). If
emissions of such compounds are indeed sufficient to con-
tribute measurably to SOA, as indicated by ambient observa-
tions (alkanes: Liu et al., 2011; Russell et al., 2011; de Gouw
et al., 2011; naphthalene: Chan et al., 2009; Shakya and Grif-
fin, 2010; Zhang and Ying, 2012), separation of the VOCs
with intermediate to low volatility from VOCs in the gas-
phase and aerosol models likely will result in more accurate
SOA predictions. Pye and Pouliot (2012) recently reported
on the explicit treatment of C6–C19 alkanes and PAHs, rep-
resented by naphthalene, in CMAQv.5.0. They concluded
that C6–C19 alkanes and PAHs could represent 20–30 % of
SOA formation (up to 50 ng m−3) with highest contributions
in winter, using current emissions inventories. Though simi-
lar modification of SAPRC07 and CMAQv4.7.1 was outside
the scope of this study, it is recommended that SOA forma-
tion by cyclic alkanes,≥ C12n-alkanes and naphthalene be
treated independently in future model applications.

3.3 CMAQ model simulations

The base case CMAQ predictions for total SOA, averaged
over 15–31 July 2006 are shown in Fig. 7. In regions with
the highest predicted concentrations of anthropogenic SOA
(up to 1 µg m−3), a net decrease in anthropogenic SOA (up
to 20 %) was predicted (figure not shown); the use of best
available parameters for ARO1/toluene (2p-VBS) resulted in
a slight increase in predicted SOA mass while the use of
best available parameters for ALK5 (2p-VBS) resulted in a
slight decrease. In regions with the highest predicted con-
centrations of biogenic SOA (1–2 µg m−3 in northern Cali-
fornia, southern Oregon and Southeastern US), the predicted
increase in total SOA mass was significant,∼ 10–15 % for
high-NOx conditions and up to∼ 200 % (∼ 3 µg m−3) for
low-NOx conditions (see Fig. 8). The increase in total SOA
was largely a consequence of an increase in biogenic SOA
(see Supplement Fig. S4) attributed to the use of the 2p-
VBS parameters for lumped monoterpenes. The predicted
increases in total SOA correspond to increases in PM2.5
of up to 7 % and 55 % for the high- and low-NOx condi-
tions, respectively, in Western US where PM2.5 concentra-
tions in the base case were∼ 2 µg m−3. The 2p-VBS fitting
resulted in a 2-fold decrease in theC*1 value for lumped
monoterpenes (high NOx), fromC*1 = 14.8 µg m−3 (default)
to C*1 = 6.3 µg m−3, which increased the predicted contri-
bution of traditional monoterpene SOA (excluding oligomer-
ization) to total SOA by∼ 10 % in the Southeastern US (from

Fig. 7. Total SOA averaged over 15–31 July 2006 for the base case
simulation (using default CMAQ parameters).

15–30 % in base case, figure not shown). Under low-NOx
conditions, that contribution was increased by∼ 20–30 % in
the Southeastern US (figure not shown).

Figure 9 shows the fraction of RO2 reacting with NO
as compared to that reacting with HO2, and thus the frac-
tional weighting of high- vs. low-NOx parameters, illus-
trating the relative importance of high- vs. low-NOx path-
ways in the CMAQ simulations. As noted previously, this
fractional weighting is considered in CMAQv.4.7.1 for an-
thropogenic precursors only, therefore the sensitivity simula-
tions performed here using the high- and low-NOx 2p-VBS
monoterpene parameters indicate the range of SOA that can
be formed for the limiting assumptions. It can be seen in
Fig. 9 that based on current treatment, low-NOx pathways
and therefore low-NOx parameters are relevant for SOA for-
mation in many regions of the US.

In Fig. 10, model-based secondary organic carbon (SOC)
mass concentrations are compared with observationally-
based SOC concentrations. Observationally-based SOC con-
centrations were calculated according to the method of Yu
et al. (2007) using measured organic carbon (OC) and el-
emental carbon (EC) data from 155 IMPROVE sites. The
sites were grouped into six regions: West Pacific, West, Cen-
tral, Midwest, Northeast, and Southeast; 115 of the 155 sites
are in locations where≥ 50 % of RO2 was predicted to re-
act with HO2 (i.e., low-NOx pathway; see Fig. 9). For all
three cases, the model- and measurement-based trends in
predicted SOC mass concentration follow a similar pattern
from region to region, except for the Midwest. For all re-
gions, model-based SOC mass concentrations were in bet-
ter agreement with measurement-based SOC using the best
available parameters, particularly for the low-NOx case. Av-
eraged over all sites, the percent bias improved from−63 %
to −15 % from the base case to the best available low-NOx
case. This is consistent with the higher predicted SOA yields
at lowMo and better agreement with chamber data achieved
by the best available parameters in the parameter compar-
isons. SOC mass still was significantly underpredicted in the
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Fig. 8. Difference in total SOA averaged over 15–31 July 2006 between the best available parameter simulation and the base case CMAQ
simulation: using the high NOx 2p-VBS parameters for lumped monoterpenes(a), and using the low NOx 2p-VBS parameters for lumped
monoterpenes(b).

Fig. 9. The fraction of RO2 reacting with NO (vs. HO2), indicat-
ing the relative importance of high- vs. low-NOx pathways, respec-
tively, predicted in the CMAQ simulations averaged over the simu-
lation period, 15–31 July 2006.

Midwest, Central and Northeast regions, where the percent
bias were−43 %, −23 % and−21 % respectively, for the
best available low-NOx case, suggesting “missing” anthro-
pogenic source(s) and/or other pathway(s).

4 Conclusions

The linkages between experimental conditions, parameter
optimization, and predictions of SOA were explored here by:
(1) comparing calculated SOA yields and mass concentra-
tions using 2p, VBS, and newly-developed 2p-VBS param-
eters with a comprehensive list of published smog chamber
data for common volatile SOA precursor species; (2) select-
ing a set of “best available” (BA) parameters defined by best
agreement with published chamber data; and (3) analyzing
CMAQv4.7.1 model output for the default (base case) and
selected sensitivity (BA-highNOx and BA-lowNOx) simula-
tions. With regard to parameter fitting, VBS parameteriza-
tions may be more robust and less likely to underestimate
SOA formation at atmospherically relevantMo ranges when
data are sparse. However, their use is not justified when the
underlying data are limited or event absent, especially at low,
atmospherically relevant1HC andMo. Extrapolating from
high- to low-NOx conditions, and vice versa, does not pro-

Fig. 10. Regional comparison of model-based (base case and
best available high- and low-NOx cases) and observationally-
based secondary organic carbon (SOC) mass concentrations.
Observationally-based SOC concentrations were calculated from
data averaged over the simulation period from 155 IMPROVE sites.

duce reliable parameters, particularly when further extrapo-
lating across precursors: data are required for each precursor
under a range of NOx levels (NO2 / NO ratios). For the com-
mon SOA precursors treated in the 2p framework, data gaps
are most significant for photo-oxidation of monoterpenes and
sesquiterpenes under a range of HO2 : NO : NO2 levels and
for alkanes at lowMo.

While only SOA formation in the traditional view was
considered, VOC oxidation followed by condensation of
semi-volatile oxidation products, some insight was gained
on intermediate to low volatility SOA precursors. The SOA
yields from naphthalene and C12 and highern-alkanes,
which are currently lumped with VOCs in the gas-phase
chemical mechanism SAPRC07 (Carter, 2010), were sig-
nificantly underestimated by the default 2p parameters. 2p-
VBS parameters are provided for these precursors, as well
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as POA, though the current SAPRC07/CMAQv4.7.1 config-
uration did not allow for their evaluation in the context of
chemical transport modeling.

Recognizing that many important processes currently are
not treated in the CMAQ SOA model (e.g., oxidation of in-
termediate to low volatility organic compounds, partitioning
of POA, and kinetically controlled partitioning), the use of
the selected best available parameters in CMAQ nonethe-
less significantly improved the agreement between model-
and measurement-based SOC mass concentrations. More im-
portantly, as demonstrated, the choice of model parameters
will impact source-attribution analyses, as well as spatial and
temporal distributions of modeled SOA (through the physic-
ochemical properties of SOA they represent), which may ad-
versely affect the accuracy of air quality and climate predic-
tions from CTMs that rely on parameterizations of chamber
experiments. In addition to the implementation of more ad-
vanced representations of important gas- and particle-phase
processes in CMAQ, better representation of “first genera-
tion” SOA formation is also needed. Development and ap-
plication of the 2p-VBS parameters for ALK5, toluene, and
particularly monoterpenes, advances that goal within the 2p
modeling framework; however, critical data gaps exist for
many of the SOA precursors under atmospherically relevant
conditions, currently limiting the progress that can be made
with chamber data fitting approaches.

Supplementary material related to this article is
available online athttp://www.atmos-chem-phys.net/13/
12073/2013/acp-13-12073-2013-supplement.pdf.
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