Articles | Volume 12, issue 1
https://doi.org/10.5194/acp-12-407-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-12-407-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis
E. Harris
Abteilung Partikelchemie, Max-Planck-Institut für Chemie, Becherweg 27, 55128 Mainz, Germany
B. Sinha
Abteilung Partikelchemie, Max-Planck-Institut für Chemie, Becherweg 27, 55128 Mainz, Germany
Department of Earth Sciences, IISER Mohali, Sector 81, SAS Nagar, Manauli P.O. 140306, India
P. Hoppe
Abteilung Partikelchemie, Max-Planck-Institut für Chemie, Becherweg 27, 55128 Mainz, Germany
J. N. Crowley
Abteilung Luftchemie, Max-Planck-Institut für Chemie, Becherweg 27, 55128 Mainz, Germany
S. Ono
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
S. Foley
Earth System Science Research Center, Institute for Geosciences, University of Mainz, Becherweg 21, 55128 Mainz, Germany
Related subject area
Subject: Isotopes | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
On the potential fingerprint of the Antarctic ozone hole in ice-core nitrate isotopes: a case study based on a South Pole ice core
Quantifying the nitrogen isotope effects during photochemical equilibrium between NO and NO2: implications for δ15N in tropospheric reactive nitrogen
Temporal variation in 129I and 127I in aerosols from Xi'an, China: influence of East Asian monsoon and heavy haze events
High time-resolved measurement of stable carbon isotope composition in water-soluble organic aerosols: method optimization and a case study during winter haze in eastern China
Dependence between the photochemical age of light aromatic hydrocarbons and the carbon isotope ratios of atmospheric nitrophenols
Evidence for a major missing source in the global chloromethane budget from stable carbon isotopes
Atmospheric Δ17O(NO3−) reveals nocturnal chemistry dominates nitrate production in Beijing haze
Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl
Stable carbon isotope ratios of ambient aromatic volatile organic compounds
Kinetic isotope effects of 12CH3D + OH and 13CH3D + OH from 278 to 313 K
Investigation of post-depositional processing of nitrate in East Antarctic snow: isotopic constraints on photolytic loss, re-oxidation, and source inputs
Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air
NOx cycle and the tropospheric ozone isotope anomaly: an experimental investigation
Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer
Molecular hydrogen (H2) emissions and their isotopic signatures (H/D) from a motor vehicle: implications on atmospheric H2
Isotope effect in the formation of H2 from H2CO studied at the atmospheric simulation chamber SAPHIR
Pressure dependence of the deuterium isotope effect in the photolysis of formaldehyde by ultraviolet light
Yanzhi Cao, Zhuang Jiang, Becky Alexander, Jihong Cole-Dai, Joel Savarino, Joseph Erbland, and Lei Geng
Atmos. Chem. Phys., 22, 13407–13422, https://doi.org/10.5194/acp-22-13407-2022, https://doi.org/10.5194/acp-22-13407-2022, 2022
Short summary
Short summary
We investigate the potential of ice-core preserved nitrate isotopes as proxies of stratospheric ozone variability by measuring nitrate isotopes in a shallow ice core from the South Pole. The large variability in the snow accumulation rate and its slight increase after the 1970s masked any signals caused by the ozone hole. Moreover, the nitrate oxygen isotope decrease may reflect changes in the atmospheric oxidation environment in the Southern Ocean.
Jianghanyang Li, Xuan Zhang, John Orlando, Geoffrey Tyndall, and Greg Michalski
Atmos. Chem. Phys., 20, 9805–9819, https://doi.org/10.5194/acp-20-9805-2020, https://doi.org/10.5194/acp-20-9805-2020, 2020
Short summary
Short summary
Nitrogen isotopic compositions of atmospheric reactive nitrogen are widely used to infer their sources. However, the reactions between NO and NO2 strongly impact their isotopes, which was not well understood. We conducted a series of experiments in an atmospheric simulation chamber to determine the isotopic effects of (1) direct isotopic exchange between NO and NO2 and (2) the isotopic fractionations during NOx photochemistry, then developed an equation to quantify the overall isotopic effect.
Luyuan Zhang, Xiaolin Hou, Sheng Xu, Tian Feng, Peng Cheng, Yunchong Fu, and Ning Chen
Atmos. Chem. Phys., 20, 2623–2635, https://doi.org/10.5194/acp-20-2623-2020, https://doi.org/10.5194/acp-20-2623-2020, 2020
Short summary
Short summary
To trace the long-range transport of air pollutants and understand the atmospheric effect of iodine, the daily-resolution temporal variations of 129I and 127I in aerosols from a monsoonal city indicate the East Asian monsoon and fossil fuel combustion plays crucial roles on transport of 129I from Europe to East Asia and on elevated 127I concentrations. Through linking iodine isotopes with five major air pollutants, this study proposes the possible role of iodine in urban air pollution.
Wenqi Zhang, Yan-Lin Zhang, Fang Cao, Yankun Xiang, Yuanyuan Zhang, Mengying Bao, Xiaoyan Liu, and Yu-Chi Lin
Atmos. Chem. Phys., 19, 11071–11087, https://doi.org/10.5194/acp-19-11071-2019, https://doi.org/10.5194/acp-19-11071-2019, 2019
Short summary
Short summary
A novel method to determine the concentration and the isotopes of WSOC in aerosols is established and applied in the analysis of a severe haze in eastern China. The results show that the studied site is affected by the photochemical aging, biomass burning and dust aerosols in different episodes during the sampling period. The analysis of WSOC and its isotopes offers a great potential to better understand the source emission, the atmospheric aging and the secondary production of WSOC.
Marina Saccon, Anna Kornilova, Lin Huang, and Jochen Rudolph
Atmos. Chem. Phys., 19, 5495–5509, https://doi.org/10.5194/acp-19-5495-2019, https://doi.org/10.5194/acp-19-5495-2019, 2019
Short summary
Short summary
As compound are emitted into the atmosphere, they can undergo chemical reactions to produce secondary products. This paper investigates the relations of compounds' unique chemical characteristics to the processes that formed them from emissions in the atmosphere. A model is applied to help with this investigation. The complexity of the atmosphere, including mixing of air masses and variability in precursor reactivity, is taken into consideration, and results are presented.
Enno Bahlmann, Frank Keppler, Julian Wittmer, Markus Greule, Heinz Friedrich Schöler, Richard Seifert, and Cornelius Zetzsch
Atmos. Chem. Phys., 19, 1703–1719, https://doi.org/10.5194/acp-19-1703-2019, https://doi.org/10.5194/acp-19-1703-2019, 2019
Short summary
Short summary
Chloromethane is the most important natural carrier of chlorine to the stratosphere. From a newly determined carbon isotope effect of −11.2 ‰ for the tropospheric loss of CH3Cl we derive a tropical rainforest CH3Cl source of 670 ± 200 Gg a−1, 60 % smaller than previous estimates. A revision of previous bottom-up estimates using above-ground biomass instead of rainforest area strongly supports this lower estimate. Our results suggest a large unknown tropical value of 1530 ± 200 Gg a−1.
Pengzhen He, Zhouqing Xie, Xiyuan Chi, Xiawei Yu, Shidong Fan, Hui Kang, Cheng Liu, and Haicong Zhan
Atmos. Chem. Phys., 18, 14465–14476, https://doi.org/10.5194/acp-18-14465-2018, https://doi.org/10.5194/acp-18-14465-2018, 2018
Short summary
Short summary
We present the first observations of the oxygen-17 excess of atmospheric nitrate (Δ17O(NO−3)) collected in Beijing haze to reveal the relative importance of different nitrate formation pathways. We found that nocturnal pathways (N2O5 + H2O/Cl– and NO3 + HC) dominated nitrate production during polluted days (PM2.5 ≥ 75 μg m–3), with a mean possible fraction of 56–97 %.
Frank Keppler, Enno Bahlmann, Markus Greule, Heinz Friedrich Schöler, Julian Wittmer, and Cornelius Zetzsch
Atmos. Chem. Phys., 18, 6625–6635, https://doi.org/10.5194/acp-18-6625-2018, https://doi.org/10.5194/acp-18-6625-2018, 2018
Short summary
Short summary
Chloromethane is involved in stratospheric ozone depletion, but detailed knowledge of its global budget is missing. In this study stable hydrogen isotope analyses were performed to investigate the dominant loss process for atmospheric chloromethane with photochemically produced hydroxyl radicals. The findings might have significant implications for the use of stable isotope signatures in elucidation of global chloromethane cycling.
Anna Kornilova, Lin Huang, Marina Saccon, and Jochen Rudolph
Atmos. Chem. Phys., 16, 11755–11772, https://doi.org/10.5194/acp-16-11755-2016, https://doi.org/10.5194/acp-16-11755-2016, 2016
Short summary
Short summary
The photochemical oxidation of organic compounds in the atmosphere results in the formation of important secondary pollutants such as ozone and fine particles. The extent of oxidation the organic compounds have been subjected too since there emissions is essential is key for understanding the formation of secondary pollutants. This paper demonstrates that measurements of the carbon isotope ratios allow determining the extent of photochemical processing for individual compounds.
L. M. T. Joelsson, J. A. Schmidt, E. J. K. Nilsson, T. Blunier, D. W. T. Griffith, S. Ono, and M. S. Johnson
Atmos. Chem. Phys., 16, 4439–4449, https://doi.org/10.5194/acp-16-4439-2016, https://doi.org/10.5194/acp-16-4439-2016, 2016
Short summary
Short summary
We present experimental kinetic isotope effects (KIE) for the OH oxidation of CH3D and 13CH3D and their temperature dependence. Our determination of the 13CH3D + OH KIE is novel and we find no "clumped" isotope effect within the experimental uncertainty.
G. Shi, A. M. Buffen, M. G. Hastings, C. Li, H. Ma, Y. Li, B. Sun, C. An, and S. Jiang
Atmos. Chem. Phys., 15, 9435–9453, https://doi.org/10.5194/acp-15-9435-2015, https://doi.org/10.5194/acp-15-9435-2015, 2015
Short summary
Short summary
We evaluate isotopic composition of NO3- in different environments across East Antarctica. At high snow accumulation sites, isotopic ratios are suggestive of preservation of NO3- deposition. At low accumulation sites, isotopes are sensitive to both the loss of NO3- due to photolysis and secondary formation of NO3- within the snow. The imprint of post-depositional alteration is not uniform with depth, making it difficult to predict the isotopic composition at depth from near-surface data alone.
S. J. Allin, J. C. Laube, E. Witrant, J. Kaiser, E. McKenna, P. Dennis, R. Mulvaney, E. Capron, P. Martinerie, T. Röckmann, T. Blunier, J. Schwander, P. J. Fraser, R. L. Langenfelds, and W. T. Sturges
Atmos. Chem. Phys., 15, 6867–6877, https://doi.org/10.5194/acp-15-6867-2015, https://doi.org/10.5194/acp-15-6867-2015, 2015
Short summary
Short summary
Stratospheric ozone protects life on Earth from harmful UV-B radiation. Chlorofluorocarbons (CFCs) are man-made compounds which act to destroy this barrier.
This paper presents (1) the first measurements of the stratospheric δ(37Cl) of CFCs -11 and -113; (2) the first quantification of long-term trends in the tropospheric δ(37Cl) of CFCs -11, -12 and -113.
This study provides a better understanding of source and sink processes associated with these destructive compounds.
G. Michalski, S. K. Bhattacharya, and G. Girsch
Atmos. Chem. Phys., 14, 4935–4953, https://doi.org/10.5194/acp-14-4935-2014, https://doi.org/10.5194/acp-14-4935-2014, 2014
E. Harris, B. Sinha, P. Hoppe, S. Foley, and S. Borrmann
Atmos. Chem. Phys., 12, 4619–4631, https://doi.org/10.5194/acp-12-4619-2012, https://doi.org/10.5194/acp-12-4619-2012, 2012
M. K. Vollmer, S. Walter, S. W. Bond, P. Soltic, and T. Röckmann
Atmos. Chem. Phys., 10, 5707–5718, https://doi.org/10.5194/acp-10-5707-2010, https://doi.org/10.5194/acp-10-5707-2010, 2010
T. Röckmann, S. Walter, B. Bohn, R. Wegener, H. Spahn, T. Brauers, R. Tillmann, E. Schlosser, R. Koppmann, and F. Rohrer
Atmos. Chem. Phys., 10, 5343–5357, https://doi.org/10.5194/acp-10-5343-2010, https://doi.org/10.5194/acp-10-5343-2010, 2010
E. J. K. Nilsson, V. F. Andersen, H. Skov, and M. S. Johnson
Atmos. Chem. Phys., 10, 3455–3462, https://doi.org/10.5194/acp-10-3455-2010, https://doi.org/10.5194/acp-10-3455-2010, 2010
Cited articles
Alexander, B., Savarino, J., Barkov, N. I., Delmas, R. J., and Thiemens, M. H.: Climate driven changes in the oxidation pathways of atmospheric sulfur, Geophys. Res. Lett., 29, 1685, https://doi.org/10.1029/2002GL014879, 2002.
Alexander, B., Thiemens, M. H., Farquhar, J., Kaufman, A. J., Savarino, J., and Delmas, R. J.: East Antarctic ice core sulfur isotope measurements over a complete glacial-interglacial cycle, J. Geophys. Res.-Atmos., 108, 4786, https://doi.org/10.1029/2003JD003513, 2003.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I –gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Baroni, M., Thiemens, M. H., Delmas, R. J., and Savarino, J.: Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions, Science, 315, 84–87, 2007.
Baroni, M., Savarino, J., Cole-Dai, J. H., Rai, V. K., and Thiemens, M. H.: Anomalous sulfur isotope compositions of volcanic sulfate over the last millennium in Antarctic ice cores, J. Geophys. Res.-Atmos., 113, D20112, https://doi.org/10.1029/2008JD010185, 2008.
Benson, D. R., Young, L. H., Kameel, F. R., and Lee, S. H.: Laboratory-measured nucleation rates of sulfuric acid and water binary homogeneous nucleation from the SO2 + OH reaction, Geophys. Res. Lett., 35, L11801, https://doi.org/10.1029/2008GL033387, 2008.
Berresheim, H., Elste, T., Tremmel, H. G., Allen, A. G., Hansson, H. C., Rosman, K., Dal Maso, M., Makela, J. M., Kulmala, M., and O'Dowd, C. D.: Gas-aerosol relationships of H2SO4, MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland, J. Geophys. Res.-Atmos., 107, 8100, https://doi.org/10.1029/2000JD000229, 2002.
Bevington, P. and Robinson, D.: Data Reduction and Error Analysis for the Physical Sciences, Mc-Graw Hill, 23–28, 1992.
Botha, C. F., Hahn, J., Pienaar, J. J., and Vaneldik, R.: Kinetics and mechanism of the oxidation of sulfur(IV) by ozone in aqueous solutions, Atmos. Environ., 28, 3207–3212, 1994.
Bower, K. N. and Choularton, T. W.: Cloud processing of the Cloud Condensation Nucleus spectrum and its climatological consequences, Q. J. Roy. Meteorol. Soc., 119, 655–679, 1993.
Calhoun, J. A., Bates, T. S. and Charlson, R. J.: Sulfur Isotope Measurements of Submicrometer Sulfate Aerosol-Particles over the Pacific-Ocean. Geophys. Res. Lett., 18, 1877–1880, 1991.
Cantrell, C. A., Zimmer, A., and Tyndall, G. S.: Absorption cross sections for water vapor from 183 to 193 nm, Geophys. Res. Lett., 24, 2195–2198, 1997.
Caron, F., Tessier, A., Kramer, J. R., Schwarcz, H. P., and Rees, C. E.: Sulfur and oxygen isotopes of sulfate in precipitation and lakewater, Quebec, Canada, Appl. Geochem., 1, 601–606, 1986.
Castleman, A. W., Munkelwitz, H. R., and Manowitz, B.: Isotopic Studies of Sulfur Component of Stratospheric Aerosol Layer, Tellus, 26, 222–234, 1974.
Chin, M., Jacob, D. J., Gardner, G. M., ForemanFowler, M. S., Spiro, P. A., and Savoie, D. L.: A global three-dimensional model of tropospheric sulfate, J. Geophys. Res.-Atmos., 101, 18667–18690, 1996.
Chmielewski, A. G., Derda, M., Wierzchnicki, R., and Mikolajczuk, A.: Sulfur isotope effects for the SO2(g)-SO2(aq) system, Nukleonika, 47, S69–S70, 2002.
Derda, M., Chmielewski, A. G., and Licki, J.: Sulphur isotope compositions of components of coal and S-isotope fractionation during its combustion and flue gas desulphurization, Isotopes in Environmental and Health Studies, 43, 57-63, 2007.
Ding, T., Valkiers, S., Kipphardt, H., De Bievre, P., Taylor, P. D. P., Gonfiantini, R., and Krouse, R.: Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur, Geochimi. Cosmochim. Acta, 65, 2433–2437, 2001.
Egiazarov, A. C., Kaviladze, M., Kerner, M. N., Oziashvili, E. L., Ebralidze, A., and Esakiya, A. D.: Separation of Sulfur Isotopes by Chemical Exchange, Isotopenpraxis: Isotopes in Environmental and Health Studies, 7, 379–383, 1971.
Eriksen, T. E.: Sulfur Isotope Effects 1. Isotopic Exchange Coefficient for Sulfur Isotopes 34S-32S in System SO2(g)-HSO3(aq) at 25, 35, and 45 Degrees C, Acta Chem. Scand., 26, 573, 1972{a}.
Eriksen, T. E.: Sulfur Isotope Effects 2. Isotopic Exchange Coefficients for Sulfur Isotopes 34S-32S in System SO2(g)-Aqueous Solutions of SO2, Acta Chem. Scand., 26, 581, 1972{b}.
Eriksen, T. E.: Sulfur Isotope Effects 3. Enrichment of 34S by Chemical Exchange between SO2(g) and Aqueous Solutions of SO2, Acta Chem. Scand., 26, 975, 1972{c}.
Eriksen, T. E.: Sulfur Isotope Effects 4. Sulfur Isotope Effects in Anion-Exchange Systems, Acta Chem. Scand., 26, 980, 1972{d}.
Farquhar, J., Savarino, J., Airieau, S., and Thiemens, M. H.: Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere, J. Geophys. Res.-Plan., 106, 32829–32839, 2001.
Goldstein, D. E., N., Echlin, P., Joy, D., Fiori, C., and Lifshin, E.: Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, USA, 53–122, 1981.
Groener, E. and Hoppe, P.: Automated ion imaging with the NanoSIMS ion microprobe, Appl. Surf. Sci., 252, 7148–7151, https://doi.org/10.1016/j.apsusc.2006.02.280, 2006.
Hanson, D. R. and Eisele, F.: Diffusion of H2SO4 in humidified nitrogen: Hydrated H2SO4, J. Phys. Chem. A, 104, 1715–1719, 2000.
Hattori, S., Danielache, S., Johnson, M., Schmidt, J., Kjaergaard, H., Toyoda, S., Ueno, Y., and Yoshida, N.: Ultraviolet absorption cross sections of carbonyl sulfide isotopologues OC32S, OC33S, OC34S and O13CS: isotopic fractionation in photolysis and atmospheric implications, Atmos. Chem. Phys., 11, 10293–10303, https://doi.org/10.5194/acp-11-10293-2011, 2011.
Herrmann, H., Ervens, B., Jacobi, H. W., Wolke, R., Nowacki, P., and Zellner, R.: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem., 36, 231–284, 2000.
Hoppe, P.: NanoSIMS: A new tool in cosmochemistry, Appl. Surf. Sci., 252, 7102–7106, 2006.
Huygen, C.: The sampling of sulfur dioxide in air with impregnated filter paper, Anal. Chim. Acta, 28, 349–360, 1963.
IPCC: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007, Cambridge University Press, http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html, 2007.
Krouse, H. R. and Grinenko, V. A.: Stable isotopes : natural and anthropogenic sulphur in the environment, vol. 43, Wiley, Chichester, UK, 1991.
Krouse, H., Grinenko, L., Grinenko, V., Newman, L., Forrest, J., Nakai, N., Tsuji, Y., Yatsumimi, T., Takeuchi, V., Robinson, B., Stewart, M., Gunatilaka, A., Plumb, L., Smith, J., Buzek, F., Cerny, J., Sramek, J., Menon, A., Iyer, G., Venkatasubramanian, V., Egboka, B., Irogbenachi, M. and Eligwe, C.: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment, chap. 8. Case Studies and Potential Applications, John Wiley and Sons, 307–416, 1991.
Kulmala, M., Vehkamaki, H., Petaja, T., Maso, M. D., Lauri, A., Kerminen, V. M., Birmili, W., and McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci., 35, 143–176, 2004.
Kulmala, M., Riipinen, I., Sipila, M., Manninen, H. E., Petaja, T., Junninen, H., Maso, M. D., Mordas, G., Mirme, A., Vana, M., Hirsikko, A., Laakso, L., Harrison, R. M., Hanson, I., Leung, C., Lehtinen, K. E. J., and Kerminen, V. M.: Toward direct measurement of atmospheric nucleation, Science, 318, 89–92, 2007.
Lai, A. C.: Investigation of Electrostatic Forces on Particle Deposition in a Test Chamber, Indoor Built Environ., 15, 179–186, 2006.
Leung, F. Y., Colussi, A. J., and Hoffmann, M. R.: Sulfur isotopic fractionation in the gas-phase oxidation of sulfur dioxide initiated by hydroxyl radicals, J. Phys. Chem. A, 105, 8073–8076, 2001.
Leung, F. Y., Colussi, A. J., Hoffmann, M. R., and Toon, G. C.: Isotopic fractionation of carbonyl sulfide in the atmosphere: Implications for the source of background stratospheric sulfate aerosol, Geophys. Res. Lett., 29, 1474, https://doi.org/10.1029/2001g1013955, 2002.
Lin, Y., Sim, M. S., and Ono, S.: Multiple-sulfur isotope effects during photolysis of carbonyl sulfide, Atmos. Chem. Phys., 11, 10283–10292, https://doi.org/10.5194/acp-11-10283-2011, 2011.
Luz, B. and Barkan, E.: The isotopic ratios O-17/O-16 and O-18/O-16 in molecular oxygen and their significance in biogeochemistry, Geochim. Cosmochim. Acta, 69, 1099–1110, 2005.
Lyons, J. R.: Atmospherically-derived mass-independent sulfur isotope signatures, and incorporation into sediments, Chem. Geol., 267, 164–174, 2009.
Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., and Tardieux, P.: Experimental-determination of Nitrogen Kinetic Isotope Fractionation - Some Principles – Illustration For the Denitrification and Nitrification Processes, Plant Soil, 62, 413–430, 1981.
Mayer, B., Feger, K. H., Giesemann, A., and Jäger, H.-J.: Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data, Biogeochemistry, 30, 31–58, 1995.
Mertes, S., Lehmann, K., Nowak, A., Massling, A., and Wiedensohler, A.: Link between aerosol hygroscopic growth and droplet activation observed for hill-capped clouds at connected flow conditions during FEBUKO, Atmos. Environ., 39, 4247–4256, 2005.
Moore, J., Stanitski, C., and Jurs, P.: Chemistry: The Molecular Science, Brooks/Cole, Thomson Learning, USA, A.31–A.32, 2005.
Mukai, H., Tanaka, A., Fujii, T., Zeng, Y. Q., Hong, Y. T., Tang, J., Guo, S., Xue, H. S., Sun, Z. L., Zhou, J. T., Xue, D. M., Zhao, J., Zhai, G. H., Gu, J. L., and Zhai, P. Y.: Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites, Environ. Sci. Technol., 35, 1064–1071, 2001.
Nielsen, H., Pilot, J., Grinenko, L., Grinenko, V., Lein, A., Smith, J., and Pankina, R.: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment, chap. 4. Lithospheric Sources of Sulfur, John Wiley and Sons, 65–132, 1991.
Norman, A. L., Anlauf, K., Hayden, K., Thompson, B., Brook, J. R., Li, S. M., and Bottenheim, J.: Aerosol sulphate and its oxidation on the Pacific NW coast: S and O isotopes in PM2.5, Atmos. Environ., 40, 2676–2689, 2006.
Novak, M., Jackova, I., and Prechova, E.: Temporal Trends in the Isotope Signature of Air-Borne Sulfur in Central Europe, Environ. Sci. Technol., 35, 255–260, 2001.
Nriagu, J. O., Rees, C., Mekhtiyeva, V., Lein, A., Fritz, P., Drimmie, R., Pankina, R., Robinson, B., and Krouse, H. R.: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment, chap. 6. Hydrosphere, John Wiley and Sons, 177–266, 1991.
Ohizumi, T., Fukuzaki, N., and Kusakabe, M.: Sulfur isotopic view on the sources of sulfur in atmospheric fallout along the coast of the Sea of Japan, Atmos. Environ., 31, 1339–1348, 1997.
Ono, S., Wing, B., Johnston, D., Farquhar, J., and Rumble, D.: Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles, Geochim. Cosmochim. Acta, 70, 2238–2252, 2006.
Patris, N., Delmas, R. J., Legrand, M., Angelis, M. D., Ferron, F. A., Stievenard, M. and Jouzel, J.: First sulfur isotope measurements in central Greenland ice cores along the preindustrial and industrial periods, J. Geophys. Res.-Atmos., 107, https://doi.org/10.1029/2001JD000672, 2002.
Rees, C. and Holt, B.: Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment, chap. 3., John Wiley and Sons, 43–64, 1991.
Rees, C. E., Jenkins, W. J., and Monster, J.: Sulfur Isotopic Composition of Ocean Water Sulfate, Geochim. Cosmochim. Acta, 42, 377–381, 1978.
Rudyak, V. Y., Dubtsov, S. N., and Baklanov, A. M.: Measurements of the temperature dependent diffusion coefficient of nanoparticles in the range of 295-600 K at atmospheric pressure, Journal of Aerosol Science, 40, 833–843, 2009.
Saltzman, E. S., Brass, G., and Price, D.: The mechanism of sulfate aerosol formation: Chemical and sulfur isotopic evidence, Geophys. Res. Lett., 10, 513–516, 1983.
Sanusi, A. A., Norman, A.-L., Burridge, C., Wadleigh, M. and Tang, W.-W.: Determination of the S isotope composition of methanesulfonic acid, Anal. Chem., 78, 4964–4968, 2006.
Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Laboratory oxygen isotopic study of sulfur (IV) oxidation: Origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth, J. Geophys. Res.-Atmos., 105, 29079–29088, 2000.
Savarino, J., Bekki, S., Cole-Dai, J. H. and Thiemens, M. H.: Evidence from sulfate mass independent oxygen isotopic compositions of dramatic changes in atmospheric oxidation following massive volcanic eruptions Journal of Geophysical Research-Atmospheres, 108, 2003{a}.
Savarino, J., Romero, A., Cole-Dai, J., Bekki, S. and Thiemens, M. H.: UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate, Geophys. Res. Lett., 30, 2131, https://doi.org/10.1029/2003GL018134, 2003{b}.
Savarino, J., Romero, A., Cole-Dai, J. and Thiemens, M. H.: UV induced mass-independent sulfur composition in stratospheric volcanic eruptions, Geochim. Cosmochim. Acta, 67, A417–A417, 2003{c}.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, Wiley & Sons, New York, USA, 363–379, 1998.
Sinha, B. W., Hoppe, P., Huth, J., Foley, S., and Andreae, M. O.: Sulfur isotope analyses of individual aerosol particles in the urban aerosol at a central European site (Mainz, Germany), Atmos. Chem. Phys., 8, 7217–7238, https://doi.org/10.5194/acp-8-7217-2008, 2008{a}.
Sinha, V., Williams, J., Crowley, J. N., and Lelieveld, J.: The Comparative Reactivity Method – a new tool to measure total OH Reactivity in ambient air, Atmos. Chem. Phys., 8, 2213–2227, https://doi.org/10.5194/acp-8-2213-2008, 2008{b}.
Sinha, V., Custer, T. G., Kluepfel, T., and Williams, J.: The effect of relative humidity on the detection of pyrrole by PTR-MS for OH reactivity measurements, Int. J. Mass Spectrom., 282, 108–111, 2009.
Sinha, B. W., Hoppe, P., Huth, J., Foley, S., and Andreae, M. O.: Sulfur isotope analysis of individual aerosol particles –a new tool for studying heterogeneous oxidation processes in the marine environment, Atmos. Chem. Phys. Discuss., 9, 3307–3365, https://doi.org/10.5194/acpd-9-3307-2009, 2009.
Slodzian, G., Chaintreau, M., Dennebouy, R., and Rousse, A.: Precise in situ measurements of isotopic abundances with pulse counting of sputtered ions, Europ. Phys. J.-Appl. Phys., 14, 199–231, 2001.
Slodzian, G., Hillion, F., Stadermann, F. J., and Zinner, E.: QSA influences on isotopic ratio measurements, Appl. Surf. Sci., 231–232, 874–877, 2004.
Sofen, E. D., Alexander, B., and Kunasek, S. A.: The impact of anthropogenic emissions on atmospheric sulfate production pathways, oxidants, and ice core Δ17O(SO$_4^{2�}$), Atmos. Chem. Phys., 11, 3565–3578, https://doi.org/10.5194/acp-11-3565-2011, 2011.
Stoyan, D.: Stochastik fuer Ingenieure und Naturwissenschaftler, Wiley-VCH, 1998.
Tanaka, N., Rye, D. M., Xiao, Y., and Lasaga, A. C.: Use of Stable Sulfur Isotope Systematics for Evaluating Oxidation Reaction Pathways and in-Cloud Scavenging of Sulfur-Dioxide in the Atmosphere, Geophys. Res. Lett., 21, 1519–1522, 1994.
US-EPA: Method 6 – Determination of Sulfur Dioxide Emissions from Stationary Sources, available online at: http://www.epa.gov/ttn/emc/, 2010.
Winterholler, B.: Sulfur Isotope Analysis of Aerosol Particles by NanoSIMS, Ph.D. thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2007.
Winterholler, B., Hoppe, P., Andreae, M. O., and Foley, S.: Measurement of sulfur isotope ratios in micrometer-sized samples by NanoSIMS, Appl. Surf. Sci., 252, 7128–7131, 2006.
Winterholler, B., Hoppe, P., Foley, S., and Andreae, M. O.: Sulfur isotope ratio measurements of individual sulfate particles by NanoSIMS, Int. J. Mass Spectrom., 272, 63–77, 2008.
Young, L. H., Benson, D. R., Kameel, F. R., Pierce, J. R., Junninen, H., Kulmala, M., and Lee, S.-H.: Laboratory studies of H2SO4/H2O binary homogeneous nucleation from the SO2+OH reaction: evaluation of the experimental setup and preliminary results, Atmos. Chem. Phys., 8, 4997–5016, https://doi.org/10.5194/acp-8-4997-2008, 2008.
Zasypkin, A., Grigor'eva, V., Korchak, V., and Gerschenson, Y.: A formula for summing of kinetic resistances for mobile and stationary media: I.\ Cylindrical reactor, Kin. Catalyst., 38, 842–851, 1997.
Altmetrics
Final-revised paper
Preprint