Articles | Volume 10, issue 22
https://doi.org/10.5194/acp-10-11017-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-10-11017-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Atmospheric pollutant outflow from southern Asia: a review
M. G. Lawrence
Max Planck Institut for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
University of Mainz, Institute for Physics of the Atmosphere, Mainz, Germany
J. Lelieveld
Max Planck Institut for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
Cyprus Institute, Nicosia, Cyprus
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Atmospheric evolution of environmentally persistent free radicals in rural North China Plain: insights into water solubility and effects on PM2.5 oxidative potential
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
A Multi-site Passive Approach for Studying the Emissions and Evolution of Smoke from Prescribed Fires
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
Bayesian inference-based estimation of hourly primary and secondary organic carbon in suburban Hong Kong: multi-temporal-scale variations and evolution characteristics during PM2.5 episodes
Primary and secondary emissions from a modern fleet of city buses
Enhanced daytime secondary aerosol formation driven by gas-particle partitioning in downwind urban plumes
Dominant Influence of Biomass Combustion and Cross-Border Transport on Nitrogen-Containing Organic Compound Levels in the Southeastern Tibetan Plateau
Impact assessment of terrestrial and marine air-mass on the constituents and intermixing of bioaerosols over coastal atmosphere
Assessing the influence of long-range transport of aerosols on the PM2.5 chemical composition and concentration in the Aburrá Valley
Measurement report: Characteristics of nitrogen-containing organics in PM2.5 in Ürümqi, northwestern China – differential impacts of combustion of fresh and aged biomass materials
Measurement report: Bio-physicochemistry of tropical clouds at Maïdo (Réunion, Indian Ocean): overview of results from the BIO-MAÏDO campaign
Impacts of elevated anthropogenic emissions on physicochemical characteristics of BC-containing particles over the Tibetan Plateau
Chemical properties and single-particle mixing state of soot aerosol in Houston during the TRACER campaign
Measurement report: Evaluation of the TOF-ACSM-CV for PM1.0 and PM2.5 measurements during the RITA-2021 field campaign
Sea salt reactivity over the northwest Atlantic: an in-depth look using the airborne ACTIVATE dataset
Measurement report: Atmospheric ice nuclei in the Changbai Mountains (2623 m a.s.l.) in northeastern Asia
Morphological and optical properties of carbonaceous aerosol particles from ship emissions and biomass burning during a summer cruise measurement in the South China Sea
Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes
Chemical composition, sources and formation mechanism of urban PM2.5 in Southwest China: a case study at the beginning of 2023
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
This article is included in the Encyclopedia of Geosciences
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
This article is included in the Encyclopedia of Geosciences
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
This article is included in the Encyclopedia of Geosciences
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
This article is included in the Encyclopedia of Geosciences
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
This article is included in the Encyclopedia of Geosciences
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
This article is included in the Encyclopedia of Geosciences
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
This article is included in the Encyclopedia of Geosciences
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
This article is included in the Encyclopedia of Geosciences
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
This article is included in the Encyclopedia of Geosciences
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
This article is included in the Encyclopedia of Geosciences
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
This article is included in the Encyclopedia of Geosciences
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
This article is included in the Encyclopedia of Geosciences
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
This article is included in the Encyclopedia of Geosciences
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
This article is included in the Encyclopedia of Geosciences
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
This article is included in the Encyclopedia of Geosciences
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
This article is included in the Encyclopedia of Geosciences
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
This article is included in the Encyclopedia of Geosciences
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
This article is included in the Encyclopedia of Geosciences
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
This article is included in the Encyclopedia of Geosciences
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
This article is included in the Encyclopedia of Geosciences
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
This article is included in the Encyclopedia of Geosciences
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
This article is included in the Encyclopedia of Geosciences
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
This article is included in the Encyclopedia of Geosciences
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
This article is included in the Encyclopedia of Geosciences
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
This article is included in the Encyclopedia of Geosciences
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
This article is included in the Encyclopedia of Geosciences
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
This article is included in the Encyclopedia of Geosciences
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
EGUsphere, https://doi.org/10.5194/egusphere-2024-1622, https://doi.org/10.5194/egusphere-2024-1622, 2024
Short summary
Short summary
A study in rural North China Plain revealed Environmental persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs’ atmospheric evolution for climate and health impacts.
This article is included in the Encyclopedia of Geosciences
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
This article is included in the Encyclopedia of Geosciences
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
This article is included in the Encyclopedia of Geosciences
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
This article is included in the Encyclopedia of Geosciences
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O’Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1485, https://doi.org/10.5194/egusphere-2024-1485, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires, however, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in two different years, we characterize the emissions and evolution up to 8 hours of PM2.5 mass, BC, and BrC in smoke from burning of forested lands in the southeastern US.
This article is included in the Encyclopedia of Geosciences
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
This article is included in the Encyclopedia of Geosciences
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
This article is included in the Encyclopedia of Geosciences
Shan Wang, Kezheng Liao, Zijing Zhang, Yuk Ying Cheng, Qiongqiong Wang, Hanzhe Chen, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 5803–5821, https://doi.org/10.5194/acp-24-5803-2024, https://doi.org/10.5194/acp-24-5803-2024, 2024
Short summary
Short summary
In this work, hourly primary and secondary organic carbon were estimated by a novel Bayesian inference approach in suburban Hong Kong. Their multi-temporal-scale variations and evolution characteristics during PM2.5 episodes were examined. The methodology could serve as a guide for other locations with similar monitoring capabilities. The observation-based results are helpful for understanding the evolving nature of secondary organic aerosols and refining the accuracy of model simulations.
This article is included in the Encyclopedia of Geosciences
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
EGUsphere, https://doi.org/10.5194/egusphere-2024-494, https://doi.org/10.5194/egusphere-2024-494, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
This article is included in the Encyclopedia of Geosciences
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baolin Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-887, https://doi.org/10.5194/egusphere-2024-887, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas-particle partitioning when the site was affected by urban plumes. Box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
This article is included in the Encyclopedia of Geosciences
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1130, https://doi.org/10.5194/egusphere-2024-1130, 2024
Short summary
Short summary
This study explores nitrogen-containing organic compounds (NOCs) in PM2.5 particles on the Southeastern Tibetan Plateau. We discovered that biomass burning and transboundary transport are the primary sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they contribute to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
This article is included in the Encyclopedia of Geosciences
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
EGUsphere, https://doi.org/10.5194/egusphere-2024-841, https://doi.org/10.5194/egusphere-2024-841, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing processes of terrestrial and marine aerosols. Terrestrial air mass constituted a larger proportion during severe air pollution, harboring more animal and human pathogens. A relative shift towards marine air-mass with respect to pollution elimination, where saprophytic bacteria and fungi were predominant. Mixed air-mass reveals the intermixing processes of terrestrial and marine sources.
This article is included in the Encyclopedia of Geosciences
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
EGUsphere, https://doi.org/10.5194/egusphere-2024-695, https://doi.org/10.5194/egusphere-2024-695, 2024
Short summary
Short summary
For the Aburrá Valley, Colombia, local emissions dominate aerosol concentrations, which degrade air quality (AQ) and impact human health. However, this can be exacerbated by the influx of external emissions from sources such as regional fires, Saharan dust, and volcanic degassing. While substantially increasing city-wide aerosols, these external sources can also degrade the aerosol chemical composition (i.e. their toxicity) and impact AQ, which we investigate in this study.
This article is included in the Encyclopedia of Geosciences
Yi-Jia Ma, Yu Xu, Ting Yang, Hong-Wei Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 24, 4331–4346, https://doi.org/10.5194/acp-24-4331-2024, https://doi.org/10.5194/acp-24-4331-2024, 2024
Short summary
Short summary
This study provides field-based evidence about the differential impacts of combustion of fresh and aged biomass materials on aerosol nitrogen-containing organic compounds (NOCs) in different seasons in Ürümqi, bridging the linkages between the observations and previous laboratory studies showing the formation mechanisms of NOCs.
This article is included in the Encyclopedia of Geosciences
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
This article is included in the Encyclopedia of Geosciences
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-879, https://doi.org/10.5194/egusphere-2024-879, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black carbon -containing aerosol in TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
This article is included in the Encyclopedia of Geosciences
Ryan N. Farley, James E. Lee, Laura-Hélèna Rivellini, Alex K. Y. Lee, Rachael Dal Porto, Christopher D. Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine B. Benedict, Allison C. Aiken, Manvendra K. Dubey, and Qi Zhang
Atmos. Chem. Phys., 24, 3953–3971, https://doi.org/10.5194/acp-24-3953-2024, https://doi.org/10.5194/acp-24-3953-2024, 2024
Short summary
Short summary
The black carbon aerosol composition and mixing state were characterized using a soot particle aerosol mass spectrometer. Single-particle measurements revealed the major role of atmospheric processing in modulating the black carbon mixing state. A significant fraction of soot particles were internally mixed with oxidized organic aerosol and sulfate, with implications for activation as cloud nuclei.
This article is included in the Encyclopedia of Geosciences
Xinya Liu, Bas Henzing, Arjan Hensen, Jan Mulder, Peng Yao, Danielle van Dinther, Jerry van Bronckhorst, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 3405–3420, https://doi.org/10.5194/acp-24-3405-2024, https://doi.org/10.5194/acp-24-3405-2024, 2024
Short summary
Short summary
We evaluated the time-of-flight aerosol chemical speciation monitor (TOF-ACSM) following the implementation of the PM2.5 aerodynamic lens and a capture vaporizer (CV). The results showed that it significantly improved the accuracy and precision of ACSM in the field observations. The paper elucidates the measurement outcomes of various instruments and provides an analysis of their biases. This comprehensive evaluation is expected to benefit the ACSM community and other aerosol field measurements.
This article is included in the Encyclopedia of Geosciences
Eva-Lou Edwards, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Claire E. Robinson, Michael A. Shook, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 3349–3378, https://doi.org/10.5194/acp-24-3349-2024, https://doi.org/10.5194/acp-24-3349-2024, 2024
Short summary
Short summary
We investigate Cl− depletion in sea salt particles over the northwest Atlantic from December 2021 to June 2022 using an airborne dataset. Losses of Cl− are greatest in May and least in December–February and March. Inorganic acidic species can account for all depletion observed for December–February, March, and June near Bermuda but none in May. Quantifying Cl− depletion as a percentage captures seasonal trends in depletion but fails to convey the effects it may have on atmospheric oxidation.
This article is included in the Encyclopedia of Geosciences
Yue Sun, Yujiao Zhu, Yanbin Qi, Lanxiadi Chen, Jiangshan Mu, Ye Shan, Yu Yang, Yanqiu Nie, Ping Liu, Can Cui, Ji Zhang, Mingxuan Liu, Lingli Zhang, Yufei Wang, Xinfeng Wang, Mingjin Tang, Wenxing Wang, and Likun Xue
Atmos. Chem. Phys., 24, 3241–3256, https://doi.org/10.5194/acp-24-3241-2024, https://doi.org/10.5194/acp-24-3241-2024, 2024
Short summary
Short summary
Field observations were conducted at the summit of Changbai Mountain in northeast Asia. The cumulative number concentration of ice-nucleating particles (INPs) varied from 1.6 × 10−3 to 78.3 L−1 over the temperature range of −5.5 to −29.0 ℃. Biological INPs (bio-INPs) accounted for the majority of INPs, and the proportion exceeded 90% above −13.0 ℃. Planetary boundary layer height, valley breezes, and long-distance transport of air mass influence the abundance of bio-INPs.
This article is included in the Encyclopedia of Geosciences
Cuizhi Sun, Yongyun Zhang, Baoling Liang, Min Gao, Xi Sun, Fei Li, Xue Ni, Qibin Sun, Hengjia Ou, Dexian Chen, Shengzhen Zhou, and Jun Zhao
Atmos. Chem. Phys., 24, 3043–3063, https://doi.org/10.5194/acp-24-3043-2024, https://doi.org/10.5194/acp-24-3043-2024, 2024
Short summary
Short summary
In a May–June 2021 expedition in the South China Sea, we analyzed black and brown carbon in marine aerosols, key to light absorption and climate impact. Using advanced in situ and microscope techniques, we observed particle size, structure, and tar balls mixed with various elements. Results showed biomass burning and fossil fuels majorly influence light absorption, especially during significant burning events. This research aids the understanding of carbonaceous aerosols' role in marine climate.
This article is included in the Encyclopedia of Geosciences
C. Isabel Moreno, Radovan Krejci, Jean-Luc Jaffrezo, Gaëlle Uzu, Andrés Alastuey, Marcos F. Andrade, Valeria Mardóñez, Alkuin Maximilian Koenig, Diego Aliaga, Claudia Mohr, Laura Ticona, Fernando Velarde, Luis Blacutt, Ricardo Forno, David N. Whiteman, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, https://doi.org/10.5194/acp-24-2837-2024, 2024
Short summary
Short summary
Aerosol chemical composition (ions, sugars, carbonaceous matter) from 2011 to 2020 was studied at Mt. Chacaltaya (5380 m a.s.l., Bolivian Andes). Minimum concentrations occur in the rainy season with maxima in the dry and transition seasons. The origins of the aerosol are located in a radius of hundreds of kilometers: nearby urban and rural areas, natural biogenic emissions, vegetation burning from Amazonia and Chaco, Pacific Ocean emissions, soil dust, and Peruvian volcanism.
This article is included in the Encyclopedia of Geosciences
Junke Zhang, Yunfei Su, Chunying Chen, Wenkai Guo, Qinwen Tan, Miao Feng, Danlin Song, Tao Jiang, Qiang Chen, Yuan Li, Wei Li, Yizhi Wang, Xiaojuan Huang, Lin Han, Wanqing Wu, and Gehui Wang
Atmos. Chem. Phys., 24, 2803–2820, https://doi.org/10.5194/acp-24-2803-2024, https://doi.org/10.5194/acp-24-2803-2024, 2024
Short summary
Short summary
Typical haze events in Chengdu at the beginning of 2023 were investigated with bulk-chemical and single-particle analyses along with numerical model simulations. By integrating the obtained chemical composition, source, mixing state and numerical simulation results, we infer that Haze-1 was mainly caused by pollutants related to fossil fuel combustion, especially local mobile sources, while Haze-2 was triggered by the secondary pollutants, which mainly came from regional transmission.
This article is included in the Encyclopedia of Geosciences
Cited articles
Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., and Welton, E. J.: Reduction of tropical cloudiness by soot, Science, 288, 1042–1047, 2000.
Akimoto, H.: Global air quality and pollution, Science, 302, 1716–1719, 2003.
Akimoto, H., Ohara, T., Kurokawa, J., and Horii, N.: Verification of energy consumption in China during 1996–2003 by using satellite observational data, Atmos. Environ., 40, 7663–7667, 2006.
Alexander, D. T. L., Crozier, P. A., and Anderson, J. R.: Brown Carbon Spheres in East Asian Outflow and Their Optical Properties, Science, 321, 833–836, 2008.
Alfaro, S. C., Gaudichet, A., Rajot, J. L., Gomes, L., Maill{é}, M., and Cachier, H.: Variability of aerosol-resolved composition at an {I}ndian coastal site during the {I}ndian {O}cean {E}xperiment (INDOEX) intensive field phase, J. Geophys. Res., 108, 4235, https://doi.org/10.1029/2002JD002645, 2003.
Ali, K., Momin, G. A., Tiwari, S., Safai, P. D., Chate, D. M., and Rao, P. S. P.: Fog and precipitation chemistry at Delhi, {N}orth {I}ndia, Atmos. Environ., 38, 4215–4222, 2004.
Ali, K., Beig, G., Chate, D. M., Momin, G. A., Sahu, S. K., and Safai, P. D.: Sink mechanism for significantly low level of ozone over the Arabian Sea during monsoon, J. Geophys. Res., 114, D17306, https://doi.org/10.1029/2008JD011256, 2009.
Aloysius, M., Mohan, M., Babu, S. S., Nair, V. S., Parameswaran, K., and Moorthy, K. K.: Influence of circulation parameters on the AOD variations over the B}ay of {B}engal during {ICARB, J. Earth Syst. Sci., 117, 353–360, 2008.
Anderson, R. C.: Do dragonflies migrate across the western {I}ndian {O}cean?, J. Trop. Ecol., 25, 347–358, 2009.
Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Hintsha, E. J., Weinstock, E. M., and Bui, T. P.: Empirical age spectra for the lower tropical stratosphere from in sitiu observations of {CO2}: implications for stratospheric transport, J. Geophys. Res., 104, 26581–26596, 1999.
Andronache, C., Donner, L. J., Seman, C. J., and Hemler, R. S.: A study of the impact of the I}ntertropical {C}onvergence {Z}one on aerosols during {INDOEX, J. Geophys. Res., 107, 8027, https://doi.org/10.1029/2001JD900248, 2002.
Appu, K. S., Nair, S. M., Kunhikrishnan, P. K., Moorthy, K. K., Sarode, P. R., Rao, L. V., Bajpai, S. R., Prakash, L. H., Viswanathan, G., Mitra, A. P., Sadoumy, R., Basdevant, C., Ethe, C., Ovarlez, H., Chapuis, R., Dartigudongue, B., and Vianeys, P.: Spatial distribution of meteorological parameters around 900 hPa level over the A}rabian {S}ea and {I}ndian {O}cean regions during the {IFP-99 of the INDOEX programme as revealed from the constant altitude balloon experiments conducted from Goa, Curr. Sci. India, 80, 89–96, 2001.
Ashfaq, M., Shi, Y., Tung, W., Trapp, R. J., Gao, X., Pal, J. S., and Diffenbaugh, N. S.: Suppression of south {A}sian summer monsoon precipitation in the 21st century, Geophys. Res. Lett., 36, L01704, https://doi.org/10.1029/2008GL036500, 2009.
Asatar, G. I. and Nair., P. R.: Spatial distribution of near-surface CO over Bay of Bengal during winter: role of transport, J. Atmos. Sol.-Terr. Phy., 72, 1241–1250, https://doi.org/10.1016/j.jastp.2010.07.025, 2010.
Auvray, M. and Bey, I.: Long-range transport to {E}urope: Seasonal variations and implications for the {E}uropean ozone budget, J. Geophys. Res., 110, D11303, https://doi.org/10.1029/2004JD005503, 2005.
Babu, S. S., Satheesh, S. K., and Moorthy, K. K.: Aerosol radiative forcing due to enhanced black carbon at an urban site in {I}ndia, Geophys. Res. Lett., 29, 1880, https://doi.org/10.1029/2002GL015826, 2002.
Babu, S. S., Moorthy, K. K., and Satheesh, S. K.: Aerosol black carbon over {A}rabian {S}ea during intermonsoon and summer monsoon seasons, Geophys. Res. Lett., 31, L06104, https://doi.org/10.1029/2003GL018716, 2004.
Babu, S. S., Satheesh, S. K., Moorhty, K. K., Dutt, C. B. S., Nair, V. S., Alappattu, D. P., and Kunhikrishnan, P. K.: Aircraft measurements of aerosol black carbon from a coastal location in the north-east part of peninsular India during ICARB, J. Earth Syst. Sci., 117, 263–271, 2008.
Babu, S. S., Sreekanth, V., Nair, V. S., Satheesh, S. K.,and Moorthy, K. K.: Vertical profile of aerosol single scattering albedo over west coast of India during W_ICARB, J. Atmos. Sol.-Terr. Phy., 72, 876–882, https://doi.org/10.1016/j.jastp.2010.04.013, 2010.
Badarinath, K. V. S., Kumar Kharol, S., Kaskaoutis, D. G., Sharma, A. R., Ramaswamy, V., and Kambezidis, H. D.: Long-range transport of dust aerosols over the Arabian Sea and Indian region – A case study using satellite data and ground-based measurements, Glob. Plan. Change, 72, 164–181, https://doi.org/10.1016/j.gloplacha.2010.02.003, 2010.
Badarinath, K. V. S. and Kumar Kharol, S.: Studies on aerosol properties during ICARB-2006 campaign period at H}yderabad, {I}ndia using {ground-based measurements and satellite data, J. Earth Syst. Sci., 117, 413–420, 2008.
Baker, A. K., Schuck, T. J., Slemr, F., van Velthoven, P., Zahn, A., and Brenninkmeijer, C. A. M.: Characterization of non-methane hydrocarbons in Asian summer monsoon outflow observed by the CARIBIC aircraft, Atmos. Chem. Phys. Discuss., 10, 18101–18138, https://doi.org/10.5194/acpd-10-18101-2010, 2010.
Ball, W. P., Dickerson, R. R., Doddridge, B. G., Stehr, J. W., Miller, T. L., Savoie, D. L., and Carsey, T. P.: Bulk and size-segregated aerosol composition observed during {INDOEX} 1999: overview of meteorology and continental impacts, J. Geophys. Res., 108, 8001, https://doi.org/10.1029/2002JD002467, 2003.
Bannister, R. N., O'Neill, A., Gregory, A. R., and Nissen, K. M.: The role of the south-east {A}sian monsoon and other seasonal features in creating the "tape-recorder" signal in the {U}nified {M}odel, Q. J. Roy. Meteor. Soc., 130, 1531–1554, 2004.
Barret, B., Ricaud, P., Mari, C., Attié, J.-L., Bousserez, N., Josse, B., Le Flochmoën, E., Livesey, N. J., Massart, S., Peuch, V.-H., Piacentini, A., Sauvage, B., Thouret, V., and Cammas, J.-P.: Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations, Atmos. Chem. Phys., 8, 3231–3246, https://doi.org/10.5194/acp-8-3231-2008, 2008.
Beegum, S. N., Moorthy, K. K., Nair, V. S., Babu, S. S., Satheesh, S. K., Vinoj, V., Ramakrishna Reddy, R., Rama Gopal, K., Badarinath, K. V. S., Niranjan, K., Kumar Pandey, S., Behera, M., Jeyaram, A., Bhuyan, P. K., Gogoi, M. M., Singh, S., Pant, P., Dumka, U. C., Kant, Y., Kuniyal, J. C., and Singh, D.: Characteristics of spectral aerosol optical dephts over India during ICARB, J. Earth Syst. Sci., 117, 303–313, 2008.
Beirle, S., Platt, U., von Glasow, R., Wenig, M., and Wagner, T.: Estimate of nitrogen oxide emissions from shipping by satellite remote sensing, Geophys. Res. Lett., 31, L18102, https://doi.org/10.1029/2004GL020312, 2004.
Berntsen, T. K., Karlsdòttir, S., and Jaffe, D. A.: Influence of Asian emissions on the composition of air reaching the North Western United States, Geophys. Res. Lett., 26, 2171–2174, 1999.
Bhawar, R. L. and Devara, P. C. S.: Study of successive contrasting monsoons (2001–2002) in terms of aerosol variability over a tropical station Pune, India, Atmos. Chem. Phys., 10, 29–37, https://doi.org/10.5194/acp-10-29-2010, 2010.
Bonasoni, P., Laj, P., Marinoni, A., Sprenger, M., Angelini, F., Arduini, J., Bonafè, U., Calzolari, F., Colombo, T., Decesari, S., Di Biagio, C., di Sarra, A. G., Evangelisti, F., Duchi, R., Facchini, MC., Fuzzi, S., Gobbi, G. P., Maione, M., Panday, A., Roccato, F., Sellegri, K., Venzac, H., Verza, GP., Villani, P., Vuillermoz, E., and Cristofanelli, P.: Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m), Atmos. Chem. Phys., 10, 7515–7531, https://doi.org/10.5194/acp-10-7515-2010, 2010.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109, D14203, https://doi.org/10.1029/2003JD003697, 2004.
Boos, W. R. and Kuang, Z.: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating, Nature, 463, 218–222, 2010.
Bremaud, P. J., Taupin, F., Thompson, A. M., and Chaumerliac, N.: Ozone nighttime recovery in the marine boundary layer: Measurement andn simulation of the ozone diurnal cycle at {R}eunion {I}sland, J. Geophys. Res., 103, 3463–3473, 1998.
Brenninkmeijer, C. A. M., Crutzen, P., Boumard, F., Dauer, T., Dix, B., Ebinghaus, R., Filippi, D., Fischer, H., Franke, H., Frie{ß}, U., Heintzenberg, J., Helleis, F., Hermann, M., Kock, H. H., Koeppel, C., Lelieveld, J., Leuenberger, M., Martinsson, B. G., Miemczyk, S., Moret, H. P., Nguyen, H. N., Nyfeler, P., Oram, D., O'Sullivan, D., Penkett, S., Platt, U., Pupek, M., Ramonet, M., Randa, B., Reichelt, M., Rhee, T. S., Rohwer, J., Rosenfeld, K., Scharffe, D., Schlager, H., Schumann, U., Slemr, F., Sprung, D., Stock, P., Thaler, R., Valentino, F., van Velthoven, P., Waibel, A., Wandel, A., Waschitschek, K., Wiedensohler, A., Xueref-Remy, I., Zahn, A., Zech, U., and Ziereis, H.: Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system, Atmos. Chem. Phys., 7, 4953–4976, https://doi.org/10.5194/acp-7-4953-2007, 2007.
Burkert, J., Andr{é}s-Hern{á}ndez, M. D., Reichert, L., Meyer-Arnek, J., Doddridge, B., Dickerson, R. R., M{ü}hle, J., Zahn, A., Carsey, T., and Burrows, J. P.: Trace gas radical diurnal behavior in the marine boundary layer during INDOEX 1999, J. Geophys. Res., 108, 8000, https://doi.org/10.1029/2002JD002790, 2003.
Butler, T. M., Lawrence, M. G., Gurjar, B. R., van Aardenne, J., Schultz, M., and Lelieveld, J.: The representation of emissions from megacities in global emission inventories, Atmos. Environ., 42, 703–719, 2008.
Chakrabarty, D. K., Peshin, S. K., Pandya, K. V., and Shah, N. C.: Long-term trend of ozone column over the {I}ndian region, J. Geophys. Res., 103, 19245–19251, 1998.
Chan, C. Y., Wong, K. H., Li, Y. S., Chan, L. Y., and Zheng, X. D.: The effects of Southeast Asia fire activities on tropospheric ozone, trace gases, and aerosols at a remote site over the Tibetan Plateau of Southwest China, Tellus, 58B, 310–318, 2006.
Chand, D. and Lal, S.: High ozone at rural sites in India, Atmos. Chem. Phys. Discuss., 4, 3359–3380, https://doi.org/10.5194/acpd-4-3359-2004, 2004.
Chand, D., Modh, K. S., Naja, M., Venkataramani, S., and Lal, S.: Latitudinal trends in O3, CO, CH4 and SF6 over the I}ndian {O}cean during the {INDOEX IFP-1999 ship cruise, Curr. Sci. India, 80, 100–104, 2001.
Chand, D., Lal, S., and Naja, M.: Variations of ozone in the marine boundary layer over the A}rabian {S}ea and the {I}ndian {O}cean during the 1998 and 1999 {INDOEX campaigns, J. Geophys. Res., 108, 4190, https://doi.org/10.1029/2001JD001589, 2003.
Chand, D., Wood, R., Anderson, T. L., Satheesh, S. K., and Charlson, R. J.: Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nat. Geosci., 2, 181–184, 2009.
Chandra, S., Satheesh, S. K., and Srinivasan, J.: Can the state of mixing of black carbon aerosols explain the mystery of "excess" atmospheric absorption?, Geophys. Res. Lett., 31, L19109, https://doi.org/10.1029/2004GL020662, 2004.
Chatfield, R. B., Guan, H., Thompson, A. M., and Witte, J. C.: Convective lofting links {I}ndian {O}cean air pollution to paradoxical {S}outh {A}tlantic ozone maxima, Geophys. Res. Lett., 31, L06103, https://doi.org/10.1029/2003GL018866, 2004.
Chatfield, R. B., Guan, H., Thompson, A. M., and Smit, H. G. J.: Mechanisms for the intraseasonal variability of tropospheric ozone over the {I}ndian {O}cean during the winter monsoon, J. Geophys. Res., 112, D10303, https://doi.org/10.1029/2006JD007347, 2007.
Chazette, P.: The monsoon aerosol extinction properties at Goa during INDOEX as measured with lidar, J. Geophys. Res., 108, 4187, https://doi.org/10.1029/2002JD002074, 2003.
Chen, P.: Isentropic cross-tropopause mass exchange in the extratropics, J. Geophys. Res., 100, 16661–16673, 1995.
Chowdhury, Z., Hughes, L. S., Salmon, L. G., and Cass, G. R.: Atmospheric particle size and composition measurements to support light extinction calculations over the {I}ndian {O}cean, J. Geophys. Res., 106, 28597–28605, 2001.
Chung, C. and Ramanathan, V.: Weakening of N. Indian SST gradients and the monsoon rainfall in {I}ndia and the {S}ahel, J. Climate, 19, 2036–2045, 2006.
Chung, C. E. and Ramanathan, V.: S}outh {A}sian haze forcing: Remote impacts with implications to {ENSO and AO, J. Climate, 16, 1791–1806, 2003.
Chung, C. E. and Ramanathan, V.: Relationship between trends in land precipitation and tropical SST gradient, Geophys. Res. Lett., 34, L16809, https://doi.org/10.1029/2007GL030491, 2007.
Chung, C. E., Ramanathan, V., and Kiehl, J. T.: Effects of the S}outh {A}sian Absorbing Haze on the Northeast Monsoon {Surface-Air Heat Exchange, J. Climate, 15, 2462–2476, 2002.
Chung, C. E., Ramanathan, V., Carmichael, G., Kulkarni, S., Tang, Y., Adhikary, B., Leung, L. R., and Qian, Y.: Anthropogenic aerosol radiative forcing in Asia derived from regional models with atmospheric and aerosol data assimilation, Atmos. Chem. Phys., 10, 6007–6024, https://doi.org/10.5194/acp-10-6007-2010, 2010.
Church, T. M. and Jickells, T. D.: Atmospheric chemistry in the coastal ocean: A synopsis of processing, scavenging and inputs, Indian J. Mar. Sci., 33, 71–76, 2004.
Chylek, P., Dubey, M. K., Lohmann, U., Ramanathan, V., Kaufman, Y. J., Lesins, G., Hudson, J., Altmann, G., and Olsen, S.: Aerosol indirect effect over the {I}ndian {O}cean, Geophys. Res. Lett., 33, L06806, https://doi.org/10.1029/2005GL025397, 2006.
Clarke, A. D., Howell, S., Quinn, P. K., Bates, T. S., Ogren, J. A., Andrews, E., Jefferson, A., Massling, A., Mayol-Bracero, O., Maring, H., Savoie, D., and Cass, G.: INDOEX aerosol: a comparison and summary of chemical, microphysical, and optical properties observed from land, ship, and aircraft, J. Geophys. Res., 107, 8033, https://doi.org/10.1029/2001JD000572, 2002.
Cofala, J., Amann, M., Klimont, Z., Kupiainen, K., and H{ö}glund-Isaksson, L.: Scenarios of global anthropogenic emissions of air pollutants and methane until 2030, Atmos. Environ., 41, 8486–8499, 2007.
Collins, W. D., Rasch, P. J., Eaton, B. E., Khattatov, B. V., Lamarque, J., and Zender, C. S.: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: M}ethodology for {INDOEX, J. Geophys. Res., 106, 7313–7336, 2001.
Collins, W. D., Rasch, P. J., Eaton, B. E., Fillmore, D. W., Kiehl, J. T., Beck, C. T., and Zender, C. S.: Simulation of aerosol distributions and radiative forcing for {INDOEX}: Regional climate impacts, J. Geophys. Res., 107, 8028, https://doi.org/10.1029/2000JD000032, 2002.
Corrigan, C. E., Roberts, G. C., Ramana, M. V., Kim, D., and Ramanathan, V.: Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles, Atmos. Chem. Phys., 8, 737–747, https://doi.org/10.5194/acp-8-737-2008, 2008.
Crimmins, B. S., Dickerson, R. R., Doddridge, B. G., and Baker, J. E.: Particulate polycyclic aromatic hydrocarbons in the Atlantic and Indian Ocean atmospheres during the {I}ndian {O}cean {E}xperiment and {Aerosols99}: Continental sources to the marine atmosphere, J. Geophys. Res., 109, D05308, https://doi.org/10.1029/2003JD004192, 2004.
Decesari, S., Facchini, M. C., Carbone, C., Giulianelli, L., Rinaldi, M., Finessi, E., Fuzzi, S., Marinoni, A., Cristofanelli, P., Duchi, R., Bonasoni, P., Vuillermoz, E., Cozic, J., Jaffrezo, J. L., and Laj, P.: Chemical composition of PM10 and PM1 at the high-altitude Himalayan station Nepal Climate Observatory-Pyramid (NCO-P) (5079 m a.s.l.), Atmos. Chem. Phys., 10, 4583–4596, https://doi.org/10.5194/acp-10-4583-2010, 2010.
de Gouw, J. A., Warneke, C., Scheeren, H. A., van der Veen, C., Bolder, M., Scheele, M. P., Williams, J., Wong, S., Lange, L., Fischer, H., and Lelieveld, J.: Overview of the trace gas measurements on board the Citation aircraft during the intensive field phase of INDOEX, J. Geophys. Res., 106, 28453–28467, 2001.
de Laat, A. T. J.: On the origin of tropospheric O3 over the Indian Ocean during the winter monsoon: African biomass burning vs. stratosphere-troposphere exchange, Atmos. Chem. Phys., 2, 325–341, https://doi.org/10.5194/acp-2-325-2002, 2002.
de Laat, A. T. J. and Lelieveld, J.: Diurnal ozone cycle in the tropical and subtropical marine boundary layer, J. Geophys. Res., 105, 11547–11559, 2000.
de Laat, A. T. J. and Lelieveld, J.: Interannual variability of the Indian winter monsoon circulation and consequences for pollution levels, J. Geophys. Res., 107, 4739, https://doi.org/10.1029/2001JD001483, 2002.
de Laat, A. T. J., de Gouw, J. A., and Lelieveld, J.: Model analysis of trace gas measurements and pollution impact during INDOEX, J. Geophys. Res., 106, 28469–28480, 2001a.
de Laat, A. T. J., Lelieveld, J., Roelofs, G. J., Dickerson, R. R., and Lobert, J. M.: Source analysis of carbon monoxide pollution during INDOEX 1999, J. Geophys. Res., 106, 28481–28495, 2001b.
de Reus, M., Str{ö}m, J., Kulmala, M., Pirjola, L., Lelieveld, J., Schiller, C., and Z{ö}ger, M.: Airborne aerosol measurements in the tropopause region and the dependence of new particle formation on pre-existing particle number concentration, J. Geophys. Res., 103, 31255–31263, 1998.
de Reus, M., Str{ö}m, J., Curtius, J., Pirjola, L., Vignati, E., Arnold, F., Hansson, H. C., Kulmala, M., Lelieveld, J., and Raes, F.: Aerosol production and growth in the upper free troposphere, J. Geophys. Res., 105, 24751–24762, 2000.
de Reus, M., Krejci, R., Williams, J., Fischer, H., Scheele, R., and Str{ö}m, J.: Vertical and horizontal distributions of the aerosol number concentration and size distribution over the northern {I}ndian {O}cean, J. Geophys. Res., 106, 28629–28641, 2001.
de Reus, M., Formenti, P., Str{ö}m, J., Krejci, R., M{ü}ller, D., Andreae, M. O., and Lelieveld, J.: Airborne observations of dry particle absorption and scattering properties over the northern {I}ndian {O}cean, J. Geophys. Res., 107, 8002, https://doi.org/10.1029/2002JD002304, 2002.
Debaje, S. B. and Kakade, A. D.: Surface ozone variability over western Maharashtra, India, J. Hazard. Mater., 161, 686–700, 2009.
D{é}salmand, F., Szantai, A., Picon, L., and Desbois, M.: Systematic observation of westward propagating cloud bands over the A}rabian {S}ea during {I}ndian {O}cean {E}xperiment {INDOEX, J. Geophys. Res., 108, 8004, https://doi.org/10.1029/2002JD002934, 2003.
Dethof, A., O'Neil, A., and Slingo, J.: Quantification of the isentropic mass transport across the dynamical tropopause, J. Geophys. Res., 105, 12279–12293, 2000.
Devasthale, A. and Fueglistaler, S.: A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments, Atmos. Chem. Phys., 10, 4573–4582, https://doi.org/10.5194/acp-10-4573-2010, 2010.
Dey, S. and Tripathi, S. N.: Estimation of aerosol optical properties and radiative effects in the Ganga basin, northern India, during the wintertime, J. Geophys. Res., 112, D03203, https://doi.org/10.1029/2006JD007267, 2007.
Dickerson, R. R., Rhoads, K. P., Carsey, T. P., Oltmans, S. J., Burrows, J. P., and Crutzen, P. J.: Ozone in the remote marine boundary layer: A possible role for halogens, J. Geophys. Res., 104, 21385–21395, 1999.
Dickerson, R. R., Andreae, M. O., Campos, T., Mayol-Bracero, O. L., Neusuess, C., and Streets, D. G.: Analysis of black carbon and carbon monoxide observed over the {I}ndian {O}cean: Implications for emissions and photochemistry, J. Geophys. Res., 107, 8017, https://doi.org/10.1029/2001JD000446, 2002.
Dumka, U. C., Satheesh, S. K., Pant, P., Hegde, P., and Moorthy, K. K.: Surface changes in solar irradiance due to aerosols over central {H}imalayas, Geophys. Res. Lett., 33, L20809, https://doi.org/10.1029/2006GL027814, 2006.
Dumka, U. C., Moorthy, K. K., Pant, P., Hegde, P., Sagar, R., and Pandey, K.: Physical and optical characteristics of atmospheric aerosols during ICARB at M}anora {P}eak, {N}ainital: A sparsely inhabited, {high-altitude location in the Himalayas, J. Earth Syst. Sci., 117, 399–405, 2008.
Dunkerton, T. J.: Evidence of meridional motion in the summer lower stratosphere adjacent to monsoon regions, J. Geophys. Res., 100, 16675–16688, 1995.
EC: First Daughter Directive, Council Directive 1999/30/EC relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter, and lead in ambient, Oj l 163, EC, 1999.
Eck, T. F., Holben, B. N., Dubovik, O., Smirnov, A., Slutsker, I., Lobert, J. M., and Ramanathan, V.: Column-integrated aerosol optical properties over the Maldives during the northeast monsoon for 1998–2000, J. Geophys. Res., 106, 28555–28566, 2001.
Eldering, A., Ogren, J. A., Chowdhury, Z., Hughes, L. S., and Cass, G. R.: Aerosol optical properties during INDOEX based on measured aerosol particle size and composition, J. Geophys. Res., 107, 8001, https://doi.org/10.1029/2001JD001572, 2002.
Engstr{ö}m, A., Ekman, A. M. L., Krejci, R., Str{ö}m, J., de Reus, M., and Wang, C.: Observational and modelling evidence of tropical deep convective clouds as a source of mid-tropospheric accumulation mode aerosols, Geophys. Res. Lett., 35, L23813, https://doi.org/10.1029/2008GL035817, 2008.
Eth{é}, C., Basdevant, C., Sadourny, R., Appu, K. S., Harenduprakash, L., Sarode, P. R., and Viswanathan, G.: Air mass motion, temperature, and humidity over the A}rabian {S}ea and western {I}ndian {O}cean during the {INDOEX intensive phase, as obtained from a set of superpressure drifting balloons, J. Geophys. Res., 107, 8023, https://doi.org/10.1029/2001JD001120, 2002.
Fiore, A. M., Dentener, F. J., Wild, O., et al.: Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res., 114, D04301, https://doi.org/10.1029/2008JD010816, 2009.
Fischer, H., de Reus, M., Traub, M., Williams, J., Lelieveld, J., de Gouw, J., Warneke, C., Schlager, H., Minikin, A., Scheele, R., and Siegmund, P.: Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes, Atmos. Chem. Phys., 3, 739–745, https://doi.org/10.5194/acp-3-739-2003, 2003.
Fischer, H., Lawrence, M., Gurk, Ch., Hoor, P., Lelieveld, J., Hegglin, M. I., Brunner, D., and Schiller, C.: Model simulations and aircraft measurements of vertical, seasonal and latitudinal O3 and CO distributions over Europe, Atmos. Chem. Phys., 6, 339–348, https://doi.org/10.5194/acp-6-339-2006, 2006.
Fishman, J., Wozniak, A. E., and Creilson, J. K.: Global distribution of tropospheric ozone from satellite measurements using the empirically corrected tropospheric ozone residual technique: Identification of the regional aspects of air pollution, Atmos. Chem. Phys., 3, 893–907, https://doi.org/10.5194/acp-3-893-2003, 2003.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, https://doi.org/10.1029/2006JD008003, 2007.
Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–2497, https://doi.org/10.5194/acp-9-2481-2009, 2009.
Forêt, G., Flamant, C., Cautenet, S., Pelon, J., Minvielle, F., Taghavi, M., and Chazette, P.: The structure of the haze plume over the Indian Ocean during INDOEX: tracer simulations and LIDAR observations, Atmos. Chem. Phys., 6, 907–923, https://doi.org/10.5194/acp-6-907-2006, 2006.
Franke, K., Ansmann, A., M{ü}ller, D., Althausen, D., Venkataraman, C., Reddy, M. S., Wagner, F., and Scheele, R.: Optical properties of the Indo-Asian haze layer over the tropical {I}ndian {O}cean, J. Geophys. Res., 108, 4059, https://doi.org/10.109/2002JD002473, 2003.
Fu, R., Hu, Y., Wright, J. S., Jiang, J. S., Dickinson, R. E., Chen, M., Filipiak, M., Read, W. G., Waters, J. W., and Wu, D. L.: Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the {T}ibetan {P}lateau, P. Natl. Acad. Sci. USA, 103, 5664–5669, 2006.
Fueglistaler, S., Wernli, H., and Peter, T.: Tropical troposphere-to-stratosphere transport inferred from trajectory calculations, J. Geophys. Res., 109, D03108, https://doi.org/10.1029/2003JD004069, 2004.
Gabriel, R., Mayol-Bracero, O. L., and Andreae, M. O.: Chemical characterization of submicron aerosol particles collected over the {I}ndian {O}cean, J. Geophys. Res., 107, 8005, https://doi.org/10.1029/2000JD000034, 2002a.
Gabriel, R., von Glasow, R., Sander, R., Andreae, M. O., and Crutzen, P. J.: Bromide content of sea-salt aerosol particles collected over the {I}ndian {O}cean during {INDOEX} 1999, J. Geophys. Res., 107, 8032, https://doi.org/10.1029/2001JD001133, 2002b.
Gadgil, S.: The {I}ndian monsoon and its variability, Annu. Rev. Earth Pl. Sc., 31, 429–467, 2003.
Ganguly, D., Jayaraman, A., Rajesh, T. A., and Gadhavi, H.: Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing, J. Geophys. Res., 111, D15217, https://doi.org/10.1029/2005JD007029, 2006.
Ganguly, D., Ginoux, P., Ramaswamy, V., Winker, D. M., Holben, B. N., and Tripathi, S. N.: Retrieving the composition and concentration of aerosols over the Indo-Gangetic basin using CALIOP and AERONET data, Geophys. Res. Lett., 36, L13806, https://doi.org/10.1029/2009GL038315, 2009.
Gautam, R., Hsu, N. C., Lau, K., Tsay, S.-C., and Kafatos, M.: Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007, Geophys. Res. Lett., 36, L07704, https://doi.org/10.1029/2009GL037641, 2009.
George, S. K. and Nair, P. R.: Aerosol mass loading over the marine environment of A}rabian {S}ea during {ICARB}: {Sea-salt and non-sea-salt components, J. Earth Syst. Sci., 117, 333–344, 2008.
Gettelman, A., Kinnison, D. E., Dunkerton, T. J., and Brasseur, G. P.: Impact of monsoon circulations on the upper troposphere and lower stratosphere, J. Geophys. Res., 109, D22101, https://doi.org/10.1029/2004JD004878, 2004.
Zhang, Y., Dubey, M. K., Olsen, S. C., Zheng, J., and Zhang, R.: Comparisons of WRF/Chem simulations in Mexico City with ground-based RAMA measurements during the 2006-MILAGRO, Atmos. Chem. Phys., 9, 3777–3798, https://doi.org/10.5194/acp-9-3777-2009, 2009.
Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., and Xavier, P. K.: Increasing Trend of Extreme Rain Events Over India in a Warming Environment, Science, 314, 1442–1445, 2006.
Granat, L., Norman, M., Leck, C., Kulshrestha, U. C., and Rodhe, H.: Wet scavenging of sulfur compound and other constituents during the {I}ndian {O}cean {E}xperiment (INDOEX), J. Geophys. Res., 107, 8025, https://doi.org/10.1029/2001JD000499, 2002.
Granat, L., Engström, J. E., Praveen, S., and Rodhe, H.: Light absorbing material (soot) in rainwater and in aerosol particles in the Maldives, J. Geophys. Res., 115, D16307, https://doi.org/10.1029/2009JD013768, 2010.
Gros, V., Williams, J., Lawrence, M. G., von Kuhlmann, R., van Aardenne, J. A., Atlas, E., Chuck, A., Edwards, D. P., Stroud, V., and Krol, M.: Tracing the origin and ages of interlaced atmospheric pollution events over the tropical Atlantic Ocean with in-situ measurements, satellites, trajectories, emission inventories and global models, J. Geophys. Res., 109, D22306, https://doi.org/10.1029/2004JD004846, 2004.
Guazotti, S. A., Coffee, K. R., and Prather, K. A.: Continuous measurements of size-resolved particle chemistry during INDOEX-Intensive Field Phase 99, J. Geophys. Res., 106, 28607–28627, 2001.
Guazzotti, S. A., Suess, D. T., Coffee, K. R., Quinn, P. K., Bates, T. S., Wisthaler, A., Hansel, A., Ball, W. P., Dickerson, R. R., and Neus{ü}{ß}, C.: Characterization of carbonaceous aerosols outflow from I}ndia and {A}rabia: {Biomass/biofuel burning and fossil fuel combustion, J. Geophys. Res., 108, 4485, https://doi.org/10.1029/2002JD003277, 2003.
Gustafsson, Ö., Krusa, M., Zencak, Z., Sheesley, R. J., Granat, L., Engstr{ö}m, E., Praveen, P. S., Rao, P. S. P., Leck, C., and Rodhe, H.: Brown Clouds over {S}outh {A}sia: Biomass or {F}ossil {F}uel {C}ombustion?, Science, 323, 495–498, 2009.
Hamilton, J. F., Allen, G., Watson, N. M., et al.: Observations of an atmospheric chemical equator and its implications for the tropical warm pool region, J. Geophys. Res., 113, D20313, https://doi.org/10.1029/2008JD009940, 2008.
Hartley, D. E. and Black, R. X.: Mechanistic analysis of interhemispheric transport, Geophys. Res. Lett., 22, 2945–2948, 1995.
Haywood, J. M. and Shine, K. P.: Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model, Q. J. Roy. Meteor. Soc., 123, 1907–1930, 1997.
Haywood, J. M., Ramaswamy, V., and Donner, L. J.: A limited-area-model case study of the effects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol, Geophys. Res. Lett., 24, 143–146, 1997.
Heil, A. and Goldammer, J. G.: Smoke-haze pollution: a review of the 1997 episode in {S}outheast {A}sia, Reg. Environ. Change, 2, 24–37, 2001.
Heintzenberg, J.: Fine particles in the global troposphere, Tellus, 41, 149–160, 1989.
Heymsfield, A. J. and McFarquhar, G. M.: Microphysics of INDOEX clean and polluted trade cumulus clouds, J. Geophys. Res., 106, 28653–28673, 2001.
Jacob, D. J., Logan, J. A., and Murti, P. P.: Effect of rising {A}sian emissions on surface ozone in the {U}nited {S}tates, Geophys. Res. Lett., 26, 2175–2178, 1999.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695–697, 2001.
Jaffe, D., Anderson, T., Covert, D., Kotchenruther, R., Trost, B., Danielson, J., Simpson, W., Berntsen, T., Karlsdottir, S., Blake, D., Harris, J., Carmichael, G., and Uno, I.: Transport of Asian air pollution to North America, Geophys. Res. Lett., 26, 711–714, 1999.
Jayaraman, A.: Results on direct radiative forcing of aerosols obtained over the tropical {I}ndian {O}cean, Curr. Sci. India, 76, 924–930, 1999.
Jayaraman, A., Lubin, D., Ramachandran, S., Ramanathan, V., Woodbridge, E., Collins, W. D., and Zalpuri, K. S.: Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January–February} 1996 {pre-INDOEX cruise, J. Geophys. Res., 103, 13827–13836, 1998.
Jayaraman, A., Satheesh, S. K., Mitra, A. P., and Ramanathan, V.: Latitude gradient in aerosol properties across the I}nter {T}ropical {C}onvergence {Z}one: Results from the joint {Indo-US study onboard Sagar Kanya, Curr. Sci. India, 80, 128–137, 2001.
Jayaraman, A., Gadhavi, H., Ganguly, D., Misra, A., Ramachandran, S., and Rajesh, T.: Spatial variations in aerosol characteristics and regional radiative forcing over {India}: Measurements and modeling of 2004 road campaign experiment, Atmos. Environ., 40, 6504–6515, https://doi.org/10.1016/j.atmosenv.2006.01.034, 2006.
Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld, L., Hoor, P., Kerkweg, A., Lawrence, M. G., Sander, R., Steil, B., Stiller, G., Tanarhte, M., Taraborrelli, D., van Aardenne, J., and Lelieveld, J.: The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere, Atmos. Chem. Phys., 6, 5067–5104, https://doi.org/10.5194/acp-6-5067-2006, 2006
Johansen, A. M., Siefert, R. L., and Hoffmann, M. R.: Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the {A}rabian {S}ea: Anions and cations, J. Geophys. Res., 104, 26325–26347, 1999.
Jones, T. A., Christopher, S. A., and Quaas, J.: A six year satellite-based assessment of the regional variations in aerosol indirect effects, Atmos. Chem. Phys., 9, 4091–4114, https://doi.org/10.5194/acp-9-4091-2009, 2009.
Kalapureddy, M. C. R., Kaskaoutis, D. G., Raj, P. E., Devara, P. C. S., Kambezidis, H. D., Kosmopoulos, P. G., and Nastos, P. T.: Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB), J. Geophys. Res., 114, D17203, https://doi.org/10.1029/2009JD011826, 2009.
Kamra, A. K., Murugavel, P., and Pawar, S. D.: Measured size distributions of aerosols over the I}ndian {O}cean during {INDOEX, J. Geophys. Res., 108, 8000, https://doi.org/10.1029/2002JD002200, 2003.
Kar, J., Bremer, H., Drummand, J. R., Rochon, Y. J., Jones, D. B. A., Nichitiu, F., Zou, J., Liu, J., Gille, J. C., Edwards, D. P., Deeter, M. N., Francis, G., Ziskin, D., and Warner, J.: Evidence of vertical transport of carbon monoxide by {M}easurements of {P}ollution in the {T}roposphere (MOPITT), Geophys. Res. Lett., 31, L23105, https://doi.org/10.1029/2004GL021128, 2004.
Kasibhatla, P., Arellano, A., Logan, J. A., Palmer, P. I., and Novelli, P.: Top-down estimate of a large source of atmospheric carbon monoxide associated with fuel combustion in {A}sia, Geophys. Res. Lett., 29, 1900, https://doi.org/10.1029/2002GL015561, 2002.
Kaskaoutis, D. G., Kalapureddy, M. C. R., Krishna Moorthy, K., Devara, P. C. S., Nastos, P. T., Kosmopoulos, P. G., and Kambezidis, H. D.: Heterogeneity in pre-monsoon aerosol types over the Arabian Sea deduced from ship-borne measurements of spectral AODs, Atmos. Chem. Phys., 10, 4893–4908, https://doi.org/10.5194/acp-10-4893-2010, 2010.
Kaufman, Y. J., Koren, I., Remer, L. A., and Rudich, Y.: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean, Proc. Natl. Acad. Sci., 102, 11207–11212, 2005.
Kedia, S. and Ramachandran, S.: Latitudinal and longitudinal variation in aerosol characteristics from S}un photometer and {MODIS over the B}ay of {B}engal and {A}rabian {S}ea during {ICARB, J. Earth Syst. Sci., 117, 375–387, 2008.
Kedia, S., Ramachandran, S., Kumar, A., and Sarin, M. M.: Spatiotemporal gradients in aerosol radiative forcing and heating rate over Bay of Bengal and Arabian Sea derived on the basis of optical, physical, and chemical properties, J. Geophys. Res., 115, D07205, https://doi.org/10.1029/2009JD013136, 2010.
Koch, D., Bond, T. C., Streets, D., Unger, N., and van der Werf, G. R.: Global impacts of aerosols from particular source regions and sectors, J. Geophys. Res., 112, D02205, https://doi.org/10.1029/2005JD007024, 2007.
Kopacz, M., Mauzerall, D. L., Wang, J., Leibensperger, E. M., Henze, D. K., and Singh, K.: Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau, Atmos. Chem. Phys. Discuss., 10, 21615–21651, https://doi.org/10.5194/acpd-10-21615-2010, 2010.
Koren, I., Remer, L. A., Kaufman, Y. J., Rudich, Y., and Martins, J. V. : On the twilight zone between clouds and aerosols, Geophys. Res. Lett., 34, L08805, https://doi.org/10.1029/2007GL029253, 2007.
Krishnamurti, T. N., Jha, B., Rasch, P. J., and Ramanathan, V.: A high resolution global reanalysis highlighting the winter monsoon, Part I, Reanalysis fields, Met. Atmos. Phys., 64, 123–150, 1997a.
Krishnamurti, T. N., Jha, B., Rasch, P. J., and Ramanathan, V.: A high resolution global reanalysis highlighting the winter monsoon, Part II, transients and passive tracer transports, Met. Atmos. Phys., 64, 151–171, 1997b.
Krishnamurti, T. N., Chakraborty, A., Martin, A., Lau, W. K., Kim, K.-M., Sud, Y., and Walker, G.: Impact of {A}rabian {S}ea pollution on the {B}ay of {B}engal winter monsoon rains, J. Geophys. Res., 114, D06213, https://doi.org/10.1029/2008JD010679, 2009.
Krishnan, R. and Ramanathan, V.: Evidence of surface cooling from absorbing aerosols, Geophys. Res. Lett., 29, 1340, https://doi.org/10.1029/2002GL014687, 2002.
Kuhlmann, J. and Quaas, J.: How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data, Atmos. Chem. Phys., 10, 4673–4688, https://doi.org/10.5194/acp-10-4673-2010, 2010.
Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., and Dhar, S.: Glacial retreat in {H}imalaya using {I}ndian {R}emote {S}ensing satellite data, Curr. Sci. India, 92, 69–74, 2007.
Kulmala, M., Reissell, A., Sipil{ä}, M., Bonn, B., Ruuskanen, T. M., Lehtinen, K. E. J., Kerminen, V., and Str{ö}m, J.: Deep convective clouds as aerosol production engines: Role of insoluble organics, J. Geophys. Res., 111, D17202, https://doi.org/10.1029/2005JD006963, 2006.
Kulshrestha, U. C., Granat, L., Engardt, M., and Rodhe, H.: Review of precipitation monitoring studies in India – a search for regional patterns, Atmos. Environ., 39, 7403–7419, 2005.
Kumar, A., Sudheer, A. K., and Sarin, M. M.: Chemical characteristics of aerosols in MABL of {B}ay of {B}engal and {A}rabian {S}ea during spring {inter-monsoon}: A comparative study, J. Earth Syst. Sci., 117, 325–332, 2008.
Kunhikrishnan, T. and Lawrence, M. G.: Sensitivity of NO2 over the Indian Ocean to emissions from the surrounding continents and nonlinearities in atmospheric chemistry responses, Geophys. Res. Lett., 31, L15109, https://doi.org/10.1029/2003GL020210, 2004.
Kunhikrishnan, T., Lawrence, M. G., von Kuhlmann, R., Richter, A., Ladst{ä}tter, A., and Burrows, J. P.: Analysis of tropospheric NOx over A}sia using the {Model of Atmospheric Transport and Chemistry {(MATCH-MPIC)} and GOME-satellite observations, Atmos. Environ., 38, 581–596, 2004a.
Kunhikrishnan, T., Lawrence, M. G., von Kuhlmann, R., Richter, A., Ladst{ä}tter, A., and Burrows, J. P.: Semi-annual NO2 Plumes during the Monsoon Transition periods over Central Indian Ocean, Geophys. Res. Lett., 31, L08110, https://doi.org/10.1029/2003GL019269, 2004b.
Ladstätter-Wei{ß}enmayer, A., Altmeyer, H., Bruns, M., Richter, A., Rozanov, A., Rozanov, V., Wittrock, F., and Burrows, J. P.: Measurements of O3, NO2 and BrO during the INDOEX campaign using ground based DOAS and GOME satellite data, Atmos. Chem. Phys., 7, 283–291, https://doi.org/10.5194/acp-7-283-2007, 2007.
Lal, S. and Lawrence, M. G.: Elevated mixing ratios of surface ozone over the {A}rabian {S}ea, Geophys. Res. Lett., 28, 1487–1490, 2001.
Lal, S., Naja, M., and Jayaraman, A.: Ozone in the marine boundary layer over the tropical Indian Ocean, J. Geophys. Res., 103, 18907–18917, 1998.
Lal, S., Naja, M., and Subbaraya, B. H.: Seasonal variations in surface ozone and its precursors over an urban site in {I}ndia, Atmos. Environ., 34, 2713–2724, 2000.
Lal, S., Chand, D., Sahu, L. K., Venkataramani, S., Brasseur, G., and Schultz, M. G.: High levels of ozone and related gases over the {B}ay of {B}engal during winter and early spring of 2001, Atmos. Environ., 40, 1633–1644, 2006.
Lal, S., Sahu, L. K., and Venkataramani, S.: Impact of transport from the surrounding continental regions on the distributions of ozone and related trace gases over the Bay of Bengal during February 2003, J. Geophys. Res., 112, L14302, https://doi.org/10.1029/2006JD008023, 2007.
Lal, S., Sahu, L. K., Gupta, S., Srivastava, S., Modh, K. S., Venkataramani, S., and Rajesh, T. A.: Emission characteristic of ozone related trace gases at a semi-urban site in the Indo-Gangetic plain using inter-correlations, J. Atmos. Chem., 60, 189–204, 2008a.
Lal, S., Sahu, L. K., Venkataramani, S., Rajesh, T. A., and Modh, K. S.: Distributions of O3, CO and NMHCs over the rural sites in central {I}ndia, J. Atmos. Chem., 61, 73–84, 2008b.
Lau, K. M., Kim, M. K., and Kim, K. M.: Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the {T}ibetan {P}lateau, Clim. Dynam., 26, 855–864, 2006.
Lawrence, M. G., J{ö}ckel, P., and von Kuhlmann, R.: What does the global mean OH concentration tell us?, Atmos. Chem. Phys., 1, 37–49, https://doi.org/10.5194/acp-1-37-2001, 2001.
Lawrence, M. G.: Export of air pollution from southern Asia and its large-scale effects, Springer, 131–172, 2004.
Lawrence, M. G. and Rasch, P. J.: Tracer transport in deep convective updrafts: plume ensemble versus bulk formulations, J. Atmos. Sci., 62, 2880–2894, 2005.
Lawrence, M. G. and Salzmann, M.: On interpreting studies of tracer transport by deep cumulus convection and its effects on atmospheric chemistry, Atmos. Chem. Phys., 8, 6037–6050, https://doi.org/10.5194/acp-8-6037-2008, 2008.
Lawrence, M. G., Rasch, P. J., von Kuhlmann, R., Williams, J., Fischer, H., de Reus, M., Lelieveld, J., Crutzen, P. J., Schultz, M., Stier, P., Huntrieser, H., Heland, J., Stohl, A., Forster, C., Elbern, H., Jakobs, H., and Dickerson, R. R.: Global chemical weather forecasts for field campaign planning: predictions and observations of large-scale features during MINOS, CONTRACE, and INDOEX, Atmos. Chem. Phys., 3, 267–289, https://doi.org/10.5194/acp-3-267-2003, 2003a.
Lawrence, M. G., von Kuhlmann, R., Salzmann, M., and Rasch, P. J.: The balance of effects of deep convective mixing on tropospheric ozone, Geophys. Res. Lett., 30, 1940, https://doi.org/10.1029/2003GL017644, 2003b.
Lawrence, M. G., Hov, O., Beekmann, M., Brandt, J., Elbern, H., Eskes, H., Feichter, H., and Takigawa, M.: The chemical weather, Environ. Chem., 2, 6-8, 2005.
Lelieveld, J. and Dentener, F.: What controls tropospheric ozone?, J. Geophys. Res., 105, 3531–3551, 2000.
Lelieveld, J., Ramanathan, V., and Crutzen, P. J.: The global effects of {A}sian haze, IEEE Spectrum, 36, 50–54, 1999.
Lelieveld, J., Crutzen, P. J., Ramanathan, V., Andreae, M. O., Brenninkmeijer, C. A. M., Campos, T., Cass, G. R., Dickerson, R. R., Fischer, H., de Gouw, J. A., Hansel, A., Jefferson, A., Kley, D., de Laat, A. T. J., Lal, S., Lawrence, M. G., Lobert, J. M., Mayol-Bracero, O. L., Mitra, A. P., Novakov, T., Oltmans, S. J., Prather, K. A., Reiner, T., Rodhe, H., Scheeren, H. A., Sikka, D., and Williams, J.: The {I}ndian {O}cean {E}xperiment: {W}idespread {A}ir {P}ollution from {S}outh and {S}outheast {A}sia, Science, 291, 1031–1036, 2001.
Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., de Gouw, J., Feichter, J., Flatau, P., Heland, J., Holzinger, R., Korrmann, R., Lawrence, M., Levin, Z., Markowicz, K., Mihalopoulos, N., Minikin, A., Ramanathan, V., de Reus, M., Roelofs, G.-J., Scheeren, H. A., Sciare, J., Schlager, H., Schultz, M., Siegmund, P., Steil, B., Stephanou, E., Stier, P., Traub, M., Williams, J., and Ziereis, H.: Global air pollution crossroads over the Mediterranean, Science, 298, 794–799, 2002.
Lelieveld, J., Brühl, C., Jöckel, P., Steil, B., Crutzen, P. J., Fischer, H., Giorgetta, M. A., Hoor, P., Lawrence, M. G., Sausen, R., and Tost, H.: Stratospheric dryness: model simulations and satellite observations, Atmos. Chem. Phys., 7, 1313–1332, https://doi.org/10.5194/acp-7-1313-2007, 2007.
Lelieveld, J., Hoor, P., Jöckel, P., Pozzer, A., Hadjinicolaou, P., Cammas, J.-P., and Beirle, S.: Severe ozone air pollution in the Persian Gulf region, Atmos. Chem. Phys., 9, 1393–1406, https://doi.org/10.5194/acp-9-1393-2009, 2009.
L{é}on, J., Chazette, P., Pelon, J., Dulac, F., and Randriamiarisoa, H.: Aerosol direct radiative impact over the INDOEX area based on passive and active remote sensing, J. Geophys. Res., 107, 8006, https://doi.org/10.1029/2000JD000116, 2002.
L{é}on, J.-F., Chazette, P., Dulac, F., Pelon, J., Flamant, C., Bonazzola, M., For{ê}t, G., Alfaro, S. C., Cachier, H., Cautenet, S., Hamounou, E., Gaudichet, A., Gomes, L., Rajot, J.-L., Lavenu, F., Inamdar, S. R., Sarode, P. R., and Kadadevarmath, J. S.: Large-scale advection of continental aerosols during INDOEX, J. Geophys. Res., 106, 28427–28439, 2001.
Li, F. and Ramanathan, V.: Winter to summer monsoon variation of aerosol optical depth over the tropical {I}ndian {O}cean, J. Geophys. Res., 107, 4284, https://doi.org/10.1029/2001JD000949, 2002.
Li, Q., Jacob, D. J., Logan, J. A., Bey, I., Yantosca, R. M., Liu, H., Martin, R. V., Fiore, A. M., and Duncan, B. N.: A tropospheric ozone maximum over the {M}iddle {E}ast, Geophys. Res. Lett., 28, 3235–3238, 2001.
Li, Q., Jiang, J. H., Wu, D. L., Read, W. G., Livesey, N. J., Waters, J. W., Zhang, Y., Wang, B., Filipiak, M. J., Davis, C. P., Turquety, S., Wu, S., Park, R. J., Yantosca, R. M., and Jacob, D. J.: Convective outflow of S}outh {A}sian pollution: a global {CTM simulation compared with EOS {MLS} observations, Geophys. Res. Lett., 32, L14826, https://doi.org/10.1029/2005GL022762, 2005.
Liang, Q., Jaegl{é}, L., Hudman, R. C., Turquety, S., Jacob, D. J., Avery, M. A., Browell, E. V., Sachse, G. W., Blake, D. R., Brune, W., Ren, X., Cohen, R. C., Dibb, J. E., Fried, A., Fuelberg, H., Porter, M., Heikes, B. G., Huey, G., Singh, H. B., and Wennberg, P. O.: Summertime influence of {A}sian pollution in the free troposphere over {N}orth {A}merica, J. Geophys. Res., 112, D12S11, https://doi.org/10.1029/2006JD007919, 2007.
Lintner, B. R., Gilliland, A. B., and Fung, I. Y.: Mechanisms of convection-induced modulation of passive tracer interhemispheric transport interannual variability, J. Geophys. Res., 109, D13102, https://doi.org/10.1029/2003JD004306, 2004.
Liu, C., Zipser, E., Garrett, T., Jiang, J. H., and Su, H.: How does the water vapor and carbon monoxide "tape recorders" start near the tropical tropopause?, Geophys. Res. Lett., 34, L09804, https://doi.org/10.129/2006GL029234, 2007.
Liu, G., Shao, H., Coakley Jr., J. A., Curry, J. A., Haggerty, J. A., and Tschudi, M. A.: Retrieval of cloud droplet size from visible and microwave radiometric measurements during INDOEX}: implication to aerosols' indirect radiative effect, J. Geophys. Res., 108, 4006, https://doi.org/10.1029/2001JD001395, 2003{a.
Liu, H., Jacob, D. J., Bey, I., Yantosca, R. M., Duncan, B. N., and Sachse, G. W.: Transport pathways for A}sian pollution outflow over the {P}acific: Interannual and seasonal variations, J. Geophys. Res., 108, 8786, https://doi.org/10.1029/2002JD003102, 2003{b.
Liu, J. J., Jones, D. B. A., Worden, J. R., Noone, D., Parrington, M., and Kar, J.: Analysis of the summertime buildup of tropospheric ozone abundances over the {M}iddle {E}ast and {N}orth {A}frica as observed by the {T}ropospheric {E}mission {S}pectrometer instrument, J. Geophys. Res., 114, D05304, https://doi.org/10.1029/2008JD010993, 2009.
Liu, X., Chance, K., Sioris, C. E., Kurosu, T. P., Spurr, R. J. D., Martin, R. V., Fu, T., Logan, J. A., Jacob, D. J., Palmer, P. I., Newchurch, M. J., Megretskaia, I. A., and Chatfield, R. B.: First directly retrieved global distribution of tropospheric column ozone from GOME}: Comparison with the {GEOS-CHEM model, J. Geophys. Res., 111, D02308, https://doi.org/10.1029/2005JD006564, 2006.
Lobert, J. M. and Harris, J. M.: Trace gases and air mass origin at {K}aashidhoo, {I}ndian {O}cean, J. Geophys. Res., 107, 8013, https://doi.org/10.1029/2001JD000731, 2002.
Lohmann, U.: A glaciation indirect aerosol effect caused by soot aerosols, Geophys. Res. Lett., 29, 1052, https://doi.org/10.1029/2001GL014357, 2002.
Lohmann, U., Stier, P., Hoose, C., Ferrachat, S., Kloster, S., Roeckner, E., and Zhang, J.: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys., 7, 3425–3446, https://doi.org/10.5194/acp-7-3425-2007, 2007.
Lubin, D., Satheesh, S. K., McFarquar, G., and Heymsfield, A. J.: Longwave radiative forcing of {I}ndian {O}cean tropospheric aerosol, J. Geophys. Res., 107, 8004, https://doi.org/10.1029/2001JD001183, 2002.
Ma, J., Chen, Y., Wang, W., Yan, P., Liu, H., Yang, S., Hu, Z., and Lelieveld, J.: Strong air pollution causes widespread haze-clouds over China, J. Geophys. Res., 115, D18204, https://doi.org/10.1029/2009JD013065, 2010.
Mandal, T.: Interactive comment on "On the origin of tropospheric O3 over the Indian Ocean during the winter monsoon: African biomass burning vs. stratosphere-troposphere exchange" by A. T. J. de Laat, Atmos. Chem. Phys. Discuss., 2, S358–S361, 2002.
Mandal, T. K., Kley, D., Smit, H. G. J., Srivastava, S. K., Peshin, S. K., and Mitra, A. P.: Vertical distribution of ozone over the I}ndian {O}cean (15° N–20° S) during {F}irst {F}ield {P}hase {INDOEX-1998, Curr. Sci. India, 76, 938–943, 1999.
Mandal, T. K., Khan, A., Ahammed, Y. N., Tanwar, R. S., Parmar, R. S., Zalpuri, K. S., Gupta, P. K., Jain, S. L., Singh, R., Mitra, A. P., Garg, S. C., Suryanarayana, A., Murty, V. S. N., Kumar, M. D., and Shepherd, A. J.: Observations of trace gases and aerosols over the {I}ndian {O}cean during the monsoon transition period, J. Earth Syst. Sci., 115, 473–484, 2006.
Manghnani, V., Raman, S., Niyogi, D. S., Parameswara, V., Morrison, J. M., Ramana, S. V., and Raju, J. V. S. S.: Marine boundary-layer variability over the I}ndian {O}cean during {INDOEX (1998), Bound. Lay. Meteorol., 97, 411–430, 2000.
Marcq, S., Laj, P., Roger, J. C., Villani, P., Sellegri, K., Bonasoni, P., Marinoni, A., Cristofanelli, P., Verza, G. P., and Bergin, M.: Aerosol optical properties and radiative forcing in the high Himalaya based on measurements at the Nepal Climate Observatory-Pyramid site (5079 m a.s.l.), Atmos. Chem. Phys., 10, 5859–5872, https://doi.org/10.5194/acp-10-5859-2010, 2010.
Marinoni, A., Cristofanelli, P., Laj, P., Duchi, R., Calzolari, F., Decesari, S., Sellegri, K., Vuillermoz, E., Verza, G. P., Villani, P., and Bonasoni, P.: Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas), Atmos. Chem. Phys., 10, 8551–8562, https://doi.org/10.5194/acp-10-8551-2010, 2010.
Mayol-Bracero, O. L., Gabriel, R., Andreae, M. O., Kirchstetter, T. W., Novakov, T., Ogren, J., Sheridan, P., and Streets, D. G.: Carbonaceous aerosols over the {I}ndian {O}cean during the {I}ndian {O}cean {E}xperiment {(INDOEX)}: Chemical characterization, optical properties, and probable sources, J. Geophys. Res., 107, 8030, https://doi.org/10.1029/2001JD000039, 2002.
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, https://doi.org/10.5194/acp-6-2593-2006, 2006.
Menon, S., Hansen, J., Nazarenko, L., and Luo, Y.: Climate Effects of Black Carbon Aerosols in {C}hina and {I}ndia, Science, 297, 2250–2253, 2002.
Menon, S., Koch, D., Beig, G., Sahu, S., Fasullo, J., and Orlikowski, D.: Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10, 4559–4571, https://doi.org/10.5194/acp-10-4559-2010, 2010.
Metzger, S., Dentener, F., Krol, M., Jeuken, A., and Lelieveld, J.: Gas/aerosol partitioning: 2. Global modeling results, J. Geophys. Res., 107, 4313, https://doi.org/10.1029/2001JD001103, 2002.
Meywerk, J. and Ramanathan, V.: Influence of anthropogenic aerosols on the total and spectral irradiance at the sea surface during the {I}ndian {O}cean {E}xperiment (INDOEX) 1999, J. Geophys. Res., 107, 8018, https://doi.org/10.1029/2000JD000022, 2002.
Mihalopoulos, N.: Long-range transport of pollutants above the eastern {Mediterranean}: Implications for air quality and regional climate, in: Regional Climate Variability and its Impacts in the {M}editerranean {A}rea, edited by: Mellouki, A. and Ravishankara, A. R., Springer-Verlag, 1–13, 2007.
Miller, S. T. K., Keim, B. D., Talbot, R. W., and Mao, H.: Sea breeze: Structure, forecasting, and impacts, Rev. Geophys., 41, 1011, https://doi.org/10.1029/2003RG000124, 2003.
Minvielle, F., Cautenet, G., Andreae, M. O., Lasserre, F., For{ê}t, G., Cautenet, S., L{é}on, J. F., Mayol-Bracero, O. L., Gabriel, R., Chazette, P., and Roca, R.: Modelling the transport of aerosols during INDOEX 1999 and comparison with experimental {data-1}: carbonaceous aerosol distribution, Atmos. Environ., 38, 1811–1822, 2004a.
Minvielle, F., Cautenet, G., Lasserre, F., For{ê}t, G., Cautenet, S., L{é}on, J. F., Andreae, M. O., Mayol-Bracero, O. L., Gabriel, R., Chazette, P., and Roca, R.: Modelling the transport of aerosols during INDOEX 1999 and comparison with experimental data, Part 2: Continental aerosols and their optical depth, Atmos. Environ., 38, 1823–1837, 2004b.
Mitra, A. P.: INDOEX (India): Introductory note, Curr. Sci. India, 76, 886–889, 1999.
Mitra, A. P.: Introductory note, Curr. Sci. India, 80, 3–6, 2001.
Mitra, A. P.: Indian Ocean Experiment (INDOEX): An overview, Indian J. Mar. Sci., 33, 30–39, 2004.
Mohanty, U. C., Niyogi, D. S., Raman, S., and Sarkar, A.: Numerical study of the role of land-air-sea interactions for the northeasterly monsoon circulations over I}ndian {O}cean during {INDOEX, Curr. Sci. India, 80, 60–68, 2001.
Moore, J., Dulac, F., Vishwanathan, V., and Lawrence, M. G.: INDOEX operations plan, Tech. rep., Joint Office for Science Support, UCAR, Boulder, CO, USA, 1999.
Moorthy, K. K. and Satheesh, S. K.: Characteristics of aerosols over a remote island, {M}inicoy in the {A}rabian {S}ea: Optical properties and retrieved size characteristics, Q. J. Roy. Meteor. Soc., 126, 81–109, 2000.
Moorthy, K. K., Satheesh, S. K., and Murthy, B. V. K.: Investigations of marine aerosols over the tropical Indian Ocean, J. Geophys. Res., 102, 18827–18842, 1997.
Moorthy, K. K., Pillai, P. S., Saha, A., and Niranjan, K.: Aerosol size characteristics over the Arabian Sea and Indian Ocean, Curr. Sci. India, 76, 961–967, 1999.
Moorthy, K. K., Suresh Babu, S., and Satheesh, S. K.: Aerosol spectral optical dephts over the {B}ay of {B}engal: Role of transport, Geophys. Res. Lett., 30, 1249, https://doi.org/10.1029/2002GL016520, 2003.
Moorthy, K. K., Satheesh, S. K., Babu, S. S., and Saha, A.: Large latitudinal gradients and temporal heterogeneity in aerosol black carbon and its mass mixing ratio over southern and northern oceans observed during a trans-continental cruise experiment, Geophys. Res. Lett., 32, L14818, https://doi.org/10.1029/2005GL023267, 2005a.
Moorthy, K. K., Sunilkumar, S. V., Pillai, P. S., Parameswaran, K., Nair, P. R., Ahmed, Y. N., Ramgopal, K., Narasimhulu, K., Reddy, R. R., Vinoj, V., Satheesh, S. K., Niranjan, K., Rao, B. M., Brahmanandam, P. S., Saha, A., Badarinath, K. V. S., Kiranchand, T. R., and Latha, K. M.: Wintertime spatial characteristics of boundary layer aerosols over peninsular India, J. Geophys. Res., 110, D08207, https://doi.org/10.1029/2004JD005520, 2005b.
Moorthy, K. K., Satheesh, S. K., Babu, S. S., and Dutt, C. B. S.: Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB): An overview, J. Earth Syst. Sci., 117, 243–262, 2008.
Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. S., Gille, J. C., Holton, J. R., Kinnersley, J. S., Pumfrey, H. C., Russel III, J. M., and Waters, J. W.: An atmospheric {tape-recorder}: the imprint of tropical tropopause temperatures on stratospheric water vapor, J. Geophys. Res., 101, 3989–4006, 1996.
M{ü}hle, J., Zahn, A., Brenninkmeijer, C. A. M., Gros, V., and Crutzen, P. J.: Air mass classification during the INDOEX R/V} R}onald {B}rown cruise using measurements of nonmethane hydrocarbons, {CH4, CO2, CO, and delta-18{O(CO), J. Geophys. Res., 107, 8021, https://doi.org/10.1029/2001JD000730, 2002.
M{ü}ller, D., Franke, K., Wagner, F., Althausen, D., Ansmann, A., and Heintzenberg, J.: Vertical profiling of optical and physical particle properties over the tropical I}ndian {O}cean with {six-wavelength lidar 1. Seasonal cycle, J. Geophys. Res., 106, 28567–28575, 2001a.
M{ü}ller, D., Franke, K., Wagner, F., Althausen, D., Ansmann, A., Heintzenberg, J., and Verver, G.: Vertical profiling of optical and physical particle properties over the tropical I}ndian {O}cean with {six-wavelength lidar 2. Case studies, J. Geophys. Res., 106, 28577–28595, 2001b.
M{ü}ller, D., Franke, K., Ansmann, A., Althausen, D., and Wagner, F.: Indio-Asian pollution during INDOEX}: Microphysical particle properties and {single-scattering albedo inferred from multiwavelength lidar observations, J. Geophys. Res., 108, 4600, https://doi.org/10.1029/2003JD003538, 2003.
Murugavel, P. and Kamra, A. K.: Changes in the concentration and size-distribution of the sub-micron particles associated with the sea- and land-breezes at a coastal station, Curr. Sci. India, 76, 994–997, 1999.
Murugavel, P., Gopalakrishnan, V., Pant, V., and Kamra, A. K.: Airborne measurements of submicron aerosols across the coastline at Bhubaneswar during ICARB, J. Earth Syst. Sci., 117, 273–280, 2008.
Myhre, G., Stordal, F., Johnsrud, M., Kaufman, Y. J., Rosenfeld, D., Storelvmo, T., Kristjansson, J. E., Berntsen, T. K., Myhre, A., and Isaksen, I. S. A.: Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models, Atmos. Chem. Phys., 7, 3081–3101, https://doi.org/10.5194/acp-7-3081-2007, 2007.
Nair, P. R., Chand, D., Lal, S., Modh, K. S., Naja, M., Parameswaran, K., Ravindran, S., and Venkataramani, S.: Temporal variations in surface ozone at Thumba {(8.6° N, 77° E) – a} tropical coastal site in India, Atmos. Environ., 36, 603–610, 2002.
Nair, P. R., Parameswaran, K., Kumar, S. V. S., and Rajan, R.: Continental influence on the spatial distribution of particulate loading over the Indian Ocean during winter season, J. Atmos. Sol.-Terr. Phy., 66, 27–38, 2004.
Nair, P. R., George, S. K., Sunilkumar, S., Parameswaran, K., Jacob, S., and Abraham, A.: Chemical composition of aerosols over peninsular India during winter, Atmos. Environ., 40, 6477–6493, https://doi.org/10.1016/j.atmosenv.2006.02.031, 2006.
Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George, S., Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., Tripathi, S. N., Niranjan, K., Madhavan, B. L., Srikant, V., Dutt, C. B. S., Badarinath, K. V. S., and Reddy, R. R.: Wintertime aerosol characteristics over the {Indo-Gangetic Plain (IGP)}: Impacts of local boundary layer processes and long-range transport, J. Geophys. Res., 112, D13205, https://doi.org/10.1029/2006JD008099, 2007.
Nair, V. S., Moorthy, K. K., Babu, S. S., Narasimhulu, K., Sankara Reddy, L. S., Ramakrishna Reddy, R., Rama Gopal, K., Sreekanth, V., Madhavan, B. L., and Niranjan, K.: Size segregated aerosol mass concentration measurements over the A}rabian {S}ea during {ICARB, J. Earth Syst. Sci., 117, 315–323, 2008.
Nair, V. S., Satheesh, S. K., Moorthy, K. K., Babu, S. S., Nair, P. R., and George, S. K.: Surprising observation of large anthropogenic aerosol fraction over the "near-pristine" Southern {Bay of Bengal}: Climate implications, J. Geophys. Res., 115, D21201, https://doi.org/10.1029/2010JD013954, 2010.
Naja, M. and Lal, S.: Changes in surface ozone amount and its diurnal and seasonal patterns, from 1954–55 to 1991–93, measured at Ahmedabad (23 N), India, Geophys. Res. Lett., 23, 81–84, 1996.
Naja, M., Lal, S., Venkataramani, S., Modh, K. S., and Chand, D.: Variabilities in O3, NO and CH4 over the {I}ndian {O}cean during winter, Curr. Sci. India, 76, 931–937, 1999.
Naja, M., Chand, D., Sahu, L., and Lal, S.: Trace gases over marine regions around {I}ndia, Indian J. Mar. Sci., 33, 95–106, 2004.
Niranjan, K., Melleswara Rao, B., Brahmanandam, P. S., Madhavan, B. L., Sreekanth, V., and Krishna Moorthy, K.: Spatial characteristics of aerosol physical properties over the northeastern parts of peninsular India, Ann. Geophys., 23, 3219–3227, 2005.
Niranjan, K., Sreekanth, V., Madhavan, B. L., and Moorthy, K. K.: Wintertime aerosol characteristics at a north I}ndian site {K}haragpur in the {Indo-Gangetic plains located at the outflow region into {B}ay of {B}engal, J. Geophys. Res., 111, D24209, https://doi.org/10.1029/2006JD007635, 2006.
Niranjan, K., Sreekanth, V., Madhavan, B. L., Devi, T. A., and Spandana, B.: Temporal characteristics of aerosol physical properties at Visakhapatnam on the east coast of I}ndia during {ICARB – Signatures of transport onto {B}ay of {B}engal, J. Earth Syst. Sci., 117, 421–427, 2008.
Norman, M., Das, S. N., Pillai, A. G., Granat, L., and Rodhe, H.: Influence of air mass trajectories on the chemical composition of precipitation in India, Atmos. Environ., 35, 4223–4235, 2001.
Norman, M., Leck, C., and Rodhe, H.: Differences across the ITCZ in the chemical characteristics of the Indian Ocean MBL aerosol during INDOEX, Atmos. Chem. Phys., 3, 563–579, https://doi.org/10.5194/acp-3-563-2003, 2003.
Novakov, T., Andreae, M. O., Gabriel, R., Kirchstetter, T. W., Mayol-Bracero, O. L., and Ramanathan, V.: Origin of carbonaceous aerosols over the tropical {I}ndian {O}cean: Biomass burning or fossil fuels?, Geophys. Res. Lett., 27, 4061–4064, 2000.
Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., and Hayasaka, T.: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7, 4419–4444, https://doi.org/10.5194/acp-7-4419-2007, 2007.
Olivier, J. G. J., Aardenne, J. A. V., Dentener, F., Ganzeveld, L., and Peters, J.: Recent trends in global greenhouse gas emissions: regional trends and spatial distribution of key sources, in: Non-CO2 Greenhouse Gases (NCGG-4), edited by van Amstel, A., Millpress, Rotterdam, ISBN 90 5966 043 9, 325–330, 2005.
Padma Kumari, B. and Goswami, B. N., Seminal role of clouds on solar dimming over the Indian monsoon region, Geophys. Res. Lett., 37, L06703, https://doi.org/10.1029/2009GL042133, 2010.
Pant, V., Deshpande, C. G., and Kamra, A. K.: The concentration and number size distribution measurements of the {M}arine {B}oundary {L}ayer aerosols over the {I}ndian {O}cean, Atmos. Res., 92, 381–393, 2009.
Parameswaran, K.: Influence of micrometeorological features on coastal boundary layer aerosol characteristics at the tropical station, Trivandrum, J. Earth Syst. Sci., 110, 247–265, 2001.
Parameswaran, K., Rajan, R., Vijayakumar, G., Rajeev, K., Moorthy, K. K., Nair, P. R., and Satheesh, S. K.: Seasonal and long term variations in aerosol content in the atmospheric mixing region at a tropical station in the {A}rabian {S}ea coast, J. Atmos. Sol.-Terr. Phy., 60, 17–25, 1998.
Parameswaran, K., Nair, P. R., Rajan, R., and Raman, M. V.: Aerosol loading in coastal and marine environments in the Indian Ocean region during winter season, Curr. Sci. India, 76, 947–955, 1999.
Parashar, D. C., Gadi, R., Mandal, T. K., and Mitra, A. P.: Carbonaceous aerosol emissions from {I}ndia, Atmos. Environ., 39, 7861–7871, 2005.
Park, M., Randel, W. J., Kinnison, D. E., Garcia, R. R., and Choi, W.: Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations, J. Geophys. Res., 109, D03302, https://doi.org/10.1029/2003JD003706, 2004.
Park, M., Randel, W. J., Gettelman, A., Massie, S. T., and Jiang, J. H.: Transport above the {A}sian summer monsoon anticyclone inferred from {A}ura {M}icrowave {L}imb {S}ounder tracers, J. Geophys. Res., 112, D16309, https://doi.org/10.1029/2006JD008294, 2007.
Park, M., Randel, W. J., Emmons, L. K., Bernath, P. F., Walker, K. A., and Boone, C. D.: Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data, Atmos. Chem. Phys., 8, 757–764, https://doi.org/10.5194/acp-8-757-2008, 2008.
Park, M., Randel, W. J., Emmons, L. K., and Livesey, N. J.: Transport pathways of carbon monoxide in the {A}sian summer monsoon diagnosed from {M}odel of {O}zone and {R}elated {T}racers (MOZART), J. Geophys. Res., 114, D08303, https://doi.org/ 10.1029/2008JD010621, 2009.
Pelon, J., Chazette, P., L{é}on, J., Tanre, D., Sicard, M., and Satheesh, S. K.: Characterization of aerosol spatial distribution and optical properties over the I}ndian {O}cean from airborne {LIDAR and radiometry during INDOEX'99, J. Geophys. Res., 107, 8029, https://doi.org/10.1029/2001JD000402, 2002.
Peshin, S. K., Mandal, T. K., Smit, H. G. J., Srivastava, S. K., and Mitra, A. P.: Observations of vertical distribution of tropospheric ozone over I}ndian {O}cean and its comparison with continental profiles during {INDOEX FFP-1998 and IFP-1999, Curr. Sci. India, 80, 197–208, 2001.
Phadnis, M. J., Levy II, H., and Moxim, W. J.: On the evolution of pollution from S}outh and {S}outheast {A}sia during the {winter-spring monsoon, J. Geophys. Res., 107, 4790, https://doi.org/10.1029/2002JD002190, 2002.
Podgorny, I. A. and Ramanathan, V.: A modeling study of the direct effect of aerosols over the tropical {I}ndian {O}cean, J. Geophys. Res., 106, 24097–24105, 2001.
Podgorny, I. A., Conant, W., Ramanathan, V., and Satheesh, S. K.: Aerosol modulation of atmospheric and surface solar heating over the tropical {I}ndian {O}cean, Tellus, 52, 947–958, 2000.
Podgorny, I. A., Li, F., and Ramanathan, V.: Large Aerosol Radiative Forcing due to the 1997 Indonesian Forest Fire, Geophys. Res. Lett., 30, 1028, https://doi.org/10.1029/2002GL015979, 2003.
Pringle, K. J., Tost, H., Metzger, S., Steil, B., Giannadaki, D., Nenes, A., Fountoukis, C., Steir, P., Vignati, E., and Lelieveld, J.: Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1), Geosci. Model Develop., 3, 391–412, 2010.
Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate, Atmos. Chem. Phys. Discuss., 10, 22855–22903, https://doi.org/10.5194/acpd-10-22855-2010, 2010.
Quaas, J., Stevens, B., Stier, P., and Lohmann, U.: Interpreting the cloud cover –aerosol optical depth relationship found in satellite data using a general circulation model, Atmos. Chem. Phys., 10, 6129–6135, https://doi.org/10.5194/acp-10-6129-2010, 2010.
Quinn, P. K., Coffman, D. J., Bates, T. S., Miller, T. L., Johnson, J. E., Welton, E. J., Neus{ü}ss, C., Miller, M., and Sheridan, P. J.: Aerosol optical properties during {INDOEX} 1999: Means, variability, and controlling factors, J. Geophys. Res., 107, 8020, https://doi.org/10.1029/2000JD000037, 2002.
Raj, P. E., Saha, S. K., Sonbawne, S. M., Deshpande, S. M., Devara, P. C. S., Rao, Y. J., Dani, K. K., and Pandithurai, G.: Lidar observation of aerosol stratification in the lower troposphere over Pune during pre-monsoon season of 2006, J. Earth Syst. Sci., 117, 293–302, 2008.
Rajeev, K. and Ramanathan, V.: Direct observations of clear-sky aerosol radiative forcing from space during the Indian Ocean Experiment, J. Geophys. Res., 106, 17221–17235, 2001.
Rajeev, K., Ramanathan, V., and Meywerk, J.: Regional aerosol distribution and its long-range transport over the Indian Ocean, J. Geophys. Res., 105, 2029–2043, 2000.
Rajeev, K., Nair, S. K., Parameswaran, K., and Suresh Raju, C.: Satellite observations of the regional aerosol distribution and transport over the {A}rabian {S}ea, {B}ay of {B}engal and {I}ndian {O}cean, Indian J. Mar. Sci., 33, 11–29, 2004.
Ramachandran, S. and Jayaraman, A.: Spectral aerosol optical dephts over B}ay of {B}engal and {C}hennai: {II-sources, anthropogenic influence and model estimates, Atmos. Environ., 37, 1951–1962, 2003.
Ramachandran, S., Rengarajan, R., Jayaraman, A., Sarin, M. M., and Das, S. K.: Aerosol radiative forcing during clear, hazy, and foggy conditions over a continental polluted location in north India, J. Geophys. Res., 111, D20214, https://doi.org/10.1029/2006JD007142, 2006.
Raman, S., Niyogi, D. S., Simpson, M., and Pelon, J.: Dynamics of the elevated land plume over the {A}rabian {S}ea and the {N}orthern {I}ndian {O}cean during northeasterly monsoons and during the {I}ndian {O}cean experiment ({INDOEX}), Geophys. Res. Lett., 29, 1817, https://doi.org/10.1029/2001GL014193, 2002.
Ramana, M. V., Ramanathan, V., Podgorny, I. A., Pradhan, B. B., and Shrestha, B.: The direct observations of large aerosol radiative forcing in the {H}imalayan region, Geophys. Res. Lett., 31, L05111, https://doi.org/10.1029/2003GL018824, 2004.
Ramana, M. V., Ramanathan, V., Kim, D., Roberts, G. C., and Corrigan, C. E.: Albedo, atmospheric solar absorption and heating rate measurements with stacked UAVs, Q. J. Roy. Meteor. Soc., 133, 1913–1931, 2007.
Ramanathan, V. and Crutzen, P. J.: New Directions: A}tmospheric {B}rown {"Clouds", Atmos. Environ., 37, 4033–4035, 2003.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221–227, 2008.
Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J., Andreae, M. O., Cantrell, W., Cass, G. R., Chung, C. E., Clarke, A. D., Coakley, J. A., Collins, W. D., Conant, W. C., Dulac, F., Heintzenberg, J., Heymsfield, A. J., Holben, B., Howell, S., Hudson, J., Jayaraman, A., Kiehl, J. T., Krishnamurti, T. N., Lubin, D., McFarquhar, G., Novakov, T., Ogren, J. A., Podgorny, I. A., Prather, K., Priestley, K., Prospero, J. M., Quinn, P. K., Rajeev, K., Rasch, P., Rupert, S., Sadourny, R., Satheesh, S. K., Shaw, G. E., Sheridan, P., and Valero, F. P. J.: I}ndian {O}cean {E}xperiment: An integrated analysis of the climate forcing and effects of the great {Indio-Asian haze, J. Geophys. Res., 106, 28371–28398, 2001.
Ramanathan, V., Crutzen, P. J., Mitra, A. P., and Sikka, D.: The {I}ndian {O}cean {E}xperiment and the {A}sian {B}rown {C}loud, Curr. Sci. India, 83, 947–955, 2002.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Fu, W. M. W. Q., Sikka, D. R., and Wild, M.: Atmospheric brown clouds: Impacts on {S}outh {A}sian climate and hydrological cycle, P. Natl. Acad. Sci. USA, 102, 5326–5333, 2005.
Ramanathan, V., Li, F., Ramana, M. V., Praveen, P. S., Kim, D., Corrigan, C. E., Nguyen, H., Stone, E. A., Schauer, J. J., Carmichael, G. R., Adhikary, B., and Yoon, S. C.: Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing, J. Geophys. Res., 112, D22S21, https://doi.org/10.1029/2006JD008124, 2007a.
Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C. E., Chung, C. E., and Winker, D.: Warming trends in {A}sia amplified by brown cloud solar absorption, Nature, 448, 575–578, 2007b.
Randel, W. J. and Park, M.: Deep convective influence on the {A}sian summer monsoon anticyclone and associated tracer variability observed with {A}tmospheric {I}nfrared {S}ounder (AIRS), J. Geophys. Res., 111, D12314, https://doi.org/10.1029/2005JD006490, 2006.
Randel, W. J., Wu, F., Getteman, A., Russel III, J. M., Zawodny, J. M., and Oltmans, S. J.: Seasonal variation of water vapor in the lower stratosphere observed in the {H}alogen {O}ccultation {E}xperiment data, J. Geophys. Res., 106, 14313–14325, 2001.
Randel, W. J., Park, M., Emmons, L., Kinnison, D., Bernath, P., Walker, K. A., Boone, C., and Pumphrey, H.: Asian monsoon transport of pollution to the stratosphere, Science, 328, 611–613, https://doi.org/10.1126/science.1182274, 2010.
Rao, P. S. P., Momin, G. A., Safai, P. D., Ali, K., Naik, M. S., and Pillai, A. G.: Aerosol and trace gas studies at P}une during {INDOEX} {IFP-99, Curr. Sci. India, 80, 105–109, 2001.
Rasch, P. J., Collins, W. D., and Eaton, B. E.: Understanding the Indian Ocean Experiment (INDOEX) aerosol distributions with an aerosol assimilation, J. Geophys. Res., 106, 7337–7355, 2001.
Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V. E., Heard, D. E., Lee, J. R. H. J. D., Moller, S. J., Lewis, A. C., McQuaid, L. M. J. B., Oetjen, H., Saiz-Lopez, A., Pilling, M. J., and Plane, J. M. C.: Extensive halogen-mediated ozone destruction over the tropical {A}tlantic {O}cean, Nature, 453, 7035, https://doi.org/10.1038/nature07035, 2008.
Reddy, L. A. K., Kulshrestha, U. C., Satyanarayana, J., Kulshrestha, M. J., and Moorthy, K. K.: Chemical characteristics of PM10 aerosols and airmass trajectories over B}ay of {B}engal and {A}rabian {S}ea during {ICARB, J. Earth Syst. Sci., 117, 345–352, 2008.
Reddy, M. S. and Venkataraman, C.: Inventory of aerosol and sulphur dioxide emissions form India: {I} – Fossil fuel combustion, Atmos. Environ., 36, 677–697, 2002a.
Reddy, M. S. and Venkataraman, C.: Inventory of aerosol and sulphur dioxide emissions from India, P}art {II – biomass combustion, Atmos. Environ., 36, 699–712, 2002b.
Reddy, M. S., Boucher, O., Venkataraman, C., Verma, S., L{é}on, J., Bellouin, N., and Pham, M.: General circulation model estimates of aerosol transport and radiative forcing during the {I}ndian {O}cean {E}xperiment, J. Geophys. Res., 109, D16205, https://doi.org/10.1029/2004JD004557, 2004.
Reiner, T., Sprung, D., Jost, C., Gabriel, R., Mayol-Bracero, O. L., Andreae, M. O., Campos, T. L., and Shelter, R. E.: Chemical characterization of pollution layers over the tropical Indian Ocean, J. Geophys. Res., 106, 28497–28510, 2001.
Rhoads, K. P., Kelley, P., Dickerson, R. R., Carsey, T. P., Farmer, M., Savoie, D. L., and Prospero, J. M.: Composition of the troposphere over the Indian Ocean during the monsoonal transition, J. Geophys. Res., 102, 18981–18995, 1997.
Roberts, G. C., Ramana, M. V., Corrigan, C., Kim, D., and Ramanathan, V.: Simultaneous observations of aerosol-cloud-albedo interactions with three stacked unmanned aerial vehicles, P. Natl. Acad. Sci. USA, 105, 7370–7375, 2008.
Roca, R., Viollier, M., Picon, L., and Desbois, M.: A multisatellite analysis of deep convection and its moist environment over the {I}ndian {O}cean during the winter monsoon, J. Geophys. Res., 107, 8012, https://doi.org/10.1029/2000JD000040, 2002.
Roeckner, E., Bengtsson, L., Feichter, J., Lelieveld, J., and Rodhe, H.: Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle, J. Climate, 12, 3004–3032, 1999.
Roelofs, G. J., Scheeren, H. A., Heland, J., Ziereis, H., and Lelieveld, J.: A model study of ozone in the eastern Mediterranean free troposphere during MINOS (August 2001), Atmos. Chem. Phys., 3, 1199–1210, https://doi.org/10.5194/acp-3-1199-2003, 2003.
Rotstayn, L. D. and Lohmann, U.: Tropical Rainfall Trends and the Indirect Aerosol Effect, J. Climate, 15, 2103–2116, 2002.
Roy, S., Beig, G., and Jacob, D.: Seasonal distribution of ozone and its precursors over the tropical I}ndian region using regional {chemistry-transport model, J. Geophys. Res., 113, D21307, https://doi.org/10.1029/2007JD009712, 2008.
Roy, S. D., Beig, G., and Ghude, Sachin D.: Exposure-plant response of ambient ozone over the tropical Indian region, Atmos. Chem. Phys., 9, 5253–5260, https://doi.org/10.5194/acp-9-5253-2009, 2009.
Sadasivan, S.: Trace elements in size separated aerosols over sea, Atmos. Environ., 12, 1677–1683, 1978.
Sadasivan, S.: Trace constituents in cloud water, rainwater and aerosol samples collected near the west coast of {I}ndia during the southwest monsoon, Atmos. Environ., 14, 33–38, 1980.
Safai, P. D., Rao, P. S. P., Momin, G. A., Ali, K., Chate, D. M., and Praveen, P. S.: Chemical composition of precipitation during 1984–2002 at Pune, India, Atmos. Environ., 38, 1705–1714, 2004.
Sahu, L. K., Lal, S., and Venkataramani, S.: Distributions of O3, CO and hydrocarbons over the B}ay of {B}engal: a study to assess the role of transport from southern {I}ndia and marine regions during {September–October 2002, Atmos. Environ., 40, 4633–4645, 2006.
Salam, A., Bauer, H., Kassin, K., Mohammed Ullah, S., and Puxbaum, H.: Aerosol chemical characteristics of an island site in the Bay of Bengal (Bhola–Bangladesh), J. Environ. Monitor., 5, 483–490, 2003.
Salisbury, G., Williams, J., Holzinger, R., Gros, V., Mihalopoulos, N., Vrekoussis, M., Sarda-Estève, R., Berresheim, H., von Kuhlmann, R., Lawrence, M., and Lelieveld, J.: Ground-based PTR-MS measurements of reactive organic compounds during the MINOS campaign in Crete, July-August 2001, Atmos. Chem. Phys., 3, 925–940, https://doi.org/10.5194/acp-3-925-2003, 2003.
Sander, R., Keene, W. C., Pszenny, A. A. P., Arimoto, R., Ayers, G. P., Baboukas, E., Cainey, J. M., Crutzen, P. J., Duce, R. A., Hönninger, G., Huebert, B. J., Maenhaut, W., Mihalopoulos, N., Turekian, V. C., and Van Dingenen, R.: Inorganic bromine in the marine boundary layer: a critical review, Atmos. Chem. Phys., 3, 1301–1336, https://doi.org/10.5194/acp-3-1301-2003, 2003.
Saraf, N., Beig, G., and Schultz, M.: Tropospheric distribution of ozone and its precursors over the tropical {I}ndian {O}cean, J. Geophys. Res., 108, 4636, https://doi.org/10.1029/2003JD003521, 2003.
Satheesh, S. K.: Radiative forcing by aerosols over {B}ay of {B}engal region, Geophys. Res. Lett., 29, 2083, https://doi.org/10.1029/2002GL01,334, 2002.
Satheesh, S. K. and Lubin, D.: Short wave versus long wave radiative forcing by I}ndian {O}cean aerosols: Role of {sea-surface winds, Geophys. Res. Lett., 30, 1695, https://doi.org/10.1029/2003GL017499, 2003.
Satheesh, S. K., Moorthy, K. K., and Murthy, B. V. K.: Spatial Gradients in Aerosol Characteristics over the Arabian Sea and Indian Ocean, J. Geophys. Res., 103, 26183–26192, 1998.
Satheesh, S. K., Ramanathan, V., Holben, B. N., Krishna Moorthy, K., Loeb, N. G., Maring, H., Prospero, J. M., and Savoie, D.: Chemical, microphysical, and radiative effects of {I}ndian {O}cean aerosols, J. Geophys. Res., 107, 4725, https://doi.org/10.1029/2002JD002463, 2002.
Satheesh, S. K., Moorthy, K. K., Kaufman, Y. J., and Takemura, T.: Aerosol optical depth, physical properties and radiative forcing over the {A}rabian {S}ea, Met. Atmos. Phys., 91, 45–62, 2006a.
Satheesh, S. K., Srinivasan, J., and Moorthy, K. K.: Spatial and temporal heterogeneity in aerosol properties and radiative forcing over {B}ay of {B}engal: Sources and role of aerosol transport, J. Geophys. Res., 111, D08202, https://doi.org/10.1029/2005JD006374, 2006b.
Satheesh, S. K., Morthy, K. K., Babu, S. S., Vinoj, V., and Dutt, C. B. S.: Climate implications of large warming by elevated aerosol over {I}ndia, Geophys. Res. Lett., 35, L19809, https://doi.org/10.1029/2008GL034944, 2008.
Satheesh, S. K., Krishna Moorthy, K., Suresh Babu, S., Vinoj, V., Nair, V. S., Naseema Beegum, S., Dutt, C. B. S., Alappattu, D. P., and Kunhikrishnan, P. K.: Vertical structure and horizontal gradients of aerosol extinction coefficients over coastal India inferred from airborne lidar measurements during the I}ntegrated {C}ampaign for {A}erosol, {G}ases and {Radiation Budget (ICARB field campaign, J. Geophys. Res., 114, D05204, https://doi.org/10.1029/2008JD011033, 2009.
Scheeren, H. A., Lelieveld, J., de Gouw, J. A., van der Veen, C., and Fischer, H.: Methyl chloride and other chlorocarbons in polluted air during INDOEX, J. Geophys. Res., 107, 8015, https://doi.org/10.1029/2001JD001121, 2002.
Scheeren, H. A., Lelieveld, J., Roelofs, G. J., Williams, J., Fischer, H., de Reus, M., de Gouw, J. A., Warneke, C., Holzinger, R., Schlager, H., Klüpfel, T., Bolder, M., van der Veen, C., and Lawrence, M.: The impact of monsoon outflow from India and Southeast Asia in the upper troposphere over the eastern Mediterranean, Atmos. Chem. Phys., 3, 1589–1608, https://doi.org/10.5194/acp-3-1589-2003, 2003.
Schoeberl, M. R., Duncan, B. N., Douglass, A. R., Waters, J., Livesey, N., Read, W., and Filipak, M.: The carbon monoxide tape recorder, Geophys. Res. Lett., 33, L12811, https://doi.org/10.1029/2006GL026178, 2006.
Schuck, T. J., Brenninkmeijer, C. A. M., Baker, A. K., Slemr, F., von Velthoven, P. F. J., and Zahn, A.: Greenhouse gas relationships in the Indian summer monsoon plume measured by the CARIBIC passenger aircraft, Atmos. Chem. Phys., 10, 3965–3984, https://doi.org/10.5194/acp-10-3965-2010, 2010.
Sheridan, P. J., Jefferson, A., and Ogren, J. A.: Spatial variability of submicrometer aerosol radiative properties over the I}ndian {O}cean during {INDOEX, J. Geophys. Res., 107, 8011, https://doi.org/10.1029/2000JD000166, 2002.
Sikka, D. R.: Evaluation of monitoring and forecasting of summer monsoon over India and a review of monsoon drought of 2002, P. Indian Nat. Sci. Acad., 69, 479–504, 2003.
Simpson, M. and Raman, S.: Development and propagation of a pollution gradient in the marine boundary layer during {INDOEX} (1999), J. Earth Syst. Sci., 114, 3–16, 2005.
Simpson, M. D. and Raman, S.: Role of the land plume in the transport of ozone over the ocean during {INDOEX} (1999), Bound. Lay. Meteorol., 111, 133–152, 2004.
Simpson, M. D. and Raman, S.: Observations and numerical simulation of the sea and land breeze circulations along the west coast of {I}ndia, Indian J. Mar. Sci., 35, 139–152, 2006.
Singh, M., Singh, D., and Pant, P.: Aerosol characteristics at P}atiala during {ICARB-2006, J. Earth Syst. Sci., 117, 407–411, 2008.
Singh, S., Singh, B., Gera, B., Srivastava, M. K., Dutta, H., Garg, S., and Singh, R.: A study of aerosol optical depth in the central Indian region (17.3–8.60N) during ISRO-GBP field campaign, Atmos. Environ., 40, 6494–6503, https://doi.org/10.1016/j.atmosenv.2006.01.033, 2006.
Spencer, M. T., Holecek, J. C., Corrigan, C. E., Ramanathan, V., and Prather, K. A.: Size-resolved chemical composition of aerosol particles during a monsoonal transition period over the {I}ndian {O}cean, J. Geophys. Res., 113, D16305, https://doi.org/10.1029/2007JD008657, 2008.
Srinivasan, J. and Gadgil, S.: {A}sian {B}rown {C}loud – fact and fantasy, Curr. Sci. India, 83, 586–592, 2002.
Stefanutti, L., MacKenzie, A., Santacesaria, V., Adriani, A., Balestri, S., Borrmann, S., Khattatov, V., Mazzinghi, P., Mitev, V., Rudakov, V., Schiller, C., Toci, G., Volk, C., Yushkov, V., Flentje, H., Kiemle, C., Redaelli, G., Carslaw, K., Noone, K., and Peter, T.: The APE-THESEO {T}ropical {C}ampaign: An Overview, J. Atmos. Chem., 48, 1–33, 2004.
Stehr, J. W., Ball, W. P., Dickerson, R. R., Doddridge, B. G., Piety, C. A., and Johnson, J. E.: Latitudinal gradients in O3 and CO during {INDOEX} 1999, J. Geophys. Res., 107, 8015, https://doi.org/10.1029/2001JD000446, 2002.
Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and precipitation in a buffered system, Nature, 461, 607–613, 2009.
Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, https://doi.org/10.5194/acp-5-1125-2005, 2005.
Stohl, A., Forster, C., Huntrieser, H., Mannstein, H., McMillan, W. W., Petzold, A., Schlager, H., and Weinzierl, B.: Aircraft measurements over Europe of an air pollution plume from Southeast Asia –aerosol and chemical characterization, Atmos. Chem. Phys., 7, 913–937, https://doi.org/10.5194/acp-7-913-2007, 2007.
Stone, E. A., Lough, G. C., Schauer, J. J., Praveen, P. S., Corrigan, C. E., and Ramanathan, V.: Understanding the origin of black carbon in the atmospheric brown cloud over the Indian Ocean, J. Geophys. Res., 112, D22S23, https://doi.org/10.1029/2006JD008118, 2007.
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J., and Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., 108, 8809, https://doi.org/10.1029/2002JD003093, 2003.
Streets, D. G., Zhang, Q., Wang, L., He, K., Hao, J., Wu, Y., Tang, Y., and Carmichael, G. R.: Revisiting China's CO emissions after the {T}ransport and {C}hemical {E}volution over the {P}acific (TRACE-P) mission: Synthesis of inventories, atmospheric modeling, and observations, J. Geophys. Res., 111, D14306, https://doi.org/10.1029/2006JD007118, 2006.
Subrahamanyam, D. B., Gupta, K. S., Ravindran, S., and Krishnan, P.: Study of sea breeze and land breeze along the west coast of I}ndian {sub-continent over the latitude range 15° N to 8° N during INDOEX IFP-99 (SK-141) cruise, Curr. Sci. India, 80, 85–88, 2001.
Subrahamanyam, D. B., Kumar, N. V. P. K., Dutt, C. B. S., Anurose, T. J., Kunhikrishnan, P. K., and Mohan, M.: Characterization of airsea interaction processes over the Bay of Bengal during the winter phase of ICARB field experiment, Atmos. Res., https://doi.org/10.1016/j.atmosres.2010.09.005, in press, 2010.
Sumanth, E., Mallikarjuna, K., Stephen, J., Moole, M., Vinoj, V., Satheesh, S. K., and Moorthy, K. K.: Measurements of aerosol optical depths and black carbon over B}ay of {B}engal during {post-monsoon season, Geophys. Res. Lett., 31, L16115, https://doi.org/10.1029/2004GL020681, 2004.
Tahnk, W. R. and Coakley, Jr., J. A.: Aerosol optical depth and direct radiative forcing for INDOEX derived from AVHRR}: Observations, January–March {1996–2000, J. Geophys. Res., 107, 8010, https://doi.org/10.1029/2000JD000183, 2002.
Thampi, B. V., Rajeev, K., Parameswaran, K., and Mishra, M. K.: Spatial distribution of the {S}outheast {A}sian smoke plume over the {I}ndian {O}cean and its radiative heating in the atmosphere during the major fire event of 2006, Geophys. Res. Lett., 36, L16808, https://doi.org/10.1029/2009GL039316, 2009.
Thompson, A. M., Doddridge, B. G., Witte, J. C., Hudson, R. D., Luke, W. T., Johnson, J. E., Johnson, B. J., Oltmans, S. J., and Weller, R.: A Tropical A}tlantic Paradox: Shipboard and Satellite Views of a Tropospheric Ozone Maximum {Wave-one in {January–February} 1999, Geophys. Res. Lett., 27, 3317–3320, 2000.
Traub, M. and Lelieveld, J.: Cross-tropopause transport over the eastern Mediterranean, J. Geophys. Res., 108, 4712, https://doi.org/10.1029/2003JD003754, 2003.
Traub, M., Fischer, H., de Reus, M., Kormann, R., Heland, H., Ziereis, H., Schlager, H., Holzinger, R., Williams, J., Warneke, C., de Gouw, J., and Lelieveld, J.: Chemical characteristics assigned to trajectory clusters during the MINOS campaign, Atmos. Chem. Phys., 3, 459–468, https://doi.org/10.5194/acp-3-459-2003, 2003.
Tripathi, S. N., Tare, V., Chinnam, N., Srivastava, A. K., Dey, S., Agarwal, A., Kishore, S., Lal, R. B., Manar, M., Kanwade, V. P., Chauhan, S. S. S., Sharma, M., Reddy, R. R., Gopal, K. R., Narasimhulu, K., Reddy, L. S. S., Gupta, S., and Lal, S.: Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Programme Land Campaign II at a typical location in the Ganga basin: 1. Physical and optical properties, J. Geophys. Res., 111, D23209, https://doi.org/10.1029/2006JD007278, 2006.
Twomey, S.: Pollution and the Planetary Albedo, Atmos. Environ., 8, 1251–1256, 1974.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds, J. Atmos. Sci., 34, 1149–1152, 1977.
Varshney, C. K. and Aggarwal, M.: Ozone pollution in the urban atmosphere of Delhi, Atmos. Environ., 26, 291–294, 1992.
Venkataraman, C., Konda Reddy, C., Josson, S., and Shekar Reddy, M.: Aerosol size and chemical characteritics at Mumbai, India, during the {INDOEX-IFP} (1999), Atmos. Environ., 36, 1979–1991, 2002.
Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A. H., and Friedlander, S. K.: Residental Biofuels in {S}outh {A}sia: Carbonaceous Aerosol Emissions and Climate Impacts, Science, 307, 1454–1456, 2005.
Verma, S., Boucher, O., Venkataraman, C., Reddy, M. S., M{ü}ller, D., Chazette, P., and Crouzille, B.: Aerosol lofting from sea breeze during the {I}ndian {O}cean {E}xperiment, J. Geophys. Res., 111, D07208, https://doi.org/10.1029/2005JD005953, 2006.
Verma, S., Venkataraman, C., Boucher, O., and Ramachandran, S.: Source evaluation of aerosols measured during the {I}ndian {O}cean {E}xperiment using combined chemical transport and back trajectory modeling, J. Geophys. Res., 112, D11210, https://doi.org/10.1029/2006JD007698, 2007.
Verma, S., Venkataraman, C., and Boucher, O.: Origin of surface and columnar I}ndian {O}cean {E}xperiment (INDOEX) aerosols using {source- and region-tagged emissions transport in a general circulation model, J. Geophys. Res., 113, D24211, https://doi.org/10.1029/2007JD009538, 2008.
Verver, G. H. L., Sikka, D. R., Lobert, J. M., Stossmeister, G., and Zachariasse, M.: Overview of the meteorological conditions and atmospheric transport processes during {INDOEX} 1999, J. Geophys. Res., 106, 28399–28413, 2001.
Vinoj, V., Babu, S. S., Satheesh, S. K., Moorthy, K., and Kaufman, Y. J.: Radiative forcing by aerosols over the B}ay of {B}engal region derived from shipborne, {island-based, and satellite ({Moderate-Resolution} {I}maging {S}pectroradiometer) observations, J. Geophys. Res., 109, D05203, https://doi.org/10.1029/2003JD004329, 2004.
Vinoj, V., Anjan, A., Sudhakar, M., Satheesh, S. K., Srinivasan, J., and Krishna Moorthy, K.: Latitudinal variation of aerosol optical depths from northern Arabian Sea to Antarctica, Geophys. Res. Lett., 34, L10807, https://doi.org/10.1029/2007GL029419, 2007.
Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330, 1996.
von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modeling halogen chemistry in the marine boundary layer 2. Interactions with sulfur and the cloud-covered MBL, J. Geophys. Res., 107, 4323, https://doi.org/10.1029/2001JD000943, 2002.
Wagner, V., von Glasow, R., Fischer, H., and Crutzen, P. J.: Are {CH2O}measurements in the marine boundary layer suitable for testing the current understanding of CH4 photooxidation?: a model study, J. Geophys. Res., 107, 4029, https://doi.org/10.1029/2001JD000722, 2002.
Wang, C., Jeong, G. R., and Mahowald, N.: Particulate absorption of solar radiation: anthropogenic aerosols vs. dust, Atmos. Chem. Phys., 9, 3935–3945, https://doi.org/10.5194/acp-9-3935-2009, 2009.
Warneke, C. and de Gouw, J. A.: Organic trace gas composition of the marine boundary layer over the northwest {I}ndian {O}cean in April 2000, Atmos. Environ., 35, 5923–5933, 2001.
Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., and Tomas, R. A.: Monsoons: processes, predictability, and the prospects for prediction, J. Geophys. Res., 103, 14451–14510, 1998.
Weigel, R., Borrmann, S., Curtius, J., Kunkel, D., Vicani, S., Shur, G. N., Belyaev, G. V., Schiller, C., Volk, C. M., and Stohl, A.: Observations of new particle formation events in the tropical UT/LS: On the role of ion induced nucleation, Atmos. Chem. Phys., in preparation, 2010.
Weigelt, A., Hermann, M., van Velthofen, P. F. J., Brenninkmeijer, C. A. M., Schlaf, G., Zahn, A., and Wiedensohler, A.: Influence of clouds on aerosol particle number concentrations in the upper troposphere, J. Geophys. Res., 114, D01204, https://doi.org/10.1029/2008JD009805, 2009.
Welton, E. J., Voss, K. J., Quinn, P. K., Flatau, P., Markowicz, K., Campbell, J., Spinhirne, J. D., Gordon, H. R., and Johnson, J.: Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars, J. Geophys. Res., 107, 8019, https://doi.org/10.1029/2000JD000038, 2002.
Wilcox, E. M. and Ramanathan, V.: The impact of observed precipitation upon the transport of aerosols from {S}outh {A}sia, Tellus, 56, 435–450, 2004.
Williams, J., Fischer, H., Wong, S., Crutzen, P. J., Scheele, M. P., and Lelieveld, J.: Near equatorial CO and O3 profiles over the I}ndian {O}cean during the winter monsoon: High {O3 levels in the middle troposphere and interhemispheric exchange, J. Geophys. Res., 107, 8007, https://doi.org/10.1029/2001JD001126, 2002.
Wisthaler, A., Hansel, A., Dickerson, R. R., and Crutzen, P. J.: Organic trace gas measurements by PTR-MS during {INDOEX} 1999, J. Geophys. Res., 107, 8024, https://doi.org/10.1029/2001JD000576, 2002.
Worden, J., Jones, D. B. A., Liu, J., Parrington, M., Bowman, K., Stajner, I., Beer, R., Jiang, J., Thouret, V., Kulawik, S., Li, J. F., Verma, S., and Worden, H.: Observed vertical distribution of tropospheric ozone during the {A}sian summertime monsoon, J. Geophys. Res., 114, D13304, https://doi.org/10.1029/2008JD010560, 2009.
Wuebbles, D. J., Lei, H., and Lin, J.: Intercontinental transport of aerosols and photochemical oxidants from Asia and its consequences, Environ. Pollut., 150, 65–84, 2007.
Xiong, X., Houweling, S., Wei, J., Maddy, E., Sun, F., and Barnet, C.: Methane plume over south Asia during the monsoon season: satellite observation and model simulation, Atmos. Chem. Phys., 9, 783–794, https://doi.org/10.5194/acp-9-783-2009, 2009.
Xu, B., Cao, J., Hansen, J., Yao, T., Joswia, D. R., Wang, N., Wu, G., Wang, M., Zhao, H., Yang, W., Liu, X., and He, J.: Black soot and the survival of Tibetan glaciers, P. Natl. Acad. Sci. USA, 106, 22114–22118, 2009.
Yasunari, T. J., Bonasoni, P., Laj, P., Fujita, K., Vuillermoz, E., Marinoni, A., Cristofanelli, P., Duchi, R., Tartari, G., and Lau, K.-M.: Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory –Pyramid data and snow albedo changes over Himalayan glaciers, Atmos. Chem. Phys., 10, 6603–6615, https://doi.org/10.5194/acp-10-6603-2010, 2010.
Ye, D. and Wu, G.: The role of the heat source of the {T}ibetan {P}lateau in the general circulation, Met. Atmos. Phys., 67, 181–198, 1998.
Young, L., Benson, D. R., Montanaro, W. M., et al.: Enhanced new particle formation observed in the northern midlatitude tropopause region, J. Geophys. Res., 112, D10218, https://doi.org/10.1029/2006JD008109, 2007.
Zachariasse, M., van Velthoven, P. F. J., Smit, H. G. J., Lelieveld, J., Mandal, T. K., and Kelder, H.: Influence of stratosphere-troposphere exchange on tropospheric ozone over the tropical {I}ndian {O}cean during the winter monsoon, J. Geophys. Res., 105, 15403–15416, 2000.
Zachariasse, M., Smit, H. G. J., van Velthoven, P. F. J., and Kelder, H.: Cross-tropopause and interhemispheric transports into the tropical free troposphere over the {I}ndian {O}cean, J. Geophys. Res., 106, 28441–28452, 2001.
Zhang, L., Jacob, D. J., Boersma, K. F., Jaffe, D. A., Olson, J. R., Bowman, K. W., Worden, J. R., Thompson, A. M., Avery, M. A., Cohen, R. C., Dibb, J. E., Flock, F. M., Fuelberg, H. E., Huey, L. G., McMillan, W. W., Singh, H. B., and Weinheimer, A. J.: Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations, Atmos. Chem. Phys., 8, 6117–6136, https://doi.org/10.5194/acp-8-6117-2008, 2008.
Altmetrics
Final-revised paper
Preprint