Articles | Volume 9, issue 14
https://doi.org/10.5194/acp-9-5043-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-9-5043-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate
B. Alexander
Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
M. G. Hastings
Department of Geological Sciences and Environmental Change Initiative, Brown University, Providence, RI, USA
D. J. Allman
Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
J. Dachs
Department of Environmental Chemistry, Institute for Environmental Assessment and Water Studies (IDAEA-CSIC), Consejo Superior de Investigaciones Científicas, Barcelona, Spain
J. A. Thornton
Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
S. A. Kunasek
Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
Related subject area
Subject: Isotopes | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine
Using ship-borne observations of methane isotopic ratio in the Arctic Ocean to understand methane sources in the Arctic
Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations
Rethinking Craig and Gordon's approach to modeling isotopic compositions of marine boundary layer vapor
Photochemical box modelling of volcanic SO2 oxidation: isotopic constraints
Uncertainties of fluxes and 13C ∕ 12C ratios of atmospheric reactive-gas emissions
Using δ13C-CH4 and δD-CH4 to constrain Arctic methane emissions
Air–snow transfer of nitrate on the East Antarctic Plateau – Part 2: An isotopic model for the interpretation of deep ice-core records
Interannual variability of isotopic composition in water vapor over western Africa and its relationship to ENSO
Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2
Global modelling of H2 mixing ratios and isotopic compositions with the TM5 model
Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive atmospheric species
The impact of anthropogenic emissions on atmospheric sulfate production pathways, oxidants, and ice core Δ17O(SO42–)
Sarah A. Strode, James S. Wang, Michael Manyin, Bryan Duncan, Ryan Hossaini, Christoph A. Keller, Sylvia E. Michel, and James W. C. White
Atmos. Chem. Phys., 20, 8405–8419, https://doi.org/10.5194/acp-20-8405-2020, https://doi.org/10.5194/acp-20-8405-2020, 2020
Short summary
Short summary
The 13C : 12C isotopic ratio in methane (CH4) provides information about CH4 sources, but loss of CH4 by reaction with OH and chlorine (Cl) also affects this ratio. Tropospheric Cl provides a small and uncertain sink for CH4 but has a large effect on its isotopic ratio. We use the GEOS model with several different Cl fields to test the sensitivity of methane's isotopic composition to tropospheric Cl. Cl affects the global mean, hemispheric gradient, and seasonal cycle of the isotopic ratio.
Antoine Berchet, Isabelle Pison, Patrick M. Crill, Brett Thornton, Philippe Bousquet, Thibaud Thonat, Thomas Hocking, Joël Thanwerdas, Jean-Daniel Paris, and Marielle Saunois
Atmos. Chem. Phys., 20, 3987–3998, https://doi.org/10.5194/acp-20-3987-2020, https://doi.org/10.5194/acp-20-3987-2020, 2020
Short summary
Short summary
Methane isotopes in the atmosphere can help us differentiate between emission processes. A large variety of natural and anthropogenic emission types are active in the Arctic and are unsatisfactorily understood and documented up to now. A ship-based campaign was carried out in summer 2014, providing a unique dataset of isotopic measurements in the Arctic Ocean. Using a chemistry-transport model, we link these measurements to circumpolar emissions and retrieve information about their signature.
Becky Alexander, Tomás Sherwen, Christopher D. Holmes, Jenny A. Fisher, Qianjie Chen, Mat J. Evans, and Prasad Kasibhatla
Atmos. Chem. Phys., 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, https://doi.org/10.5194/acp-20-3859-2020, 2020
Short summary
Short summary
Nitrogen oxides are important for the formation of tropospheric oxidants and are removed from the atmosphere mainly through the formation of nitrate. We compare observations of the oxygen isotopes of nitrate with a global model to test our understanding of the chemistry nitrate formation. We use the model to quantify nitrate formation pathways in the atmosphere and identify key uncertainties and their relevance for the oxidation capacity of the atmosphere.
Xiahong Feng, Eric S. Posmentier, Leslie J. Sonder, and Naixin Fan
Atmos. Chem. Phys., 19, 4005–4024, https://doi.org/10.5194/acp-19-4005-2019, https://doi.org/10.5194/acp-19-4005-2019, 2019
Short summary
Short summary
We present a 1-D model to simulate H2O isotopologues of vapor and their vertical fluxes in the first kilometer above the sea surface. The model includes two processes not in earlier Craig–Gordon isotope evaporation models: height-dependent diffusion/mixing and ascending/converging air. Calculated isotopic ratios compare well with data from seven cruises. The model explains how sea surface meteorology can affect atmospheric vapor, precipitation isotope ratios, and paleoisotope records.
Tommaso Galeazzo, Slimane Bekki, Erwan Martin, Joël Savarino, and Stephen R. Arnold
Atmos. Chem. Phys., 18, 17909–17931, https://doi.org/10.5194/acp-18-17909-2018, https://doi.org/10.5194/acp-18-17909-2018, 2018
Short summary
Short summary
Volcanic sulfur can have climatic impacts for the planet via sulfate aerosol formation, leading also to pollution events. We provide model constraints on tropospheric volcanic sulfate formation, with implications for its lifetime and impacts on regional air quality. Oxygen isotope investigations from our model suggest that in the poor tropospheric plumes of halogens, the O2/TMI sulfur oxidation pathway might significantly control sulfate production. The produced sulfate has no isotopic anomaly.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 17, 8525–8552, https://doi.org/10.5194/acp-17-8525-2017, https://doi.org/10.5194/acp-17-8525-2017, 2017
Short summary
Short summary
We revisit the proxies/uncertainties for the 13C/12C ratios of emissions of reactive C into the atmosphere. Our main findings are (i) a factor of 2 less uncertain estimate of tropospheric CO surface sources δ13C, (ii) a confirmed disagreement between the bottom-up and top-down 13CO-inclusive emission estimates, and (iii) a novel estimate of the δ13C signatures of a range of NMHCs/VOCs to be used in modelling studies. Results are based on the EMAC model emission set-up evaluated for 2000.
Nicola J. Warwick, Michelle L. Cain, Rebecca Fisher, James L. France, David Lowry, Sylvia E. Michel, Euan G. Nisbet, Bruce H. Vaughn, James W. C. White, and John A. Pyle
Atmos. Chem. Phys., 16, 14891–14908, https://doi.org/10.5194/acp-16-14891-2016, https://doi.org/10.5194/acp-16-14891-2016, 2016
Short summary
Short summary
Methane is an important greenhouse gas. Methane emissions from Arctic wetlands are poorly quantified and may increase in a warming climate. Using a global atmospheric model and atmospheric observations of methane and its isotopologues, we find that isotopologue data are useful in constraining Arctic wetland emissions. Our results suggest that the seasonal cycle of these emissions may be incorrectly simulated in land process models, with implications for our understanding of future emissions.
J. Erbland, J. Savarino, S. Morin, J. L. France, M. M. Frey, and M. D. King
Atmos. Chem. Phys., 15, 12079–12113, https://doi.org/10.5194/acp-15-12079-2015, https://doi.org/10.5194/acp-15-12079-2015, 2015
Short summary
Short summary
In this paper, we describe the development of a numerical model which aims at representing nitrate recycling at the air-snow interface on the East Antarctic Plateau. Stable isotopes are used as diagnostic and evaluation tools by comparing the model's results to recent field measurements of nitrate and key atmospheric species at Dome C, Antarctica. From sensitivity tests conducted with the model, we propose a framework for the interpretation of the nitrate isotope record in deep ice cores.
A. Okazaki, Y. Satoh, G. Tremoy, F. Vimeux, R. Scheepmaker, and K. Yoshimura
Atmos. Chem. Phys., 15, 3193–3204, https://doi.org/10.5194/acp-15-3193-2015, https://doi.org/10.5194/acp-15-3193-2015, 2015
H. D. Graven and N. Gruber
Atmos. Chem. Phys., 11, 12339–12349, https://doi.org/10.5194/acp-11-12339-2011, https://doi.org/10.5194/acp-11-12339-2011, 2011
G. Pieterse, M. C. Krol, A. M. Batenburg, L. P. Steele, P. B. Krummel, R. L. Langenfelds, and T. Röckmann
Atmos. Chem. Phys., 11, 7001–7026, https://doi.org/10.5194/acp-11-7001-2011, https://doi.org/10.5194/acp-11-7001-2011, 2011
S. Morin, R. Sander, and J. Savarino
Atmos. Chem. Phys., 11, 3653–3671, https://doi.org/10.5194/acp-11-3653-2011, https://doi.org/10.5194/acp-11-3653-2011, 2011
E. D. Sofen, B. Alexander, and S. A. Kunasek
Atmos. Chem. Phys., 11, 3565–3578, https://doi.org/10.5194/acp-11-3565-2011, https://doi.org/10.5194/acp-11-3565-2011, 2011
Cited articles
Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M. H.: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303, https://doi.org/10.1029/2003JD004218, 2004.
Alexander, B., Savarino, J., Lee, C. C. W., Park, R. J., Jacob, D. J., Li, Q., Yantosca, R. M., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res., 110, D10307, https://doi.org/10.1029/2004JD005659, 2005.
Benkovitz, C.M., Schultz, M. T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A., and Graedel, T. E.: Global, gridded inventories for anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res., 101, 29239–29253, 1996.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23073–23095, 2001.
Bhattacharya, S. K., Pandey, A., and Savarino, J.: Determination of intramolecular isotope distribution of ozone by oxidation reaction with silver metal, J. Geophys. Res, 113, D03303, https://doi.org/10.1029/2006JF008309, 2008.
Brothers, L. A., Dominguez, G., Fabian, P., and Thiemens, M. H.: Using multi-isotope tracer methods to understand the sources of nitrate in aerosols, fog and river water in Podocarpus National Forest, Ecuador, Eos Trans. AGU, 89, Abstract A11C-0136, 2008.
Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N2O5 determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations, J. Geophys. Res, 114, D00F10, https://doi.org/10.1029/2008JD011679, 2009.
Carpenter, L. J., Monks, P. S., Bandy, B. J., and Penkett, S. A.: A study of peroxy radicals and ozone photochemistry at coastal sites in the northern and southern hemispheres, J. Geophys. Res, 102, 25417–25427, 1997.
Casciotti, K.L., Sigman, D. M., Hastings, M. G., Bohlke, K. K., and Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Anal. Chem., 74, 4905–4912, 2002.
Chance, K.: Analysis of BrO Measurements from the Global Ozone Monitoring Experiment, Geophys. Res. Lett., 25, 3335–3338, 1998.
Dachs, J., Calleja, M. L., Duarte, C. M., Vento, S. d., Turpin, B., Polisori, A., Herndl, G. J., and Agusti, S.: High atmosphere-ocean exchange of organic carbon in the NE subtropical Atlantic, Geophys. Res. Lett., 32, L21807, https://doi.org/10.1029/2005GL023799, 2005.
Davis, J. M., Bhave, P. V., and Foley, K. M.: Parameterization of N2O5 reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate, Atmos. Chem. Phys., 8, 5295–5311, 2008.
DeMore, B., W., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publ., 97-4, 1–278., 1997.
Dentener, F. J., and Crutzen, P. J.: Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3, and OH, J. Geophys. Res, 98, 7149–7163, 1993.
Duarte, C. M., Dachs, J., Llabres, M., ALonso-Laita, P., Gasol, J. M., Tovar-Sanchez, A., Sanudo-Wilhemy, S., and Agusti, S.: Aerosol inputs enhance new production in the subtropical northeast Atlantic, J. Geophys. Res, 111, G04006, https://doi.org/10.1029/2005JG000140, 2006.
Dubey, M.K., Mohrschladt, R., Donahue, N. M., and Anderson, J. G.: Isotope-specific kinetics of hydroxyl radical (OH) with water (H2O): Testing models of reactivity and atmospheric fractionation, J. Phys. Chem. A., 101, 1494–1500, 1997.
Evans, M. J., Jacob, D. J., Atlas, E., Cantrell, C. A., Eisele, F., Flocke, F., Fried, A., Mauldin, R. L., Ridley, B. A., Wert, B., Talbot, R., Blake, D., Heikes, B., Snow, J., Walega, J., Weinheimer, A. J., and Dibb, J.: Coupled evolution of BrOx–ClOx–HOx–NOx chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer, J. Geophys. Res, 108, 8368, https://doi.org/10.1029/2002JD002732, 2003.
Evans, M. J. and Jacob, D. J.: Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH, Geophys. Res. Lett., 32, L09813, https://doi.org/10.1029/2005GL022469, 2005.
Ewing, A., S., Michalski, G., Thiemens, M., Quinn, C., R., Macalady, L., J., Kohl, S., Wankel, D., S., Kendall, C., McKay, P., and Amundson, C. R.: Rainfall limit of the N cycle on Earth, Global Biogeochemical Cycles, 21(12), GB3009, https://doi.org/10.1029/2006gb002838, 2007.
Fiore, A. M., Jacob, D. J., Bey, I., Yantosca, R. M., Field, B. D., and Wilkinson, J. G.: Background ozone over the United States in summer: Origin and contribution to pollution episodes, J. Geophys. Res, 107, 4275, https://doi.org/10.1029/2001JD000982, 2002.
Fiore, A. M., Jacob, D. J., Liu, H., Yantosca, R. M., Fairlie, T. D., and Li, Q.: Variability in surface ozone background over the United States: Implications for air quality policy, J. Geophys. Res, 108, 4787, https://doi.org/10.1029/2003JD003855, 2003.
Fleming, Z. L., Monks, P. S., Rickard, A. R., Heard, D. E., Bloss, W. J., Seakins, P. W., Still, T. J., Sommariva, R., Pilling, M. J., Morgan, R., Green, T. J., Brough, N., Mills, G. P., Penkett, S. A., Lewis, A. C., Lee, J. D., Saiz-Lopez, A., and Plane, J. M. C.: Peroxy radical chemistry and the control of ozone photochemistry at Mace Head, Irelend during the summer of 2002, Atm. Chem. Phys., 6, 2193–2214, 2006.
Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42-–NO3-–Cl-–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, 2007.
Franz, P. and Röckmann, T.: High-precision isotope measurements of H$_{2}^{16}$O, H$_{2}^{17}$O, H218O, and the $\Delta ^{17}$O-anomaly of water vapor in the southern lowermost stratosphere, Atmos. Chem. Phys., 5, 2949–2959, 2005.
Galloway, N., J., Townsend, R., A., Erisman, Willem, J., Bekunda, Mateete, Cai, Zucong, Freney, R., J., Martinelli, A., L., Seitzinger, P., S., Sutton, and A., M.: Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions, Science, 320, 889–892, https://doi.org/10.1126/science.1136674, 2008.
Gerber, H. E.: Relative-humidity paramaterization of the Nave aerosol model (NAM), Natl. Res. Lab., Washington, D.C., 1985.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., Glasow, R. V., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, 2007.
Guenther, A., Hewitt, N., C., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, ;, M., McKay, A., W., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, and, and Mayewski, P. A.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873–8892, 1995.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, 2006.
Hallquist, M., Stewart, D. J., Stephenson, S. K., and Cox, R. A.: Hydrolysis of N2O5 on sub-micron sulfate aerosol, Phys. Chem. Chem. Phys., 5, 3453–3463, 2003.
Hastings, M. G., Sigman, D. M., and Lipschultz, F.: Isotopic evidence for source changes of nitrate in rain at Bermuda, J. Geophys. Res., 108, 4790, https://doi.org/10.1029/2003JD003789, 2003.
Hauff, Karlheinz, Fischer, G., R., Ballschmiter, and Karlheinz: Determination of C1-C5 alkyl nitrates in rain, snow, white frost, lake, and tap water by a combined codistillation head-space gas chromatography technique, Determination of henry's law constants by head-space GC, Chemosphere, 37, 2599–2615, 1998.
Hawari, J., Halasz, A., Sheremata, T., Beaudet, S., Groom, C., Paquet, L., Rhofir, C., Ampleman, G., and Thiboutot, S.: Characterization of metabolites during biodegradatin of hexahydro-1,3,5-trinotro-1,3,5-triazine (RDX) with municipal anaerobic sludge, Appl. Environ. Microbiology, 66, 2652–2657, 2000.
Honrath, E., R., Lu, Y., Peterson, C., M., Dibb, E., J., Arsenault, A., M., Cullen, J., N., Steffen, and K.: Vertical fluxes of NOx, HONO, and HNO3 above the snowpack at Summit, Greenland, Atmos. Environ., 36, 2629–2640, 2002.
Hudman, R. C., Murray, L. T., Jacob, D. J., Turquety, S., Wu, S., Millet, D. B., Avery, M., Goldstein, A. H., and Holloway, J.: North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations, J. Geophys. Res, 114, https://doi.org/10.1029/2008JD010126, 2009.
Huey, L. G., Dibb, J., Stutz, J., Brooks, S., Glasow, R. V., Lefer, B., Chen, G., Kim, S., and Tanner, D.: Observations of halogens at Summit, Greenland, EOS Transactions, AGU, 88, Fall Meet. Suppl., Abstract A42B-05, 2007.
Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131–2159, 2000.
Jaegle, L., Steinberger, L., Martin, R. V., and Chance, K.: Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions, Faraday Discuss., 130, 407–423, https://doi.org/10.1039/b502128f, 2005.
Janssen, C., Guenther, J., and Krankowsky, D.: Relative formation rates of 50O3 and 52O3 in 16O–18O mixtures, J. Chem. Phys., 111, 7179–7182, 1999.
Janssen, C.: Intramolecular isotope distribution in heavy ozone ($^{16}O^{18}O^{16}$O and $^{16}O^{16}O^{18}$O), J. Geophys. Res., 110, D08308, https://doi.org/10.1029/2004JD005479, 2005.
Johnston, J. C. and Thiemens, M. H.: The isotopic composition of tropospheric ozone in three environments, J. Geophys. Res., 102, 25395–25404, 1997.
Jones, A. E., Weller, R., Wolff, E. W., and Jacobi, A. H.-W.: Speciation and rate of photochemical NO and NO2 production in Antarctic snow, Geophys. Res. Lett., 27, 345–348, 2000.
Kaiser, J., Hastings, M. G., Houlton, B. Z., Rockmann, T., and Sigman, D. M.: Triple Oxygen Isotope Analysis of Nitrate Using the Denitrifier Method and Thermal Decomposition of N2O, Anal. Chem., 79, 599–607, 2007.
Kane, S. M., Caloz, F., and Leu, M. T.: Heterogeneous uptake of gaseous N2O5 by (NH4)2SO4, NH4HSO4 and H2SO4 aerosol, J. Phys. Chem., 105, 6465–6570, 2001.
Krankowsky, D., Bartecki, F., Klees, G. G., Mauersberger, K., Schellenback, K., and Stehr, J.: Measurement of heavy isotope enrichment in tropospheric ozone, Geophys. Res. Lett., 22, 1713–1716, 1995.
Kreher, K., Johnson, P. V., Wood, S. W., Nardi, B., and Platt, U.: Ground-based measurements of tropspheric and stratospheric BrO at Arrivals Heights, Antarctica, Geophys. Res. Lett., 24, 3021–3024, 1997.
Kunasek, A., S., Alexander, B., Hastings, M. G., Steig, E. J., Gleason, D. J., and Jarvis, J. C.: Measurements and modeling of $\Delta ^{17}$O of nitrate in a snowpit from Summit, Greenland, J. Geophys. Res. , 113, D24302, https://doi.org/10.1029/2008JD010103, 2008.
Legrand, M. R. and Kirchner, S.: Origins and variations of nitrate in south polar precipitation, J. Geophys. Res, 95, 3493–3507, 1990.
Levy, H., Moxim, W. J., Klonecki, A. A., and Kasibhatla, P. S.: Simulated tropospheric NOx: Its evaluation, global distribution and individual source contributions, J. Geophys. Res., 104, 26279–226306, 1999.
Liang, M.-C., Irion, F. W., Weibel, J. D., Miller, C. E., Blake, G. A., and Yung, Y. L.: Isotopic composition of stratospheric ozone, J. Geophys. Res, 111, D02302, https://doi.org/10.1029/2005JD006342, 2006.
Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meterological fields, J. Geophys. Res., 106, 12109–112128, 2001.
Logan, J. A.: Nitrogen oxides in the troposphere: Global and regional budgets, J. Geophys. Res., 88, 785–807, 1983.
Lyons, J. R.: Transfer of mass-independent fractioation on ozone to other oxygen-containing molecules in the atmosphere, Geophys. Res. Lett., 28, 3231–3234, 2001.
Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P.: Global and regional decreases in tropospheric oxidants form photochemical effects of aerosols, J. Geophys. Res., 108, 4097, https://doi.org/10.1029/2002JD002622, 2003.
Martin, R. V., Jacob, D. J., Logan, J. A., Bey, I., Yantosca, R. M., Staudt, A. C., Li, Q. B., Fiore, A. M., Duncan, B. N., Liu, H., Ginoux, P., and Thouret, V.: Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in-situ observations, J. Geophys. Res, 107, 4351, https://doi.org/10.1029/2001JD001480, 2002.
Matsuhisa, Y., Goldsmith, J. R., and Clayton, R. N.: Mechanisms of hydrothermal crystallization of quartz at 250C and 15 kbar, Geochim. Cosmochim. Acta, 42, 173–182, 1978.
Mauersberger, K., Erbacher, B., Krankowsky, D., Gunther, J., and Nickel, R.: Ozone isotope enrichment: Isotopomer-specific rate coefficients, Science, 283, 370–372, 1999.
Mauersberger, K., Lämmerzahl, P., and Krankowsky, D.: Stratospheric Ozone Isotope Enrichments – Revisited, Geophys. Res. Lett., 28, 3155–3158, 2001.
Mayewski, P.A., Lyons, W. B., Spencer, M. J., Twickler, M. S., Buck, C. F., and Whitlow, S.: An ice-core record of atmospheric response to anthropogenic sulphate and nitrate, Nature, 346, 554–556, 1990.
McCabe, J. R., Thiemens, M. H., and Savarino, J.: A record of ozone variability in South Pole Antarctic snow: Role of nitrate oxygen isotopes, J. Geophys. Res, 112, D12303, https://doi.org/10.1029/2006JD007822, 2007.
McMorrow, A., Ommen, T. D. V., Morgan, V., and Curran, M. A. J.: Ultra-high-resolution seasonality of trace-ion species and oxygen isotope ratios in Antarctic firn over four annual cycles, Ann. Glaciol., 39, 34–40, 2004.
McNeill, V. F., Patterson, J., Wolfe, G. M., and Thornton, J.: The Effect of Varying levels of Surfactant on the Reactive Uptake of N2O5 to Submicron Aqueous Aerosol, Atm. Chem. Phys., 6, 1635–1644, 2006.
Michalski, G. M., Savarino, J., Bohlke, J. K., and Thiemens, M. H.: Determination of the total oxygen isotopic composition of nitrate and the calibration of a $\Delta ^{17}$O nitrate reference material, Anal. Chem., 74, 4989–4993, 2002.
Michalski, G. M., Scott, Z., Kabiling, M., and Thiemens, M. H.: First measurements and modeling of $\Delta ^{17}$O in atmospheric nitrate, Geophys. Res. Lett., 30, 1870, https://doi.org/1810.1029/2003GL017015, 2003.
Michalski, G. and Bhattacharya, S. K.: The role of symmetry in the mass independent isotope effect in ozone, Proc. Natl. Acad. Sci., 106, 5493–5496, 2009.
Millet, D. B., Jacob, D. J., Boersma, K. F., Fu, T.-M., Kurosu, T. P., Chance, K., Heald, C. L., and Guenther, A.: Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor, J. Geophys. Res., 113, D02307, https://doi.org/10.1029/2007JD008950, 2008.
Morin, S., Savarino, J., Bekki, S., Gong, S., and Bottenheim, J. W.: Signature of Arctic surface ozone depletion events in the isotope anomaly ($\Delta ^{17}$O) of atmospheric nitrate, Atmos. Chem. Phys., 6, 6255–6297, 2007.
Morin, S., Savarino, J., Frey, M., M., Yan, N., Bekki, S., Bottenheim, W. J., and Martins, F. J. M.: Tracing the Origin and Fate of NOx in the Arctic Atmosphere Using Stable Isotopes in Nitrate, Science, 322, 730–732, https://doi.org/10.1126/science.1161910, 2008.
Morin, S., Savarino, J., Frey, M. M., Domine, F., Jacobi, H.-W., Kaleschke, L., and Martins, J. M. F.: Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65S to 79 N, J. Geophys. Res., 114, D05303, https://doi.org/10.1029/2008JD010696, 2009.
Morton, J., Barnes, J., Schueler, B., and Mauersberger, K.: Laboratory studies of heavy ozone, J. Geophys. Res., 95, 901–907, 1990.
Mulvaney, R. and Wolff, E. W.: Evidence for Winter/Spring Denitrification of the Stratosphere in the Nitrate Record of Antarctic Firn Cores, J. Geophys. Res., 98, 5213–5220, 1993.
Palmer, P. I., Abbot, D. S., Fu, T.-Z., Jacob, D. J., Chance, K., Kuruso, T. P., Guenther, A., Wiedinmyer, C., Stanton, J. C., Pilling, M. J., Pressley, S. N., Lamb, B., and Sumner, A. L.: Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of formaldehyde column, J. Geophys. Res., 111, D12315, https://doi.org/10.1029/2005JD006689, 2006.
Park, R.J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy, J. Geophys. Res., 109, D15204, https://doi.org/10.1029/2003JD004473, 2004.
Peterson, M. C. and Honrath, R. E.: Observations of Rapid Photochemical Destruction of Ozone in Snowpack Interstitial Air, Geophys. Res. Lett., 28, 511–514, 2001.
Pickering, K. E., Wang, Y. S., Tao, W. K., Price, C., and Muller, J. F.: Vertical distributions of lightning NOx for use in regional and global chemical transport models, J. Geophys. Res., 103, 31203–231216, 1998.
Prather, M. and Ehhalt, D.: Atmospheric chemistry and greenhouse gases, in: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp.
Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning distribution, J. Geophys. Res., 97, 9919–9933, 1992.
Randerson, J. T., vanderWerf, G. R., Giglio, L., Collatz, G. J., and Kasibhatla, P. S.: Global Fire EMissions Database, Version 2 (GFEDv2.1). Data set. Available on line. [http://daac.ornl.gov/] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/849, 2007.
Richter, A., Wittrock, F., Eisinger, M., and Burrows, J. P.: GOME observations of tropospheric BrO in northern hemispheric spring and summer 1997, Geophys. Res. Lett., 25, 2683–2686, 1997.
Saiz-Lopez, A., Plane, J. M. C., Mahajan, A. S., Anderson, P. S., Barguitte, S. J.-B., Jones, A. E., Roscoe, H. K., Salmon, R. A., Bloss, W. J., Lee, J. D., and Heard, D. E.: On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O3, HOx, NOx and the Hg lifetime, Atm. Chem. Phys., 8, 887–900, 2008.
Sander, S. P., Friedl, R. R., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Kurylo, M. J., Huie, R. E., Orkin, V. L., Molina, M. J., Moortgat, G. K., and Finlayson-Pitts, B. J.: Chemical kinetics and photochemical data for use in atmospheric studies, NASA Jet Propulsion Lab, 02–25, 2000.
Savarino, J., Kaiser, J., Morin, S., Sigman, D. M., and Thiemens, M. H.: Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica, Atmos. Chem. Phys., 7, 1925–1945, 2007.
Savarino, J. and Thiemens, M. H.: Mass-independent oxygen isotope (16O, 17O, 18O) fractionation found in Hx, Ox reactions, J. Phys. Chem., 103, 9221–9229, 1999a.
Savarino, J. and Thiemens, M. H.: Analytical procedure to determine both δ18O and $\delta ^{17}$O of H2O2 in natural water and first measurements, Atmos. Env., 33, 3683–3690, 1999b.
Savarino, J., Bhattacharya, S. K., Morin, S., Baroni, M., and Doussin, J.-F.: The NO+O3 reaction: A triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly, J. Chem. Phys., 128(19), 194303, https://doi.org/10.1063/1.2917581, 2008.
Schneider, H. R., Jones, D. B. A., McElroy, M. B., and Shi, G.-Y.: Analysis of residual mean transport in the stratosphere 1. Model description and comparison with satellite data, J. Geophys. Res., 105, 19991–920011, 2000.
Sjostedt, S. J., Huey, L. G., Tanner, D. J., Peischl, J., Chen, G., Dibb, J. E., Lefer, B., Hutterli, M. A., Beyersdorf, A. J., Blake, N. J., Blake, D. R., Sueper, D., Ryerson, T., Burkhart, J., and Stohl, A.: Observations of hydroxyl and the sum of peroxy radicals at Summit, Greenland during summer 2003, Atmos. Environ., 41, 5122–5137, 2007.
Stroud, C., Madronich, S., Atlas, E., Ridley, B., Flocke, F., Weinheimer, A., Talbot, B., Fried, A., Wert, B., Shetter, R., Lefer, B., Coffey, M., Heikes, B., and Blake, D.: Photochemistry in the arctic free troposphere: NOx budget and the role of odd nitrogen reservoir recycling, Atmos. Environ., 37, 3351–3364, 2003.
Terao, Y., Logan, J. A., Douglass, A. R., and Stolarski, R. S.: Contribution of stratospheric ozone to the interannual variability of tropospheric ozone in the northern extratropics, J. Geophys. Res, 113, D18309, https://doi.org/10.1029/2008JD009854, 2008.
Thompson, A. M.: The oxidizing capacity of the Earth's atmosphere: Probable past and future changes, Science, 256, 1157–1165, 1992.
Thornton, J. A., Braban, C. F., and Abbatt, J. P. D.: N2O5 hydrolysis on sub-micron organic aerosol: The effect of relative humidity, particle phase and particle size, Phys. Chem. Chem. Phys., 5, 4593–4603, 2003.
Tie, X., Emmons, L., Horowitz, L., Brasseur, G., Ridley, B., Atlas, E., Stround, C., Hess, P., Klonecki, A., Madronich, S., Talbot, R., and Dibb, J.: Effect of sulfate aerosol on tropospheric NOx and ozone budgets: Model simulations and TOPSE evidence, J. Geophys. Res., 108, 8364, https://doi.org/10/10.1029/2001JD001508, 2003.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. H., and Kasibhatla, P. S.: Interannual variability in global biomass burning emission from 1997 to 2004, Atm. Chem. Phys., 6, 3423–3411, 2006.
Wagenbach, D., Legrand, M., Fischer, H., Pichlmayer, F., and Wolff, E. W.: Atmospheric near-surface nitrate at coastal Antarctic sites, J. Geophys. Res, 103, 11007–11020, 1998.
Wagner, T. and Platt, U.: Satellite mapping of enhanced BrO concentrations in the troposphere, Nature, 395, 486–490, 1998.
Wang, Y. H., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric O3-NOx hydrocarbon chemistry 1. Model formulation, J. Geophys. Res., 103, 10713–10725, 1998.
Wang, H., Jacob, D. J., Sager, P. L., Streets, D. G., Park, R. J., Gilliland, A. B., and Donkelaar, A. V.: Surface ozone background in the United States: Canadian and Mexican pollution influences, Atmos. Environ., 43, 1310–1319, 2009.
Wang, J. S., McElroy, M. B., Logan, J. A., Palmer, P. I., Chameides, W. L., Wang, Y., and Megretskaia, I. A.: A quantitative assessment of uncertainties affecting estimates of global mean OH derived from methyl chloroform observations, J. Geophys. Res., 113, D12302, https://doi.org/10.1029/2007JD008496, 2008.
Weller, R., Jones, A. E., Wille, A., Jacobi, H.-W., McIntyre, H. P., Sturges, W. T., Huke, M., and Wagenbach, D.: Seasonality of reactive nitrogen oxides (NOy) at Neumayer Station, Antarctica, J. Geophys. Res., 107, 4673, https://doi.org/10.1029/2002JD002495, 2002.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical-models, Atmos. Envion., 23, 1293–1304, 1989.
Wild, O., Zhu, Q., and Prather, M. J.: Fast-J: Accurate simulation of in- and below-cloud photolysis in global chemical models, J. Atm. Chem., 37, 245–282, 2000.
Wu, S., Mickley, L. J., Jacob, D. J., Logan, J. A., Yantosca, R. M., and Rind, D.: Why are there large differences between models in global budgets of tropospheric ozone?, J. Geophys. Res, 112, D05302, https://doi.org/10.1029/2006JD007801, 2007.
Yang, X., Cox, R. A., Warwick, N. J., Pyle, J. A., Carver, G. D., O'Connor, F. M., and Savage, N. H.: Tropospheric bromine chemistry and its impact on ozone: A model study, J. Geophys. Res., 110, D2331, https://doi.org/10.1029/2005JD003244, 2005.
Yienger, J. J. and Levy, H.: Empirical model of global soil-biogenic NO$_{\rm x}$ emissions, J. Geophys. Res., 100, 11447–11464, 1995.
Zahn, A., Franz, P., Bechtel, C., Groob, J.-U., and Rockmann, T.: Modelling the budget of middle atmospheric water vapour isotopes, Atm. Chem. Phys., 6, 2073–2090, 2006.
Zhang, L., Gong, S., Padro, J., and Barrie, L.: A size-segregated particle dry deposition scheme for an atmosopheric aerosol module, Atmos. Environ., 35, 549–560, 2001.
Zhang, L., Jacob, D. J., Boersma, K. F., Jaffe, D. A., Olson, J. R., Bowman, K. W., Worden, J. R., Thompson, A. M., Avery, M. A., Cohen, R. C., Dibb, J. E., Flock, F. M., Fuelberg, H. E., Huey, L. G., McMillan, W. W., Singh, H. B., and Weinheimer, A. J.: Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality on Notrh America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations, Atmos. Chem. Phys., 8, 6117–6136, 2008.
Altmetrics
Final-revised paper
Preprint