Articles | Volume 26, issue 3
https://doi.org/10.5194/acp-26-2331-2026
https://doi.org/10.5194/acp-26-2331-2026
Research article
 | 
16 Feb 2026
Research article |  | 16 Feb 2026

Microphysics of Arctic Stratiform Boundary-layer Clouds during ARCSIX

Alexei V. Korolev and R. Paul Lawson

Related authors

The impacts of secondary ice production on the microphysics and dynamics of mid-latitude cold season convection
Zhipeng Qu, Alexei Korolev, Jason A. Milbrandt, Ivan Heckman, Mélissa Cholette, Cuong Nguyen, and Mengistu Wolde
Atmos. Chem. Phys., 25, 17845–17868, https://doi.org/10.5194/acp-25-17845-2025,https://doi.org/10.5194/acp-25-17845-2025, 2025
Short summary
Improving Forecasts of Persistent Contrails through Ice Deposition Adjustments
Zane Dedekind, Alexei Korolev, and Jason Aaron Milbrandt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3007,https://doi.org/10.5194/egusphere-2025-3007, 2025
Short summary
High ice water content in tropical mesoscale convective systems (a conceptual model)
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024,https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Sizing ice hydrometeor populations using the dual-wavelength radar ratio
Sergey Y. Matrosov, Alexei Korolev, Mengistu Wolde, and Cuong Nguyen
Atmos. Meas. Tech., 15, 6373–6386, https://doi.org/10.5194/amt-15-6373-2022,https://doi.org/10.5194/amt-15-6373-2022, 2022
Short summary
Observation of secondary ice production in clouds at low temperatures
Alexei Korolev, Paul J. DeMott, Ivan Heckman, Mengistu Wolde, Earle Williams, David J. Smalley, and Michael F. Donovan
Atmos. Chem. Phys., 22, 13103–13113, https://doi.org/10.5194/acp-22-13103-2022,https://doi.org/10.5194/acp-22-13103-2022, 2022
Short summary

Cited articles

Alkama, R., Koffi E. N, Vavrus, S. J, Diehl, T., Francis, J. A., Stroeve, J., Forzieri, G., Vihma, T., and Cescatti, A.: Wind amplifies the polar sea ice retreat, Environmental Research Letters, 15, 124022, https://doi.org/10.1088/1748-9326/abc379, 2020. 
Baker, B. and Lawson, R. P.: Improvement in Determination of Ice Water Content from Two-Dimensional Particle Imagery. Part I: Image-to-Mass Relationships, 45, 1282–2111, https://doi.org/10.1175/JAM2398.1, 2006. 
Bamber, J. L., Layberry, R. L., and Gogineni, S.: A new ice thickness and bed data set for the Greenland ice sheet 1. Measurement, data reduction, and errors, J. Geophys. Res.-Atmos., 106, 33773–33780, https://doi.org/10.1029/2001JD900054, 2001. 
Barry, K. R., Hill, T. C. J., Levin, E. J. T., Twohy, C. H., Moore, K. A., Weller Z. D., Toohey, D. W., Reeves, M., Campos, T., Geiss R., Fischer, E. V., Kreidenweis, S. M., and DeMott, P. J.: Observations of ice nucleating particles in the free troposphere from western US wildfires, J. Geophys. Res., 126, e2020JD033752, https://doi.org/10.1029/2020JD033752, 2021. 
Broecker, W. S., Bond, G., Klas, M., Bonani, G., and Wolfli, W.: A salt oscillator in the glacial Atlantic? 1. The Concept, Paleoceanography, 5, 469–477, https://doi.org/10.1029/PA005i004p00469, 1990. 
Download
Short summary
The International Panel on Climate Change has concluded that aerosols and clouds are significant contributors to the rate of warming in the Arctic, which is now shown to be more than twice that of the global average. Climate model predictions suggest that the Arctic Ocean will become ice-free sometime between 2030 and 2050. The research presented here increases our knowledge of how aerosols, clouds and surface properties contribute to warming and the melting of sea ice in the Arctic.
Share
Altmetrics
Final-revised paper
Preprint