Articles | Volume 25, issue 16
https://doi.org/10.5194/acp-25-9169-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-9169-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric breakdown kinetics and air quality impact of potential “green” solvents, the oxymethylene ethers OME3 and OME4
James D'Souza Metcalf
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
Ruth K. Winkless
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
Caterina Mapelli
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
now at: National Reasearch Council – Institute of Methodologies for Environmental Analysis (IMAA), Tito Scalo, Potenza, 85050, Italy
C. Rob McElroy
Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
now at: Department of Chemistry, School of Natural Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
Claudiu Roman
Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iași, 700506, Iași, Romania
Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), “Alexandru Ioan Cuza” University of Iași, 11th Carol I, 700506, Iași, Romania
Cecilia Arsene
Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iași, 700506, Iași, Romania
Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), “Alexandru Ioan Cuza” University of Iași, 11th Carol I, 700506, Iași, Romania
Integrated Center of Environmental Science Studies in the North Eastern Region (CERNESIM), “Alexandru Ioan Cuza” University of Iași, 700506, Iași, Romania
Romeo I. Olariu
Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iași, 700506, Iași, Romania
Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), “Alexandru Ioan Cuza” University of Iași, 11th Carol I, 700506, Iași, Romania
Integrated Center of Environmental Science Studies in the North Eastern Region (CERNESIM), “Alexandru Ioan Cuza” University of Iași, 700506, Iași, Romania
Iustinian G. Bejan
CORRESPONDING AUTHOR
Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iași, 700506, Iași, Romania
Integrated Center of Environmental Science Studies in the North Eastern Region (CERNESIM), “Alexandru Ioan Cuza” University of Iași, 700506, Iași, Romania
Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UK
Related authors
No articles found.
Frank A. F. Winiberg, William J. Warman, Charlotte A. Brumby, Graham Boustead, Iustinian G. Bejan, Thomas H. Speak, Dwayne E. Heard, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 16, 4375–4390, https://doi.org/10.5194/amt-16-4375-2023, https://doi.org/10.5194/amt-16-4375-2023, 2023
Short summary
Short summary
OH and HO2 are key reactive intermediates in the Earth's atmosphere. Accurate measurements in either the field or simulation chambers provide a good test for chemical mechanisms. Fluorescence techniques have the appropriate sensitivity for detection but require calibration. This paper compares different methods of calibration and specifically how calibration factors vary across a temperature range relevant to atmospheric and chamber determinations.
Caterina Mapelli, James K. Donnelly, Úna E. Hogan, Andrew R. Rickard, Abbie T. Robinson, Fergal Byrne, Con Rob McElroy, Basile F. E. Curchod, Daniel Hollas, and Terry J. Dillon
Atmos. Chem. Phys., 23, 7767–7779, https://doi.org/10.5194/acp-23-7767-2023, https://doi.org/10.5194/acp-23-7767-2023, 2023
Short summary
Short summary
Solvents are chemical compounds with countless uses in the chemical industry, and they also represent one of the main sources of pollution in the chemical sector. Scientists are trying to develop new
greensafer solvents which present favourable advantages when compared to traditional solvents. Since the assessment of these green solvents often lacks air quality considerations, this study aims to understand the behaviour of these compounds, investigating their reactivity in the troposphere.
Caterina Mapelli, Juliette V. Schleicher, Alex Hawtin, Conor D. Rankine, Fiona C. Whiting, Fergal Byrne, C. Rob McElroy, Claudiu Roman, Cecilia Arsene, Romeo I. Olariu, Iustinian G. Bejan, and Terry J. Dillon
Atmos. Chem. Phys., 22, 14589–14602, https://doi.org/10.5194/acp-22-14589-2022, https://doi.org/10.5194/acp-22-14589-2022, 2022
Short summary
Short summary
Solvents represent an important source of pollution from the chemical industry. New "green" solvents aim to replace toxic solvents with new molecules made from renewable sources and designed to be less harmful. Whilst these new molecules are selected according to toxicity and other characteristics, no consideration has yet been included on air quality. Studying the solvent breakdown in air, we found that TMO has a lower impact on air quality than traditional solvents with similar properties.
Carmen Maria Tovar, Ian Barnes, Iustinian Gabriel Bejan, and Peter Wiesen
Atmos. Chem. Phys., 22, 6989–7004, https://doi.org/10.5194/acp-22-6989-2022, https://doi.org/10.5194/acp-22-6989-2022, 2022
Short summary
Short summary
This work explores the kinetics and reactivity of epoxides towards the OH radical using two different simulation chambers. Estimation of the rate coefficients has also been made using different structure–activity relationship (SAR) approaches. The results indicate a direct influence of the structural and geometric properties of the epoxides not considered in SAR estimations, influencing the reactivity of these compounds. The outcomes of this work are in very good agreement with previous studies.
Claudiu Roman, Cecilia Arsene, Iustinian Gabriel Bejan, and Romeo Iulian Olariu
Atmos. Chem. Phys., 22, 2203–2219, https://doi.org/10.5194/acp-22-2203-2022, https://doi.org/10.5194/acp-22-2203-2022, 2022
Short summary
Short summary
Gas-phase reaction rate coefficients of OH radicals with four nitrocatechols have been investigated for the first time by using ESC-Q-UAIC chamber facilities. The reactivity of all investigated nitrocatechols is influenced by the formation of the intramolecular H-bonds that are connected to the deactivating electromeric effect of the NO2 group. For the 3-nitrocatechol compounds, the electromeric effect of the
freeOH group is diminished by the deactivating E-effect of the NO2 group.
Niklas Illmann, Rodrigo Gastón Gibilisco, Iustinian Gabriel Bejan, Iulia Patroescu-Klotz, and Peter Wiesen
Atmos. Chem. Phys., 21, 13667–13686, https://doi.org/10.5194/acp-21-13667-2021, https://doi.org/10.5194/acp-21-13667-2021, 2021
Short summary
Short summary
Within this work we determined the rate coefficients and products of the reaction of unsaturated ketones with OH radicals in an effort to complete the gaps in the knowledge needed for modelling chemistry in the atmosphere. Both substances are potentially emitted by biomass burning, industrial activities or formed in the troposphere by oxidation of terpenes. As products we identified aldehydes and ketones which in turn are known to be responsible for the transportation of NOx species.
Cited articles
Alwe, H. D., Walawalkar, M., Sharma, A., Pushpa, K. K., Dhanya, S., and Naik, P. D.: Rate Coefficients for the Gas-Phase Reactions of Chlorine Atoms with Cyclic Ethers at 298 K, Int. J. Chem. Kinet., 45, 295–305, https://doi.org/10.1002/kin.20765, 2013.
Arif, M., Dellinger, B., and Taylor, P. H.: Rate Coefficients of Hydroxyl Radical Reaction with Dimethyl Ether and Methyl tert -Butyl Ether over an Extended Temperature Range, J. Phys. Chem. A, 101, 2436–2441, https://doi.org/10.1021/jp963119w, 1997.
Ariya, P.: Polar sunrise experiment 1995: hydrocarbon measurements and tropospheric Cl and Br-atoms chemistry, Atmos. Environ., 33, 931–938, https://doi.org/10.1016/S1352-2310(98)00254-4, 1999.
Ashcroft, C. P., Dunn, P. J., Hayler, J. D., and Wells, A. S.: Survey of Solvent Usage in Papers Published in Organic Process Research & Development 1997–2012, Org. Process Res. Dev., 19, 740–747, https://doi.org/10.1021/op500276u, 2015.
Atkinson, R. and Aschmann, S. M.: Kinetics of the gas phase reaction of Cl atoms with a series of organics at 296 ± 2 K and atmospheric pressure, Int. J. Chem. Kinet., 17, 33–41, https://doi.org/10.1002/kin.550170105, 1985.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Bänsch, C. and Olzmann, M.: Reaction of dimethoxymethane with hydroxyl radicals: An experimental kinetic study at temperatures above 296 K and pressures of 2, 5, and 10 bar, Chem. Phys. Lett., 720, 19–24, https://doi.org/10.1016/j.cplett.2019.01.053, 2019.
Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D., Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea, G., Wenger, J. C., and Pilling, M. J.: Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons, Atmos. Chem. Phys., 5, 641–664, https://doi.org/10.5194/acp-5-641-2005, 2005.
Bonard, A., Daële, V., Delfau, J.-L., and Vovelle, C.: Kinetics of OH Radical Reactions with Methane in the Temperature Range 295-660 K and with Dimethyl Ether and Methyl-tert-butyl Ether in the Temperature Range 295-618 K, J. Phys. Chem. A, 106, 4384–4389, https://doi.org/10.1021/jp012425t, 2002.
Bryan, M. C., Dunn, P. J., Entwistle, D., Gallou, F., Koenig, S. G., Hayler, J. D., Hickey, M. R., Hughes, S., Kopach, M. E., Moine, G., Richardson, P., Roschangar, F., Steven, A., and Weiberth, F. J.: Key Green Chemistry research areas from a pharmaceutical manufacturers' perspective revisited, Green Chem., 20, 5082–5103, https://doi.org/10.1039/C8GC01276H, 2018.
Calvert, J. G., Orlando, J. J., Stockwell, W. R., and Wallington, T. J.: The Mechanisms of Reactions Influencing Atmospheric Ozone, Oxford University Press, https://doi.org/10.1093/oso/9780190233020.001.0001, 2015.
Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M. J., and Wallington, T. J.: The mechanisms of atmospheric oxidation of the oxygenates, Oxford University Press, New York, 1 pp., https://doi.org/10.1093/oso/9780199767076.001.0001, 2020.
Christianson, M. G., Doner, A. C., Koritzke, A. L., Frandsen, K., and Rotavera, B.: Vacuum-ultraviolet absorption cross-sections of functionalized cyclic hydrocarbons: Five-membered rings, J. Quant. Spectrosc. Ra., 258, 107274, https://doi.org/10.1016/j.jqsrt.2020.107274, 2021.
Constable, D. J. C., Dunn, P. J., Hayler, J. D., Humphrey, G. R., Leazer, Jr., J. L., Linderman, R. J., Lorenz, K., Manley, J., Pearlman, B. A., Wells, A., Zaks, A., and Zhang, T. Y.: Key green chemistry research areas–a perspective from pharmaceutical manufacturers, Green Chem., 9, 411–420, https://doi.org/10.1039/B703488C, 2007.
Dagaut, P., Liu, R., Wallington, T. J., and Kurylo, M. J.: Flash photolysis resonance fluorescence investigation of the gas-phase reactions of hydroxyl radicals with cyclic ethers, J. Phys. Chem., 94, 1881–1883, https://doi.org/10.1021/j100368a030, 1990.
de Gonzalo, G., Alcántara, A. R., and Domínguez de María, P.: Cyclopentyl Methyl Ether (CPME): A Versatile Eco-Friendly Solvent for Applications in Biotechnology and Biorefineries, ChemSusChem, 12, 2083–2097, https://doi.org/10.1002/cssc.201900079, 2019.
Eckert, F. and Klamt, A.: COSMOtherm, Version C30, Release 1701, COSMOlogic GmbH & Co. KG [code], Leverkusen, Germany, https://www.3ds.com/products/biovia/cosmo-rs/cosmotherm (last access: 8 August 2025), 2016.
European Environment Agency.: Air quality in Europe: 2020 report, Publications Office, LU, https://doi.org/10.2800/786656, 2020.
Fenard, Y. and Vanhove, G.: A Mini-Review on the Advances in the Kinetic Understanding of the Combustion of Linear and Cyclic Oxymethylene Ethers, Energy Fuels, 35, 14325–14342, https://doi.org/10.1021/acs.energyfuels.1c01924, 2021.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., and Fox, D. J.: Gaussian 09 Rev. D.01, Gaussian Inc., Wallingford CT [code], https://www.gaussian.com (last access: 8 August 2025), 2016.
Giri, B. R., Roscoe, J. M., González-García, N., Olzmann, M., Lo, J. M. H., and Marriott, R. A.: Experimental and Theoretical Investigation of the Kinetics of the Reaction of Atomic Chlorine with 1,4-Dioxane, J. Phys. Chem. A, 115, 5105–5111, https://doi.org/10.1021/jp201803g, 2011.
Hansen, D. A., Atkinson, R., and Pitts, J. N.: Rate constants for the reaction of hydroxyl radicals with a series of aromatic hydrocarbons, J. Phys. Chem., 79, 1763–1766, https://doi.org/10.1021/j100584a004, 1975.
Härtl, M., Gaukel, K., Pélerin, D., and Wachtmeister, G.: Oxymethylene Ether as Potentially CO2-neutral Fuel for Clean Diesel Engines Part 1: Engine Testing, MTZ Worldw., 78, 52–59, https://doi.org/10.1007/s38313-016-0163-6, 2017.
Illés, Á., Rózsa, Z. B., Thangaraj, R., Décsiné Gombos, E., Dóbé, S., Giri, B. R., and Szőri, M.: An experimental and theoretical kinetic study of the reactions of hydroxyl radicals with tetrahydrofuran and two deuterated tetrahydrofurans, Chem. Phys. Lett., 776, 138698, https://doi.org/10.1016/j.cplett.2021.138698, 2021.
Jacob, E. and Maus, W.: Oxymethylene Ether as Potentially Carbon-neutral Fuel for Clean Diesel Engines Part 2: Compliance with the Sustainability Requirement, MTZ Worldw., 78, 52–57, https://doi.org/10.1007/s38313-017-0002-4, 2017.
Jenkin, M. E., Derwent, R. G., and Wallington, T. J.: Photochemical ozone creation potentials for volatile organic compounds: Rationalization and estimation, Atmos. Environ., 163, 128–137, https://doi.org/10.1016/j.atmosenv.2017.05.024, 2017.
Jenkin, M. E., Valorso, R., Aumont, B., Rickard, A. R., and Wallington, T. J.: Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aliphatic organic compounds for use in automated mechanism construction, Atmos. Chem. Phys., 18, 9297–9328, https://doi.org/10.5194/acp-18-9297-2018, 2018.
Jordan, A., Stoy, P., and Sneddon, H. F.: Chlorinated Solvents: Their Advantages, Disadvantages, and Alternatives in Organic and Medicinal Chemistry, Chem. Rev., 121, 1582–1622, https://doi.org/10.1021/acs.chemrev.0c00709, 2021.
Jordan, A., Hall, C. G. J., Thorp, L. R., and Sneddon, H. F.: Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives, Chem. Rev., 122, 6749–6794, https://doi.org/10.1021/acs.chemrev.1c00672, 2022.
Klamt, A.: Estimation of gas-phase hydroxyl radical rate constants of organic compounds from molecular orbital calculations, Chemosphere, 26, 1273–1289, https://doi.org/10.1016/0045-6535(93)90181-4, 1993.
Klamt, A.: Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations, Chemosphere, 32, 717–726, https://doi.org/10.1016/0045-6535(95)00352-5, 1996.
Klamt, A.: The COSMO and COSMO-RS solvation models, WIREs Comput. Mol. Sci., 8, e1338, https://doi.org/10.1002/wcms.1338, 2018.
Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and reactivity, Atmos. Chem. Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016, 2016.
Lelieveld, J., Klingmüller, K., Pozzer, A., Pöschl, U., Fnais, M., Daiber, A., and Münzel, T.: Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions, Eur. Heart J., 40, 1590–1596, https://doi.org/10.1093/eurheartj/ehz135, 2019.
Lewis, A. C., Hopkins, J. R., Carslaw, D. C., Hamilton, J. F., Nelson, B. S., Stewart, G., Dernie, J., Passant, N., and Murrells, T.: An increasing role for solvent emissions and implications for future measurements of volatile organic compounds, Philos. T. Roy. Soc. A, 378, 20190328, https://doi.org/10.1098/rsta.2019.0328, 2020.
Li, M., Karu, E., Brenninkmeijer, C., Fischer, H., Lelieveld, J., and Williams, J.: Tropospheric OH and stratospheric OH and Cl concentrations determined from CH4, CH3Cl, and SF6 measurements, Npj Clim. Atmospheric Sci., 1, 29, https://doi.org/10.1038/s41612-018-0041-9, 2018.
Li, Z. and Pirasteh, A.: Kinetic study of the reactions of atomic chlorine with several volatile organic compounds at 240–340 K, Int. J. Chem. Kinet., 38, 386–398, https://doi.org/10.1002/kin.20171, 2006.
Mairean, C.-P., Roman, C., Arsene, C., Bejan, I.-G., and Olariu, R.-I.: Gas-Phase Kinetics of a Series of cis-3-Hexenyl Esters with OH Radicals under Simulated Atmospheric Conditions, J. Phys. Chem. A, 128, 6274–6285, https://doi.org/10.1021/acs.jpca.4c03069, 2024.
Mapelli, C., Schleicher, J. V., Hawtin, A., Rankine, C. D., Whiting, F. C., Byrne, F., McElroy, C. R., Roman, C., Arsene, C., Olariu, R. I., Bejan, I. G., and Dillon, T. J.: Atmospheric breakdown chemistry of the new “green” solvent 2,2,5,5-tetramethyloxolane via gas-phase reactions with OH and Cl radicals, Atmos. Chem. Phys., 22, 14589–14602, https://doi.org/10.5194/acp-22-14589-2022, 2022.
Mapelli, C., Donnelly, J. K., Hogan, Ú. E., Rickard, A. R., Robinson, A. T., Byrne, F., McElroy, C. R., Curchod, B. F. E., Hollas, D., and Dillon, T. J.: Atmospheric oxidation of new “green” solvents – Part 2: methyl pivalate and pinacolone, Atmos. Chem. Phys., 23, 7767–7779, https://doi.org/10.5194/acp-23-7767-2023, 2023.
Maurer, T., Hass, H., Barnes, I., and Becker, K. H.: Kinetic and Product Study of the Atmospheric Photooxidation of 1,4-Dioxane and Its Main Reaction Product Ethylene Glycol Diformate, J. Phys. Chem. A, 103, 5032–5039, https://doi.org/10.1021/jp990273k, 1999.
McGillen, M. R., Carter, W. P. L., Mellouki, A., Orlando, J. J., Picquet-Varrault, B., and Wallington, T. J.: Database for the kinetics of the gas-phase atmospheric reactions of organic compounds, Earth Syst. Sci. Data, 12, 1203–1216, https://doi.org/10.5194/essd-12-1203-2020, 2020.
McGillen, M. R., Michelat, L., Orlando, J. J., and Carter, W. P. L.: The use of the electrotopological state as a basis for predicting hydrogen abstraction rate coefficients: a proof of principle for the reactions of alkanes and haloalkanes with OH, Environ. Sci. Atmospheres, 4, 18–34, https://doi.org/10.1039/D3EA00147D, 2024.
Mellouki, A., Teton, S., and Le Bras, G.: Kinetics of OH radical reactions with a series of ethers, Int. J. Chem. Kinet., 27, 791–805, https://doi.org/10.1002/kin.550270806, 1995.
Mellouki, A., Ammann, M., Cox, R. A., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V. F., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: volume VIII – gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4), Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, 2021.
Moriarty, J., Sidebottom, H., Wenger, J., Mellouki, A., and Le Bras, G.: Kinetic Studies on the Reactions of Hydroxyl Radicals with Cyclic Ethers and Aliphatic Diethers, J. Phys. Chem. A, 107, 1499–1505, https://doi.org/10.1021/jp021267i, 2003.
Perry, R. A., Atkinson, R., and Pitts, J. N.: Rate constants for the reaction of OH radicals with dimethyl ether and vinyl methyl ether over the temperature range 299–427 ° K, J. Chem. Phys., 67, 611–614, https://doi.org/10.1063/1.434862, 1977.
Peter, A., Fehr, S. M., Dybbert, V., Himmel, D., Lindner, I., Jacob, E., Ouda, M., Schaadt, A., White, R. J., Scherer, H., and Krossing, I.: Towards a Sustainable Synthesis of Oxymethylene Dimethyl Ether by Homogeneous Catalysis and Uptake of Molecular Formaldehyde, Angew. Chem. Int. Edit., 57, 9461–9464, https://doi.org/10.1002/anie.201802247, 2018.
Porter, E., Wenger, J., Treacy, J., Sidebottom, H., Mellouki, A., Téton, S., and LeBras, G.: Kinetic Studies on the Reactions of Hydroxyl Radicals with Diethers and Hydroxyethers, J. Phys. Chem. A, 101, 5770–5775, https://doi.org/10.1021/jp971254i, 1997.
Prat, D., Wells, A., Hayler, J., Sneddon, H., McElroy, C. R., Abou-Shehada, S., and Dunn, P. J.: CHEM21 selection guide of classical- and less classical-solvents, Green Chem., 18, 288–296, https://doi.org/10.1039/C5GC01008J, 2016.
Ravishankara, A. R. and Davis, D. D.: Kinetic rate constants for the reaction of hydroxyl with methanol, ethanol, and tetrahydrofuran at 298 K, J. Phys. Chem., 82, 2852–2853, https://doi.org/10.1021/j100515a022, 1978.
Roman, C., Arsene, C., Bejan, I. G., and Olariu, R. I.: Investigations into the gas-phase photolysis and OH radical kinetics of nitrocatechols: implications of intramolecular interactions on their atmospheric behaviour, Atmos. Chem. Phys., 22, 2203–2219, https://doi.org/10.5194/acp-22-2203-2022, 2022.
Rutto, P., Ubana, E., Selby, T. M., and Goulay, F.: Kinetic Study of OH Radical Reactions with Cyclopentenone Derivatives, J. Phys. Chem. A, 128, 8209–8219, https://doi.org/10.1021/acs.jpca.4c04060, 2024.
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003.
Schmitz, R., Russo, C., Ferraro, F., Apicella, B., Hasse, C., and Sirignano, M.: Effect of oxymethylene ether-2-3-4 (OME2-4) on soot particle formation and chemical features, Fuel, 324, 124617, https://doi.org/10.1016/j.fuel.2022.124617, 2022.
Seinfeld, J. H.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 1st ed., John Wiley & Sons, Incorporated, Newark, 175–264, ISBN: 978-1-118-94740-1, 2016.
Stuhr, M., Hesse, S., Faßheber, N., Wohler, M., Pal, M., Sakai, Y., Hemberger, P., and Friedrichs, G.: UV photolysis of oxalyl chloride: ClCO radical decomposition and direct Cl2 formation pathways, Int. J. Chem. Kinet., 56, 482–498, https://doi.org/10.1002/kin.21723, 2024.
Sun, Z., Van Beers, H., Cuijpers, M., Somers, B., and Maes, N.: Design of experiments optimized OMEx-diesel blends on a heavy-duty engine – Part 1: Combustion and emissions analysis with EGR and injection timing variation, Fuel, 381, 133392, https://doi.org/10.1016/j.fuel.2024.133392, 2025.
Szymański, S. and Sarzyński, D. S.: Experimental study of the kinetics of reaction of chlorine atoms with tetrahydrofuran and fully deuterated tetrahydrofuran, Int. J. Chem. Kinet., 52, 957–963, https://doi.org/10.1002/kin.21413, 2020.
Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dubé, W. P., Wolfe, G. M., Quinn, P. K., Middlebrook, A. M., Alexander, B., and Brown, S. S.: A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry, Nature, 464, 271–274, https://doi.org/10.1038/nature08905, 2010.
Thuner, L. P., Barnes, I., Maurer, T., Sauer, C. G., and Becker, K. H.: Kinetic study of the reaction of OH with a series of acetals at 298 ± 4 K, Int. J. Chem. Kinet., 31, 797–803, https://doi.org/10.1002/(SICI)1097-4601(1999)31:11<797::AID-JCK6>3.0.CO;2-C, 1999.
Tully, F. P. and Droege, A. T.: Kinetics of the reactions of the hydroxyl radical with dimethyl ether and diethyl ether, Int. J. Chem. Kinet., 19, 251–259, https://doi.org/10.1002/kin.550190308, 1987.
Wallington, T. J., Liu, R., Dagaut, P., and Kurylo, M. J.: The gas phase reactions of hydroxyl radicals with a series of aliphatic ethers over the temperature range 240–440 K, Int. J. Chem. Kinet., 20, 41–49, https://doi.org/10.1002/kin.550200106, 1988.
Wallington, T. J., Hurley, M. D., Ball, J. C., Straccia, A. M., Platz, J., Christensen, L. K., Sehested, J., and Nielsen, O. J.: Atmospheric Chemistry of Dimethoxymethane (CH 3 OCH 2 OCH 3): Kinetics and Mechanism of Its Reaction with OH Radicals and Fate of the Alkoxy Radicals CH 3 OCHOOCH 3 and CH 3 OCH 2 OCH 2 O, J. Phys. Chem. A, 101, 5302–5308, https://doi.org/10.1021/jp9631184, 1997.
Wallington, T. J., Ninomiya, Y., Mashino, M., Kawasaki, M., Orkin, V. L., Huie, R. E., Kurylo, M. J., Carter, W. P. L., Luo, D., and Malkina, I. L.: Atmospheric Oxidation Mechanism of Methyl Pivalate, (CH 3)3 CC(O)OCH 3, J. Phys. Chem. A, 105, 7225–7235, https://doi.org/10.1021/jp010308s, 2001.
Winer, M., Lloyd, A. C., Darnall, K. R., Atkinson, R., and Pitts, J. N.: Rate constants for the reaction of OH radicals with n-propyl acetate, sec-butyl acetate, tetrahydrofuran and peroxyacetyl nitrate, Chem. Phys. Lett., 5, 221–226, https://doi.org/10.1016/0009-2614(77)80388-6, 1977.
Wollenhaupt, M., Carl, S. A., Horowitz, A., and Crowley, J. N.: Rate Coefficients for Reaction of OH with Acetone between 202 and 395 K, J. Phys. Chem. A, 104, 2695–2705, https://doi.org/10.1021/jp993738f, 2000.
Zhang, X., Kumar, A., Arnold, U., and Sauer, J.: Biomass-derived Oxymethylene Ethers as Diesel Additives: A Thermodynamic Analysis, Energy Proced., 61, 1921–1924, https://doi.org/10.1016/j.egypro.2014.12.242, 2014.
Zhao, S., Liang, H., Hu, X., Li, S., and Daasbjerg, K.: Challenges and Prospects in the Catalytic Conversion of Carbon Dioxide to Formaldehyde, Angew. Chem., 134, e202204008, https://doi.org/10.1002/ange.202204008, 2022.
Zhenova, A., Pellis, A., Milescu, R. A., McElroy, C. R., White, R. J., and Clark, J. H.: Solvent Applications of Short-Chain Oxymethylene Dimethyl Ether Oligomers, ACS Sustain. Chem. Eng., 7, 14834–14840, https://doi.org/10.1021/acssuschemeng.9b02895, 2019.
Zhou, S., Barnes, I., Zhu, T., Bejan, I., and Benter, T.: Kinetic Study of the Gas-Phase Reactions of OH and NO3 Radicals and O3 with Selected Vinyl Ethers, J. Phys. Chem. A, 110, 7386–7392, https://doi.org/10.1021/jp061431s, 2006.
Short summary
Oxymethylene ethers are a class of sustainable compounds that could be used to replace harmful organic solvents in a range of applications. In this work, we use lab-based experiments to identify the main breakdown routes of these compounds in the atmosphere. We have determined that they likely contribute less to air pollution than the compounds that they replace.
Oxymethylene ethers are a class of sustainable compounds that could be used to replace harmful...
Altmetrics
Final-revised paper
Preprint